1
|
Táncsics A, Banerjee S, Soares A, Bedics A, Kriszt B. Combined Omics Approach Reveals Key Differences between Aerobic and Microaerobic Xylene-Degrading Enrichment Bacterial Communities: Rhodoferax─A Hitherto Unknown Player Emerges from the Microbial Dark Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2846-2855. [PMID: 36752053 DOI: 10.1021/acs.est.2c09283] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Among monoaromatic hydrocarbons, xylenes, especially the ortho and para isomers, are the least biodegradable compounds in oxygen-limited subsurface environments. Although much knowledge has been gained regarding the anaerobic degradation of xylene isomers in the past 2 decades, the diversity of those bacteria which are able to degrade them under microaerobic conditions is still unknown. To overcome this limitation, aerobic and microaerobic xylene-degrading enrichment cultures were established using groundwater taken from a xylene-contaminated site, and the associated bacterial communities were investigated using a polyphasic approach. Our results show that the xylene-degrading bacterial communities were distinctly different between aerobic and microaerobic enrichment conditions. Although members of the genus Pseudomonas were the most dominant in both types of enrichments, the Rhodoferax and Azovibrio lineages were only abundant under microaerobic conditions, while Sphingobium entirely replaced them under aerobic conditions. Analysis of a metagenome-assembled genome of a Rhodoferax-related bacterium revealed aromatic hydrocarbon-degrading ability by identifying two catechol 2,3-dioxygenases in the genome. Moreover, phylogenetic analysis indicated that both enzymes belonged to a newly defined subfamily of type I.2 extradiol dioxygenases (EDOs). Aerobic and microaerobic xylene-degradation experiments were conducted on strains Sphingobium sp. AS12 and Pseudomonas sp. MAP12, isolated from the aerobic and microaerobic enrichments, respectively. The obtained results, together with the whole-genome sequence data of the strains, confirmed the observation that members of the genus Sphingobium are excellent aromatic hydrocarbon degraders but effective only under clear aerobic conditions. Overall, it was concluded that the observed differences between the bacterial communities of aerobic and microaerobic xylene-degrading enrichments were driven primarily by (i) the method of aromatic ring activation (monooxygenation vs dioxygenation), (ii) the type of EDO enzymes, and (iii) the ability of degraders to respire utilizing nitrate.
Collapse
Affiliation(s)
- András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., 2100 Gödöllö, Hungary
| | - Sinchan Banerjee
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., 2100 Gödöllö, Hungary
| | - André Soares
- Group for Aquatic Microbial Ecology, Institute for Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Anna Bedics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., 2100 Gödöllö, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. u. 1., 2100 Gödöllö, Hungary
| |
Collapse
|
2
|
Chen SC, Budhraja R, Adrian L, Calabrese F, Stryhanyuk H, Musat N, Richnow HH, Duan GL, Zhu YG, Musat F. Novel clades of soil biphenyl degraders revealed by integrating isotope probing, multi-omics, and single-cell analyses. ISME JOURNAL 2021; 15:3508-3521. [PMID: 34117322 PMCID: PMC8630052 DOI: 10.1038/s41396-021-01022-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022]
Abstract
Most microorganisms in the biosphere remain uncultured and poorly characterized. Although the surge in genome sequences has enabled insights into the genetic and metabolic properties of uncultured microorganisms, their physiology and ecological roles cannot be determined without direct probing of their activities in natural habitats. Here we employed an experimental framework coupling genome reconstruction and activity assays to characterize the largely uncultured microorganisms responsible for aerobic biodegradation of biphenyl as a proxy for a large class of environmental pollutants, polychlorinated biphenyls. We used 13C-labeled biphenyl in contaminated soils and traced the flow of pollutant-derived carbon into active cells using single-cell analyses and protein–stable isotope probing. The detection of 13C-enriched proteins linked biphenyl biodegradation to the uncultured Alphaproteobacteria clade UBA11222, which we found to host a distinctive biphenyl dioxygenase gene widely retrieved from contaminated environments. The same approach indicated the capacity of Azoarcus species to oxidize biphenyl and suggested similar metabolic abilities for species of Rugosibacter. Biphenyl oxidation would thus represent formerly unrecognized ecological functions of both genera. The quantitative role of these microorganisms in pollutant degradation was resolved using single-cell-based uptake measurements. Our strategy advances our understanding of microbially mediated biodegradation processes and has general application potential for elucidating the ecological roles of uncultured microorganisms in their natural habitats.
