1
|
Scala I, Miccoli M, Pafundi PC, Rizzo PA, Vitali F, Bellavia S, Giovanni JD, Colò F, Marca GD, Guglielmi V, Brunetti V, Broccolini A, Di Iorio R, Monforte M, Calabresi P, Frisullo G. Automated Pupillometry Is Able to Discriminate Patients with Acute Stroke from Healthy Subjects: An Observational, Cross-Sectional Study. Brain Sci 2024; 14:616. [PMID: 38928617 PMCID: PMC11202086 DOI: 10.3390/brainsci14060616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Automated pupillometry (AP) is a handheld, non-invasive tool that is able to assess pupillary light reflex dynamics and is useful for the detection of intracranial hypertension. Limited evidence is available on acute ischemic stroke (AIS) patients. The primary objective was to evaluate the ability of AP to discriminate AIS patients from healthy subjects (HS). Secondly, we aimed to compute a predictive score for AIS diagnosis based on clinical, demographic, and AP variables. METHODS We included 200 consecutive patients admitted to a comprehensive stroke center who underwent AP assessment through NPi-200 (NeurOptics®) within 72 h of stroke onset and 200 HS. The mean values of AP parameters and the absolute differences between the AP parameters of the two eyes were considered in the analyses. Predictors of stroke diagnosis were identified through univariate and multivariate logistic regressions; we then computed a nomogram based on each variable's β coefficient. Finally, we developed a web app capable of displaying the probability of stroke diagnosis based on the predictive algorithm. RESULTS A high percentage of pupil constriction (CH, p < 0.001), a low constriction velocity (CV, p = 0.002), and high differences between these two parameters (p = 0.036 and p = 0.004, respectively) were independent predictors of AIS. The highest contribution in the predictive score was provided by CH, the Neurological Pupil Index, CV, and CV absolute difference, disclosing the important role of AP in the discrimination of stroke patients. CONCLUSIONS The results of our study suggest that AP parameters, and in particular, those concerning pupillary constriction, may be useful for the early diagnosis of AIS.
Collapse
Affiliation(s)
- Irene Scala
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| | - Massimo Miccoli
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
| | - Pia Clara Pafundi
- Facility of Epidemiology and Biostatistics, Gemelli Generator, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Pier Andrea Rizzo
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
| | - Francesca Vitali
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
| | - Simone Bellavia
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
| | - Jacopo Di Giovanni
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
| | - Francesca Colò
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
| | - Giacomo Della Marca
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| | - Valeria Guglielmi
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| | - Valerio Brunetti
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| | - Aldobrando Broccolini
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| | - Riccardo Di Iorio
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| | - Mauro Monforte
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| | - Paolo Calabresi
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| | - Giovanni Frisullo
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| |
Collapse
|
2
|
Fan X, Cao J, Li M, Zhang D, El‐Battrawy I, Chen G, Zhou X, Yang G, Akin I. Stroke Related Brain-Heart Crosstalk: Pathophysiology, Clinical Implications, and Underlying Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307698. [PMID: 38308187 PMCID: PMC11005719 DOI: 10.1002/advs.202307698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
The emergence of acute ischemic stroke (AIS) induced cardiovascular dysfunctions as a bidirectional interaction has gained paramount importance in understanding the intricate relationship between the brain and heart. Post AIS, the ensuing cardiovascular dysfunctions encompass a spectrum of complications, including heart attack, congestive heart failure, systolic or diastolic dysfunction, arrhythmias, electrocardiographic anomalies, hemodynamic instability, cardiac arrest, among others, all of which are correlated with adverse outcomes and mortality. Mounting evidence underscores the intimate crosstalk between the heart and the brain, facilitated by intricate physiological and neurohumoral complex networks. The primary pathophysiological mechanisms contributing to these severe cardiac complications involve the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic and parasympathetic hyperactivity, immune and inflammatory responses, and gut dysbiosis, collectively shaping the stroke-related brain-heart axis. Ongoing research endeavors are concentrated on devising strategies to prevent AIS-induced cardiovascular dysfunctions. Notably, labetalol, nicardipine, and nitroprusside are recommended for hypertension control, while β-blockers are employed to avert chronic remodeling and address arrhythmias. However, despite these therapeutic interventions, therapeutic targets remain elusive, necessitating further investigations into this complex challenge. This review aims to delineate the state-of-the-art pathophysiological mechanisms in AIS through preclinical and clinical research, unraveling their intricate interplay within the brain-heart axis, and offering pragmatic suggestions for managing AIS-induced cardiovascular dysfunctions.
