1
|
O'Brien MW, Schwartz BD, Petterson JL, Courish MK, Shivgulam ME, Kimmerly DS. Nadir blood pressure responses to longer consecutive cardiac cycle sequences absent of sympathetic bursts are associated with popliteal endothelial-dependent dilation. Auton Neurosci 2024; 254:103193. [PMID: 38852226 DOI: 10.1016/j.autneu.2024.103193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE The nadir pressure responses to cardiac cycles absent of muscle sympathetic nerve activity (MSNA) bursts (or non-bursts) are typically reported in studies quantifying sympathetic transduction, but the information gained by studying non-bursts is unclear. We tested the hypothesis that longer sequences of non-bursts (≥8 cardiac cycles) would be associated with a greater nadir diastolic blood pressure (DBP) and that better popliteal artery function would be associated with an augmented reduction in DBP. METHODS Resting beat-by-beat DBP (via finger photoplethysmography) and common peroneal nerve MSNA (via microneurography) were recorded in 39 healthy, adults (age 23.4 ± 5.3 years; 19 females). For each cardiac cycle absent of MSNA bursts, the mean nadir DBP (ΔDBP) during the 12 cardiac cycles following were determined, and separate analyses were conducted for ≥8 or < 8 cardiac cycle sequences. Popliteal artery endothelial-dependent (via flow-mediated dilation; FMD) and endothelial-independent vasodilation (via nitroglycerin-mediated dilation; NMD) were determined. RESULTS The nadir DBP responses to sequences ≥8 cardiac cycles were larger (-1.40 ± 1.27 mmHg) than sequences <8 (-0.38 ± 0.46 mmHg; p < 0.001). In adjusting for sex and burst frequency (14 ± 8 bursts/min), larger absolute or relative FMD (p < 0.01), but not NMD (p > 0.53) was associated with an augmented nadir DBP. This overall DBP-FMD relationship was similar in sequences ≥8 (p = 0.04-0.05), but not <8 (p > 0.72). CONCLUSION The DBP responses to non-bursts, particularly longer sequences, were inversely associated with popliteal endothelial function, but not vascular smooth muscle sensitivity. This study provides insight into the information gained by quantifying the DBP responses to cardiac cycles absent of MSNA.
Collapse
Affiliation(s)
- Myles W O'Brien
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Centre de Formation Médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, New Brunswick, Canada.
| | - Beverly D Schwartz
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Jennifer L Petterson
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Molly K Courish
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Madeline E Shivgulam
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Derek S Kimmerly
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
2
|
Bigalke JA, Young BE, Cleveland EL, Fadel PJ, Carter JR. Aging and sympathetic transduction to blood pressure in humans: methodological and physiological considerations. Am J Physiol Heart Circ Physiol 2024; 326:H148-H157. [PMID: 37921667 PMCID: PMC11213475 DOI: 10.1152/ajpheart.00359.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/04/2023]
Abstract
Recent reports suggest that quantification of signal-averaged sympathetic transduction is influenced by resting muscle sympathetic nerve activity (MSNA) and burst occurrence relative to the average mean arterial pressure (MAP). Herein, we asked how these findings may influence age-related reductions in sympathetic transduction. Beat-to-beat blood pressure and MSNA were recorded during 5 min of rest in 27 younger (13 females: age, 25 ± 5 yr; BMI, 25 ± 4 kg/m2) and 26 older (15 females: age, 59 ± 5 yr; BMI, 26 ± 4 kg/m2) healthy adults. All MSNA bursts were signal averaged together. Beat-to-beat MAP values were then split into low (T1), middle (T2), and high (T3) tertiles, and signal-averaged transduction was calculated within each tertile. Resting MSNA was higher in older adults and MAP was similar between groups. Older adults exhibited blunted overall MAP transduction (younger, Δ1.5 ± 0.6 vs. older, Δ0.9 ± 0.7 mmHg; P = 0.005), which was irrespective of relation to prevailing MAP. A greater proportion of bursts occurred above the average MAP in older adults (P < 0.001), and a larger proportion of these bursts were associated with depressor responses (P = 0.005). Nonetheless, assessment of bursts above the average MAP associated with pressor responses revealed similar age-associated reductions in transduction (younger, Δ2.6 ± 1.6 vs. older, Δ1.7 ± 0.8 mmHg; P = 0.016). These findings indicate an age-related increase in burst occurrence above the average resting MAP, which alone does not explain blunted transduction, thereby supporting the physiological underpinnings of age-related decrements in sympathetic transduction to blood pressure.NEW & NOTEWORTHY The current study demonstrated that aging is associated with a greater prevalence of sympathetic bursts occurring above the average blood pressure, which offers both methodologically and physiologically relevant information regarding aging and sympathetic control of blood pressure. These data support age-related reductions in sympathetic transduction via a reduced pressor response to sympathetic bursts irrespective of the prevailing absolute blood pressure value, along with increases in sympathetic outflow necessary to maintain blood pressure.