Collapse
Affiliation(s)
- Song-Can Chen
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Rohit Budhraja
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Lorenz Adrian
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Federica Calabrese
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Gui-Lan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China. .,Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China.
| | - Florin Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
3
|
Yin C, Xiong W, Qiu H, Peng W, Deng Z, Lin S, Liang R. Characterization of the Phenanthrene-Degrading Sphingobium yanoikuyae SJTF8 in Heavy Metal Co-Existing Liquid Medium and Analysis of Its Metabolic Pathway. Microorganisms 2020; 8:E946. [PMID: 32586023 PMCID: PMC7355620 DOI: 10.3390/microorganisms8060946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/27/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common organic pollutants with great carcinogenic threaten, and metal/PAH-contaminated environments represent one of the most difficult remedial challenges. In this work, Sphingobium yanoikuyae SJTF8 was isolated and identified with great and stable PAH-degrading efficiency even under stress conditions. It could utilize typical PAHs (naphthalene, phenanthrene, and anthracene) and heterocyclic and halogenated aromatic compounds (dibenzothiophene and 9-bromophenanthrene) as the sole carbon source. It could degrade over 98% of 500 mg/L phenanthrene in 4 days, and the cis-3,4-dihydrophenanthrene-3,4-diol was the first-step intermediate. Notably, strain SJTF8 showed great tolerance to heavy metals and acidic pH. Supplements of 0.30 mM of Cu2+, 1.15 mM of Zn2+, and 0.01 mM of Cd2+ had little effect on its cell growth and phenanthrene degradation; phenanthrene of 250 mg/L could still be degraded completely in 48 h. Further, the whole genome sequence of S. yanoikuyae SJTF8 was obtained, and three plasmids were found. The potential genes participating in stress-tolerance and PAH-degradation were annotated and were found mostly distributed in plasmids 1 and 2. Elimination of plasmid 2 resulted in the loss of the PAH-degradation ability. On the basis of genome mining results, the possible degrading pathway and the metabolites of S. yanoikuyae SJTF8 to phenanthrene were predicted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (C.Y.); (W.X.); (H.Q.); (W.P.); (Z.D.); (S.L.)
| |
Collapse
|
4
|
Li M, Shi Y, Li Y, Sun Y, Song C, Huang Z, Yang Z, Han Y. Shift of microbial diversity and function in high-efficiency performance biotrickling filter for gaseous xylene treatment. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:1059-1069. [PMID: 31050600 DOI: 10.1080/10962247.2019.1600603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/21/2019] [Accepted: 03/22/2019] [Indexed: 05/26/2023]
Abstract
Xylene is the main component of many volatile industrial pollution sources, and the use of biotechnology to remove volatile organic compounds (VOCs) has become a growing trend. In this study, a biotrickling filter for gaseous xylene treatment was developed using activated sludge as raw material to study the biodegradation process of xylene. Reaction conditions were optimized, and long-term operation was performed. The optimal pH was 7.0, gas-liquid ratio was 15:1 (v/v), and temperature was 25 °C. High-throughput sequencing technique was carried out to analyze microbial communities in the top, middle, and bottom layers of the reactor. Characteristics of microbial diversity were elucidated, and microbial functions were predicted. The result showed that the removal efficiency (RE) was stable at 86%-91%, the maximum elimination capacity (EC) was 303.61 g·m-3·hr-1, residence time was 33.75 sec, and the initial inlet xylene concentration was 3000 mg·m-3, which was the highest known degradation concentration reported. Kinetic analysis of the xylene degradation indicated that it was a very high-efficiency-activity bioprocess. The rmax was 1059.8 g·m-3·hr-1, and Ks value was 4.78 g·m-3 in stationary phase. In addition, microbial community structures in the bottom and top layers were significantly different: Pseudomonas was the dominant genus in the bottom layer, whereas Sphingobium was dominant in the top layer. The results showed that intermediate metabolites of xylene could affect the distribution of community structure. Pseudomonas sp. can adapt to high concentration xylene-contaminated environments. Implications: We combined domesticated active sludge and reinforced microbial agent on biotrickling filter. This system performed continuously under a reduced residence time at 33.75 sec and high elimination capacity at 303.61 g·m-3·hr-1 in the biotrickling reactor for about 260 days. In this case, predomestication combined with reinforcing of microorganisms was very important to obtaining high-efficiency results. Analysis of microbial diversity and functional prediction indicated a gradient distribution along with the concentration of xylene. This implied a rational design of microbial reagent and optimizing the inoculation of different sites of reactor could reduce the preparation period of the technology.