Collapse
Affiliation(s)
- Xuehui Fan
- Key Laboratory of Medical ElectrophysiologyMinistry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceCollaborative Innovation Center for Prevention of Cardiovascular DiseasesInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhou646000China
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| | - Jianyang Cao
- School of Physical EducationSouthwest Medical UniversityLuzhouSichuan Province646000China
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Mingxia Li
- School of Physical EducationSouthwest Medical UniversityLuzhouSichuan Province646000China
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Dechou Zhang
- Department of NeurologyThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Ibrahim El‐Battrawy
- Department of Cardiology and AngiologyRuhr University44780BochumGermany
- Institut für Forschung und Lehre (IFL)Department of Molecular and Experimental CardiologyRuhr‐University Bochum44780BochumGermany
| | - Guiquan Chen
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Xiaobo Zhou
- Key Laboratory of Medical ElectrophysiologyMinistry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceCollaborative Innovation Center for Prevention of Cardiovascular DiseasesInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhou646000China
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| | - Guoqiang Yang
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Ibrahim Akin
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| |
Collapse
|
3
|
Scherbakov N, Barkhudaryan A, Ebner N, von Haehling S, Anker SD, Joebges M, Doehner W. Early rehabilitation after stroke: relationship between the heart rate variability and functional outcome. ESC Heart Fail 2020; 7:2983-2991. [PMID: 33121218 PMCID: PMC7524118 DOI: 10.1002/ehf2.12917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Aims Impaired autonomic nervous system regulation is frequently observed in patients with stroke. The aim of this prospective study was to evaluate the impact of cardiac autonomic tone on functional outcome after the early post‐stroke rehabilitation. Methods and results One hundred and three consecutive patients (67 ± 11 years, body mass index (BMI) 27.1 ± 5.4 kg/m2, 64% men) with ischaemic (84% of patients) and haemorrhagic stroke were studied. Depressed heart rate variability (HRV), as a surrogate marker of increased sympathetic tone, was defined by the standard deviation of NN intervals < 100 ms and HRV triangular index ≤ 20 assessed from a 24 h Holter electrocardiogram at admission to rehabilitation (23 ± 16 days after stroke). Twenty‐two per cent of patients had depressed HRV at baseline and were comparable with patients with normal HRV with regard to their functional [Barthel Index (BI), modified Rankin Scale (mRS), and Rivermead Motor Assessment (RMA)] and biochemical status. After a 4‐week follow‐up, 70% of patients with depressed HRV showed a cumulative functional disability, defined by mRS ≥ 4, BI ≤ 70, and RMA ≤ 5, in contrast to patients with normal HRV (35%, P = 0.003). Patients with depressed HRV showed a worse functional status by BI (−16%, P < 0.001), RMA (−12%, P < 0.05), and mRS (+16%, P < 0.01), compared with patients with normal HRV. Cumulative functional disability was associated with depressed HRV (odds ratio 4.25, 95% confidence interval 1.56–11.54, P < 0.005) after adjustment for age, sex, and body mass index (odds ratio 4.6, 95% confidence interval 1.42–14.97, P < 0.05). Conclusions The presence of autonomic cardiovascular dysregulation in patients with subacute stroke was associated with adverse functional outcome after the early post‐stroke rehabilitation.
Collapse
Affiliation(s)
- Nadja Scherbakov
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anush Barkhudaryan
- Department of Cardiology, Clinic of General and Invasive Cardiology, University Hospital No. 1, Yerevan State Medical University, Yerevan, Armenia
| | - Nicole Ebner
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Stefan D Anker
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Division of Cardiology and Metabolism-Heart Failure, Cachexia and Sarcopenia, Department of Cardiology (CVK), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Joebges
- Clinic for Neurology and Neurological Rehabilitation, Schmieder Clinic (Stiftung Co.) KG, Konstanz, Germany
| | - Wolfram Doehner
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Prestroke statins use reduces oxidized low density lipoprotein levels and improves clinical outcomes in patients with atrial fibrillation related acute ischemic stroke. BMC Neurol 2019; 19:240. [PMID: 31627722 PMCID: PMC6800490 DOI: 10.1186/s12883-019-1463-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/11/2019] [Indexed: 01/09/2023] Open
Abstract