Collapse
Affiliation(s)
- Jeremy A Bigalke
- Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, United States
- Department of Psychology, Montana State University, Bozeman, Montana, United States
| | - Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Emily L Cleveland
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, United States
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Jason R Carter
- Robbins College of Health and Human Sciences, Baylor University, Waco, Texas, United States
| |
Collapse
|
3
|
D'Souza AW, Hissen SL, Manabe K, Takeda R, Washio T, Coombs GB, Sanchez B, Fu Q, Shoemaker JK. Age- and sex-related differences in sympathetic vascular transduction and neurohemodynamic balance in humans. Am J Physiol Heart Circ Physiol 2023; 325:H917-H932. [PMID: 37594483 DOI: 10.1152/ajpheart.00301.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023]
Abstract
Bursts of muscle sympathetic nerve activity (MSNA) and the ensuing vasoconstriction are pivotal determinants of beat-by-beat blood pressure regulation. Although age and sex impact blood pressure regulation, how these factors affect the central and peripheral arcs of the baroreflex remains unclear. In 27 young [25 (SD 3) yr] males (YM; n = 14) and females (YF; n = 13) and 23 older [71 (SD 5) yr] males (OM; n = 11) and females (OF; n = 12), femoral artery blood flow, blood pressure, and MSNA were recorded for 10 min of supine rest. Sympathetic baroreflex sensitivity (i.e., central arc) was quantified as the relationship between diastolic blood pressure and MSNA burst incidence. Signal averaging was used to determine sympathetic vascular transduction into leg vascular conductance (LVC) for 12 cardiac cycles following MSNA bursts (i.e., peripheral arc). Older adults demonstrated attenuated sympathetic transduction into LVC (both P < 0.001) following MSNA bursts, and smaller increases in sympathetic transduction as a function of MSNA burst size and firing pattern compared with young adults (range, P = 0.004-0.032). YM (r2 = 0.36; P = 0.032) and OM (r2 = 0.51; P = 0.014) exhibited an inverse relationship between the central and peripheral arcs of the baroreflex, whereas females did not (YF, r2 = 0.03, P = 0.621; OF, r2 = 0.06, P = 0.445). MSNA burst incidence was inversely related to sympathetic transduction in YM and OF (range, P = 0.03-0.046) but not in YF or OM (range, P = 0.360-0.603). These data indicate that age is associated with attenuated sympathetic vascular transduction, whereas age- and sex-specific changes are present in the relationship between the central and peripheral arcs of the baroreflex regulation of blood pressure.NEW & NOTEWORTHY Sympathetic vascular transduction is attenuated in older compared with young adults, regardless of biological sex. Males, but not females (regardless of age), demonstrate an inverse relationship between central (sympathetic baroreflex sensitivity) and peripheral (sympathetic vascular transduction) components of the baroreflex arc. Young males and older females exhibit an inverse relationship between resting sympathetic outflow and sympathetic vascular transduction. Our results indicate that age and sex exert independent and interactive effects on sympathetic vascular transduction and sympathetic neurohemodynamic balance in humans.