Collapse
Affiliation(s)
- Mingxue Li
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology , Tianjin , People's Republic of China
| | - Yantao Shi
- R&D Department, SwanShine (Tianjin) Biotechnology & Development Ltd , Tianjin , People's Republic of China
| | - Yixuan Li
- R&D Department, SwanShine (Tianjin) Biotechnology & Development Ltd , Tianjin , People's Republic of China
| | - Yizhe Sun
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology , Tianjin , People's Republic of China
| | - Chunhui Song
- Key Laboratory of Western China's Mineral Resources of Gansu Province, School of Earth Sciences, University of Lanzhou , Lanzhou , Gansu , People's Republic of China
| | - Zhiyong Huang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin , People's Republic of China
| | - Zongzheng Yang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science & Technology , Tianjin , People's Republic of China
| | - Yifan Han
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin , People's Republic of China
| |
Collapse
|
5
|
Kosek K, Kozioł K, Luczkiewicz A, Jankowska K, Chmiel S, Polkowska Ż. Environmental characteristics of a tundra river system in Svalbard. Part 2: Chemical stress factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1585-1596. [PMID: 30446169 DOI: 10.1016/j.scitotenv.2018.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Bacterial communities in the Arctic environment are subject to multiple stress factors, including contaminants, although typically their concentrations are small. The Arctic contamination research has focused on persistent organic pollutants (POPs) because they are bioaccumulative, resistant to degradation and toxic for all organisms. Pollutants have entered the Arctic predominantly by atmospheric and oceanic long-range transport, and this was facilitated by their volatile or semi-volatile properties, while their chemical stability extended their lifetimes following emission. Chemicals present in the Arctic at detectable and quantifiable concentrations testify to their global impact. Chemical contamination may induce serious disorders in the integrity of polar ecosystems influencing the growth of bacterial communities. In this study, the abundance and the types of bacteria in the Arctic freshwater were examined and the microbial characteristics were compared to the amount of potentially harmful chemical compounds in particular elements of the Arctic catchment. The highest concentrations of all determined PAHs were observed in two samples in the vicinity of the estuary both in June and September 2016 and were 1964 ng L-1 (R12) and 3901 ng L-1 (R13) in June, and 2179 ng L-1 (R12) and 1349 ng L-1 (R13) in September. Remarkable concentrations of the sum of phenols and formaldehyde were detected also at the outflow of the Revelva river into the sea (R12) and were 0.24 mg L-1 in June and 0.35 mg L-1 in September 2016. The elevated concentrations of chemical compounds near the estuary suggest a potential impact of the water from the lower tributaries (including the glacier-fed stream measured at R13) or the sea currents and the sea aerosol as pollutant sources. The POPs' degradation at low temperature is not well understood but bacteria capable to degrading such compounds were noted in each sampling point.
Collapse
Affiliation(s)
- Klaudia Kosek
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Krystyna Kozioł
- Institute of Geography, Faculty of Geography and Biology, Pedagogical University in Cracow, Podchorążych 2, Cracow 30-084, Poland; Institute of Geophysics, Polish Academy of Sciences, 64 Księcia Janusza St., Warsaw 01-452, Poland
| | - Aneta Luczkiewicz
- Department of Water and Waste-Water Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Katarzyna Jankowska
- Department of Water and Waste-Water Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Stanisław Chmiel
- Faculty of Earth Sciences and Spatial Management, Maria Curie-Skłodowska University, 2 C-D Kraśnicka Ave., Lublin 20-718, Poland
| | - Żaneta Polkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
6
|
Kotoky R, Rajkumari J, Pandey P. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:858-870. [PMID: 29660711 DOI: 10.1016/j.jenvman.2018.04.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Microbial communities are an essential part of plant rhizosphere and participate in the functioning of plants, including rhizoremediation of petroleum contaminants. Rhizoremediation is a promising technology for removal of polyaromatic hydrocarbons based on interactions between plants and microbiome in the rhizosphere. Root exudation in the rhizosphere provides better nutrient uptake for rhizosphere microbiome, and therefore it is considered to be one of the major factors of microbial community function in the rhizosphere that plays a key role in the enhanced PAH biodegradation. Although the importance of the rhizosphere microbiome for plant growth has been widely recognized, the interactions between microbiome and plant roots in the process of rhizosphere mediated remediation of PAH still needs attention. Most of the current researches target PAH degradation by plant or single microorganism, separately, whereas the interactions between plants and whole microbiome are overlooked and its role has been ignored. This review summarizes recent knowledge of PAH degradation in the rhizosphere in the process of plant-microbiome interactions based on emerging omics approaches such as metagenomics, metatranscriptomics, metabolomics and metaproteomics. These omics approaches with combinations to bioinformatics tools provide us a better understanding in integrated activity patterns between plants and rhizosphere microbes, and insight into the biochemical and molecular modification of the meta-organisms (plant-microbiome) to maximize rhizoremediation activity. Moreover, a better understanding of the interactions could lead to the development of techniques to engineer rhizosphere microbiome for better hydrocarbon degradation.