Background Atrial fibrillation (AF) is a common cause of cerebral infarction, which could lead to endothelial dysfunction, increased reactive oxygen species (ROS) and oxidized low density lipoprotein (Ox-LDL).AF is associated with higher mortality and more severe neurologic disability. Statins may exert neuroprotective effects that are independent of LDL-C lowering. The purpose of our study was to investigate whether prestroke statins use could reduce plasma Ox-LDL levels and improve clinical outcomes in patients with AF-related acute ischemic stroke (AIS). Methods This was a multicenter prospective study that involved four medical centers, 242 AIS patients with AF were identified, who underwent a comprehensive clinical investigation and a 72 h-Holter electrocardiogram monitoring. All patients were divided into two groups: prestroke statins use and no prestroke statins use groups, who were followed up for 3 months. Plasma Ox-LDL levels were measured using enzyme-linked immunosorbent assay (ELISA) on admission and at 3 months. The outcome was death, major disability (modified Rankin Scale score ≥ 3), and composite outcome (death/major disability) at 3 months after AIS. Results One hundred thirty-six patients were in no prestroke statins use group, and 106 in prestroke statins use group. Plasma Ox-LDL levels were significantly lower in prestroke statins use than in no prestroke statins use on admission and at 3 months (P < 0.001). Plasma Ox-LDL levels on admission were associated with 3-month mortality [adjusted odds ratio (OR), 1.05; 95% confidence interval (CI), 0.99–1.12; P = 0.047]. In fully adjusted models, prestroke statins use was associated with reduced 3-month mortality [adjusted OR, 0.38; 95% CI, 0.16–0.91; P = 0.031)], major disability (adjusted OR, 0.38; 95% CI, 0.15–0.99; P = 0.047), and composite outcome (adjusted OR, 0.31; 95% CI, 0.17–0.74; P = 0.009). Conclusions Prestroke statins use can reduce plasma Ox-LDL levels and improve clinical outcomes in patients with AF-related AIS.
Collapse
|
5
|
He L, Wang J, Zhang L, Zhang X, Dong W, Yang H. Decreased fractal dimension of heart rate variability is associated with early neurological deterioration and recurrent ischemic stroke after acute ischemic stroke. J Neurol Sci 2019; 396:42-47. [DOI: 10.1016/j.jns.2018.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/12/2018] [Accepted: 11/04/2018] [Indexed: 12/27/2022]
|
6
|
He L, Wang J, Liu Y, Dong W, Yang H, Luo Y, Xiang T, Luo L. Percutaneous mastoid electrical stimulator alleviates autonomic dysfunction in patients with acute ischemic stroke. Neurol Res 2018; 40:995-1000. [PMID: 30111262 DOI: 10.1080/01616412.2018.1508548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE Poststroke prognosis is associated with autonomic status. The purpose of our study was to determine whether percutaneous mastoid electrical stimulator (PMES) can alleviate abnormal heart rate variability (HRV) and improve clinical outcome. METHODS This prospective, randomized, double-blinded, placebo-controlled study enrolled a total of 140 patients with autonomic dysfunction within 3d after acute ischemic stroke. The patients were treated with PMES or sham stimulation once daily over a period of 2 weeks. HRV was primarily assessed by the fractal dimension (FD) at admission and 2 weeks. All patients were followed up for 3 months. The clinical outcome was death and major disability (modified Rankin Scale score≥ 3) at 3 months after acute ischemic stroke. RESULTS FD of the 2-week treatment period increased in PMES groups. PMES can significantly alleviate abnormal HRV. The difference in FD of the 2-week treatment period between the PMES and sham groups was significant (1.14 ± 0.27 vs. 1.00 ± 0.23; P = 0.001). In fully adjusted models, PMES was associated with reduced 3-month mortality (adjusted odds ratio, 0.32; 95% confidence interval, 0.11-0.93; P = 0.036). No significant group differences were seen in three major disability and composite outcome (P > 0.05). CONCLUSIONS PMES was a safe, effective, and low-cost therapy to alleviate HRV and could significantly reduce mortality in the early recovery phase after acute ischemic stroke.
Collapse
Affiliation(s)
- Lanying He
- a Department of Neurology , The Second People's Hospital of Chengdu , Chengdu , P. R. China
| | - Jian Wang
- a Department of Neurology , The Second People's Hospital of Chengdu , Chengdu , P. R. China
| | - Ya Liu
- b Department of Geriatrics , The Second People's Hospital of Chengdu , Chengdu , P. R. China
| | - Weiwei Dong
- c Department of Neurology , The Second Affiliated Hospital, Chongqing Medical University , Chongqing , P. R. China
| | - Hao Yang
- d College of Electrical Engineering, Institute of Electrical Technology , Chongqing University , Chongqing , P. R. China
| | - Yong Luo
- c Department of Neurology , The Second Affiliated Hospital, Chongqing Medical University , Chongqing , P. R. China
| | - Tao Xiang
- e Rehabilitation department , The Second People's Hospital of Chengdu , Chengdu , P. R. China
| | - Lun Luo
- e Rehabilitation department , The Second People's Hospital of Chengdu , Chengdu , P. R. China
| |
Collapse
|