Collapse
Affiliation(s)
- Andrew W D'Souza
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Sarah L Hissen
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Kazumasa Manabe
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Ryosuke Takeda
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Takuro Washio
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Geoff B Coombs
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Belinda Sanchez
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - J Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
4
|
O'Brien MW, Schwartz BD, Petterson JL, Kimmerly DS. Comparison of signal-averaging and regression approaches to analyzing sympathetic transduction. Clin Auton Res 2022; 32:299-302. [PMID: 35727399 DOI: 10.1007/s10286-022-00874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Spontaneous sympathetic transduction reflects the vascular and/or pressor responses to bursts of muscle sympathetic nerve activity (MSNA). Separately, signal-averaging and regression-based approaches have been implemented to quantify resting sympathetic transduction. It is unknown whether the outcomes of these analytical approaches provide (dis)similar information, which is imperative for between-study comparisons and the amalgamation of results for synthesis of multiple studies (i.e., meta-analyses). We explored the diastolic blood pressure (DBP) responses to spontaneous bursts of MSNA between these two methods of analysis. METHODS Resting beat-by-beat DBP (via finger photoplethysmography) and common peroneal nerve MSNA (via microneurography) were recorded in 52 healthy, normotensive adults (age 38 ± 20 years; 19 females). For the signal-averaged method, transduction was quantified as the mean peak increase in DBP (ΔDBP) during the 12 cardiac cycles following each MSNA burst. In addition, DBP was regressed to a moving two-cardiac-cycle window of normalized relative burst height (mmHg/relative %) to provide the regression-based transduction outcome. RESULTS The signal-averaged (1.2 ± 0.7 mmHg) and regression-based approaches (0.009 ± 0.016 mmHg/%) were unrelated (ρ = 0.03, p = 0.86). Adding to the discrepancy, only the signal-averaging approach demonstrated a lower transduction in middle-aged-older males versus younger males. CONCLUSIONS The decision of which method to use when calculating sympathetic transduction influences study outcomes, with the two most common methods of determining transduction being unrelated. There are challenges of making sweeping conclusions across studies if different analysis strategies are implemented. An understanding of when to use each method is needed to adopt a harmonized approach to quantifying sympathetic transduction.
Collapse
Affiliation(s)
- Myles W O'Brien
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada.
| | - Beverly D Schwartz
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| | - Jennifer L Petterson
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| | - Derek S Kimmerly
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
5
|
O’Brien MW, Mekary S, Kimmerly DS. Aging, cardiorespiratory fitness and sympathetic transduction. Aging (Albany NY) 2022; 14:4189-4190. [PMID: 35580001 PMCID: PMC9186775 DOI: 10.18632/aging.204091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Myles W. O’Brien
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Said Mekary
- Department of Family Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Derek S. Kimmerly
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
Nardone M, Katerberg C, Teixeira AL, Lee JB, Bommarito JC, Millar PJ. Sympathetic transduction of blood pressure during graded lower body negative pressure in young healthy adults. Am J Physiol Regul Integr Comp Physiol 2022; 322:R620-R628. [DOI: 10.1152/ajpregu.00034.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic transduction of blood pressure (BP) is correlated negatively with resting muscle sympathetic nerve activity (MSNA) in cross-sectional data, but the acute effects of increasing MSNA are unclear. Sixteen (4 females) healthy adults (26±3 years) underwent continuous measurement of heart rate, BP, and MSNA at rest and during graded lower body negative pressure (LBNP) at -10, -20, and -30mmHg. Sympathetic transduction of BP was quantified in the time (signal averaging) and frequency (MSNA-BP gain) domains. The proportion of MSNA bursts firing within each tertile of BP were calculated. As expected, LBNP increased MSNA burst frequency (P<0.01) and burst amplitude (P<0.02), though the proportions of MSNA bursts firing across each BP tertile remained stable (all P>0.44). The MSNA-diastolic BP low frequency transfer function gain (P=0.25) was unchanged during LBNP; the spectral coherence was increased (P=0.03). Signal-averaged sympathetic transduction of diastolic BP was unchanged (from 2.1±1.0 at rest to 2.4±1.5, 2.2±1.3, and 2.3±1.4mmHg; P=0.43) during LBNP, but diastolic BP responses following non-burst cardiac cycles progressively decreased (from -0.8±0.4 at rest to -1.0±0.6, -1.2±0.6, and -1.6±0.9mmHg; P<0.01). As a result, the difference between MSNA burst and non-bursts diastolic BP responses was increased (from 2.9±1.4 at rest to 3.4±1.9, 3.4±1.9, and 3.9±2.1mmHg; P<0.01). In conclusion, acute increases in MSNA using LBNP did not alter traditional signal-averaged or frequency-domain measures of sympathetic transduction of BP or the proportion of MSNA bursts firing at different BP levels. The factors that determine changes in the firing of MSNA bursts relative to oscillations in BP require further investigation.
Collapse
Affiliation(s)
- Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Carlin Katerberg
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - André L. Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jordan B. Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Julian C. Bommarito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J. Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
7
|
O'Brien MW, Petterson JL, Kimmerly DS. Impact of sampling duration on spontaneous sympathetic transduction. Clin Auton Res 2022; 32:155-158. [PMID: 35294981 DOI: 10.1007/s10286-022-00861-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 01/03/2023]
Affiliation(s)
- Myles W O'Brien
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada.
| | - Jennifer L Petterson
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| | - Derek S Kimmerly
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|