Collapse
Affiliation(s)
- Rhitu Kotoky
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, 788011, India.
| |
Collapse
|
7
|
Khara P, Roy M, Chakraborty J, Dutta A, Dutta TK. Characterization of a topologically unique oxygenase from Sphingobium sp. PNB capable of catalyzing a broad spectrum of aromatics. Enzyme Microb Technol 2018; 111:74-80. [DOI: 10.1016/j.enzmictec.2017.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/25/2017] [Accepted: 10/16/2017] [Indexed: 11/25/2022]
|
8
|
Fu B, Xu T, Cui Z, Ng HL, Wang K, Li J, Li QX. Mutation of Phenylalanine-223 to Leucine Enhances Transformation of Benzo[a]pyrene by Ring-Hydroxylating Dioxygenase of Sphingobium sp. FB3 by increasing Accessibility of the Catalytic Site. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1206-1213. [PMID: 29336152 DOI: 10.1021/acs.jafc.7b05018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Burning of agricultural biomass generates polycyclic aromatic hydrocarbons (PAHs) including the carcinogen benzo[a]pyrene, of which the catabolism is primarily initiated by a ring-hydroxylating dioxygenase (RHD). This study explores catalytic site accessibility and its role in preferential catabolism of some PAHs over others. The genes flnA1f, flnA2f, flnA3, and flnA4, encoding the oxygenase α and β subunits, ferredoxin, and ferredoxin reductase, respectively, of the RHD enzyme complex (FlnA) were cloned from Sphingobium sp. FB3 and coexpressed in E. coli BL21. The FlnA effectively transformed fluoranthene but not benzo[a]pyrene. Substitution of the bulky phenylalanine-223 by leucine reduces the steric constraint in the substrate entrance to make the catalytic site of FlnA more accessible to large substrates, as visualized by 3D modeling, and allows the FlnA mutant to efficiently transform benzo[a]pyrene. Accessibility of the catalytic site to PAHs is a mechanism of RHD substrate specificity. The results shed light on why some PAHs are more recalcitrant than others.
Collapse
Affiliation(s)
- Bo Fu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100193, China
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
| | - Ting Xu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Zhongli Cui
- Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Nanjing Agricultural University , Nanjing, Jiangsu 201195, China
| | - Ho Leung Ng
- Department of Biochemistry & Molecular Biophysics, Kansas State University , Manhattan, Kansas 66506, United States
| | - Kai Wang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Ji Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University , 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
| |
Collapse
|
9
|
Zhao Q, Bilal M, Yue S, Hu H, Wang W, Zhang X. Identification of biphenyl 2, 3-dioxygenase and its catabolic role for phenazine degradation in Sphingobium yanoikuyae B1. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 204:494-501. [PMID: 28930694 DOI: 10.1016/j.jenvman.2017.09.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Phenazines are important nitrogen-containing secondary metabolites that display a range of biological functionalities. However, these compounds have shown lethal effects on humans and, the fate of phenazine in the ecosystem remains uncertain. In this study, we investigated that Sphingobium yanoikuyae B1 could utilize phenazine as a sole carbon source for growth. Intermediate produced during phenazine degradation was purified and identified as 1, 2-dihydrogen 1, 2-dihydroxy phenazine. Biphenyl 2, 3-dioxygenase was determined to be the initial dioxygenase for phenazine degradation through gene cloning and whole cell transformation techniques. Phenazine was converted to 1, 2-dihydrogen 1, 2-dihydroxy phenazine through hydrogenation and hydroxylation, which then transformed to 2-hydroxy phenazine through spontaneous dehydration. ThebphA1fA2f, were evidenced to be the only genes encoding the initial dioxygenase for phenazine degradation. BphB (dihydrodiol dehydrogenase) and BphC (2,3-dihydroxybiphenyl 1,2-dioxygenase) did not exhibit any 1, 2-dihydrogen 1, 2-dihydroxy phenazine and 1, 2-dihydroxy phenazine degradation capability, suggesting no contribution in phenazine degradation. Phylogenetic analysis of the dioxygenases demonstrated enormous biodegradation potential in strain B1. In conclusion, this study opens up new possibilities in better understanding the phenazine degradation in the environment.
Collapse
Affiliation(s)
- Qiang Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengjie Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Zeng J, Zhu Q, Wu Y, Chen H, Lin X. Characterization of a polycyclic aromatic ring-hydroxylation dioxygenase from Mycobacterium sp. NJS-P. CHEMOSPHERE 2017; 185:67-74. [PMID: 28686888 DOI: 10.1016/j.chemosphere.2017.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 06/01/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
Ring-hydroxylating dioxygenases (RHDs) play a critical role in the biodegradation of polycyclic aromatic hydrocarbons (PAHs). In this study, genes pdoAB encoding a dioxygenase capable of oxidizing various PAHs with up to five-ring benzo[a]pyrene were cloned from Mycobacterium sp. NJS-P. The α-subunit of the PdoAB showed 99% and 93% identity to that from Mycobacterium sp. S65 and Mycobacterium sp. py136, respectively. An Escherichia coli expression experiment revealed that the enzyme is able to oxidize anthracene, phenanthrene, pyrene and benzo[a]pyrene, but not to fluoranthene and benzo[a]anthracene. Furthermore, the results of in silico analysis showed that PdoAB has a large substrate-binding pocket satisfying for accommodation of HMW PAHs, and suggested that the binding energy of intermolecular interaction may predict the substrate conversion of RHDs towards HMW PAHs, especially those may have steric constraints on the substrate-binding pocket, such as benzo[a]pyrene and benzo[a]anthracene.
Collapse
Affiliation(s)
- Jun Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong University and Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Qinghe Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong University and Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yucheng Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong University and Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Hong Chen
- Soil and Environment Analysis Center, Institute of Soil Science, Chinese Academy of Science, PR China
| | - Xiangui Lin
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing 210008, PR China; Joint Open Laboratory of Soil and the Environment, Hong Kong University and Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
11
|
Avila-Arias H, Avellaneda H, Garzón V, Rodríguez G, Arbeli Z, Garcia-Bonilla E, Villegas-Plazas M, Roldan F. Screening for biosurfactant production by 2,4,6-trinitrotoluene-transforming bacteria. J Appl Microbiol 2017; 123:401-413. [DOI: 10.1111/jam.13504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 11/28/2022]
Affiliation(s)
- H. Avila-Arias
- Unidad de Saneamiento y Biotecnología Ambiental (USBA); Departamento de Biología; Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá Colombia
| | - H. Avellaneda
- Unidad de Saneamiento y Biotecnología Ambiental (USBA); Departamento de Biología; Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá Colombia
| | - V. Garzón
- Unidad de Saneamiento y Biotecnología Ambiental (USBA); Departamento de Biología; Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá Colombia
| | - G. Rodríguez
- Unidad de Saneamiento y Biotecnología Ambiental (USBA); Departamento de Biología; Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Z. Arbeli
- Unidad de Saneamiento y Biotecnología Ambiental (USBA); Departamento de Biología; Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá Colombia
| | - E. Garcia-Bonilla
- Unidad de Saneamiento y Biotecnología Ambiental (USBA); Departamento de Biología; Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá Colombia
| | - M. Villegas-Plazas
- Unidad de Saneamiento y Biotecnología Ambiental (USBA); Departamento de Biología; Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá Colombia
| | - F. Roldan
- Unidad de Saneamiento y Biotecnología Ambiental (USBA); Departamento de Biología; Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá Colombia
| |
Collapse
|
12
|
Novel Three-Component Phenazine-1-Carboxylic Acid 1,2-Dioxygenase in Sphingomonas wittichii DP58. Appl Environ Microbiol 2017; 83:AEM.00133-17. [PMID: 28188209 DOI: 10.1128/aem.00133-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
Phenazine-1-carboxylic acid, the main component of shenqinmycin, is widely used in southern China for the prevention of rice sheath blight. However, the fate of phenazine-1-carboxylic acid in soil remains uncertain. Sphingomonas wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources for growth. In this study, dioxygenase-encoding genes, pcaA1A2, were found using transcriptome analysis to be highly upregulated upon phenazine-1-carboxylic acid biodegradation. PcaA1 shares 68% amino acid sequence identity with the large oxygenase subunit of anthranilate 1,2-dioxygenase from Rhodococcus maanshanensis DSM 44675. The dioxygenase was coexpressed in Escherichia coli with its adjacent reductase-encoding gene, pcaA3, and ferredoxin-encoding gene, pcaA4, and showed phenazine-1-carboxylic acid consumption. The dioxygenase-, ferredoxin-, and reductase-encoding genes were expressed in Pseudomonas putida KT2440 or E. coli BL21, and the three recombinant proteins were purified. A phenazine-1-carboxylic acid conversion capability occurred in vitro only when all three components were present. However, P. putida KT2440 transformed with pcaA1A2 obtained phenazine-1-carboxylic acid degradation ability, suggesting that phenazine-1-carboxylic acid 1,2-dioxygenase has low specificities for its ferredoxin and reductase. This was verified by replacing PcaA3 with RedA2 in the in vitro enzyme assay. High-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) analysis showed that phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation, indicating that PcaA1A2A3A4 constitutes the initial phenazine-1-carboxylic acid 1,2-dioxygenase. This study fills a gap in our understanding of the biodegradation of phenazine-1-carboxylic acid and illustrates a new dioxygenase for decarboxylation.IMPORTANCE Phenazine-1-carboxylic acid is widely used in southern China as a key fungicide to prevent rice sheath blight. However, the degradation characteristics of phenazine-1-carboxylic acid and the environmental consequences of the long-term application are not clear. S. wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources. In this study, a three-component dioxygenase, PcaA1A2A3A4, was determined to be the initial dioxygenase for phenazine-1-carboxylic acid degradation in S. wittichii DP58. Phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation. This finding may help us discover the pathway for phenazine-1-carboxylic acid degradation.
Collapse
|
13
|
Hu J, Qian M, Zhang Q, Cui J, Yu C, Su X, Shen C, Hashmi MZ, Shi J. Sphingobium fuliginis HC3: a novel and robust isolated biphenyl- and polychlorinated biphenyls-degrading bacterium without dead-end intermediates accumulation. PLoS One 2015; 10:e0122740. [PMID: 25875180 PMCID: PMC4395236 DOI: 10.1371/journal.pone.0122740] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022] Open
Abstract
Biphenyl and polychlorinated biphenyls (PCBs) are typical environmental pollutants. However, these pollutants are hard to be totally mineralized by environmental microorganisms. One reason for this is the accumulation of dead-end intermediates during biphenyl and PCBs biodegradation, especially benzoate and chlorobenzoates (CBAs). Until now, only a few microorganisms have been reported to have the ability to completely mineralize biphenyl and PCBs. In this research, a novel bacterium HC3, which could degrade biphenyl and PCBs without dead-end intermediates accumulation, was isolated from PCBs-contaminated soil and identified as Sphingobium fuliginis. Benzoate and 3-chlorobenzoate (3-CBA) transformed from biphenyl and 3-chlorobiphenyl (3-CB) could be rapidly degraded by HC3. This strain has strong degradation ability of biphenyl, lower chlorinated (mono-, di- and tri-) PCBs as well as mono-CBAs, and the biphenyl/PCBs catabolic genes of HC3 are cloned on its plasmid. It could degrade 80.7% of 100 mg L -1 biphenyl within 24 h and its biphenyl degradation ability could be enhanced by adding readily available carbon sources such as tryptone and yeast extract. As far as we know, HC3 is the first reported that can degrade biphenyl and 3-CB without accumulation of benzoate and 3-CBA in the genus Sphingobium, which indicates the bacterium has the potential to totally mineralize biphenyl/PCBs and might be a good candidate for restoring biphenyl/PCBs-polluted environments.
Collapse
Affiliation(s)
- Jinxing Hu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Mingrong Qian
- Institute of Quality and Standard on Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qian Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jinglan Cui
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaomei Su
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Z. Hashmi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Genome Sequence of Sphingobium yanoikuyae B1, a Polycyclic Aromatic Hydrocarbon-Degrading Strain. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01522-14. [PMID: 25657282 PMCID: PMC4319601 DOI: 10.1128/genomea.01522-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sphingobium yanoikuyae B1 can utilize biphenyl, naphthalene, phenanthrene, toluene, and m-/p-xylene as sole sources of carbon and energy. Here, we present a 5.2-Mb assembly of its genome. An analysis of the genome can provide insights into the mechanisms of polycyclic aromatic hydrocarbon (PAH) degradation and potentially aid in bioremediation applications.
Collapse
|
15
|
Khara P, Roy M, Chakraborty J, Ghosal D, Dutta TK. Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB. FEBS Open Bio 2014; 4:290-300. [PMID: 24918041 PMCID: PMC4048848 DOI: 10.1016/j.fob.2014.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 11/27/2022] Open
Abstract
Sphingobium sp. PNB, like other sphingomonads, has multiple ring-hydroxylating oxygenase (RHO) genes. Three different fosmid clones have been sequenced to identify the putative genes responsible for the degradation of various aromatics in this bacterial strain. Comparison of the map of the catabolic genes with that of different sphingomonads revealed a similar arrangement of gene clusters that harbors seven sets of RHO terminal components and a sole set of electron transport (ET) proteins. The presence of distinctly conserved amino acid residues in ferredoxin and in silico molecular docking analyses of ferredoxin with the well characterized terminal oxygenase components indicated the structural uniqueness of the ET component in sphingomonads. The predicted substrate specificities, derived from the phylogenetic relationship of each of the RHOs, were examined based on transformation of putative substrates and their structural homologs by the recombinant strains expressing each of the oxygenases and the sole set of available ET proteins. The RHO AhdA1bA2b was functionally characterized for the first time and was found to be capable of transforming ethylbenzene, propylbenzene, cumene, p-cymene and biphenyl, in addition to a number of polycyclic aromatic hydrocarbons. Overexpression of aromatic catabolic genes in strain PNB, revealed by real-time PCR analyses, is a way forward to understand the complex regulation of degradative genes in sphingomonads.
Collapse
Affiliation(s)
| | | | | | | | - Tapan K. Dutta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata 700054, India
| |
Collapse
|
16
|
Singh D, Kumari A, Ramanathan G. 3-Nitrotoluene dioxygenase from Diaphorobacter sp. strains: cloning, sequencing and evolutionary studies. Biodegradation 2013; 25:479-92. [PMID: 24217981 DOI: 10.1007/s10532-013-9675-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 10/31/2013] [Indexed: 11/28/2022]
Abstract
The first step in the degradation of 3-nitrotoluene by Diaphorobacter sp. strain DS2 is the dihydroxylation of the benzene ring with the concomitant removal of nitro group. This is catalyzed by a dioxygenase enzyme system. We report here the cloning and sequencing of the complete dioxygenase gene with its putative regulatory sequence from the genomic DNA of Diaphorobacter sp. strains DS1, DS2 and DS3. Analysis of the 5 kb DNA stretch that was cloned, revealed five complete open reading frames (ORFs) encoding for a reductase, a ferredoxin and two dioxygenase subunits with predicted molecular weights (MW) of 35, 12, 50 and 23 kDa respectively. A regulatory protein was also divergently transcribed from the reductase subunit and has a predicated MW of 34 kDa. Presence of parts of two functional ORFs in between the reductase and the ferredoxin subunits reveals an evolutionary route from a naphthalene dioxygenase like system of Ralstonia sp. strain U2. Further a 100 % identity of its ferredoxin subunit reveals its evolution via dinitrotoluene dioxygenase like system present in Burkholderia cepacia strain R34. A modeled structure of oxygenase3NT from strain DS2 was generated using nitrobenzene dioxygenase as a template. The modeled structure only showed minor changes at its active site. Comparison of growth patterns of strains DS1, DS2 and DS3 revealed that Diaphorobacter sp. strain DS1 has been evolved to degrade 4-nitrotoluene better by an oxidative route amongst all three strains.
Collapse
Affiliation(s)
- Deepak Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur, 208016, India
| | | | | |
Collapse
|
17
|
Maeda AH, Nishi S, Ozeki Y, Ohta Y, Hatada Y, Kanaly RA. Draft Genome Sequence of Sphingobium sp. Strain KK22, a High-Molecular-Weight Polycyclic Aromatic Hydrocarbon-Degrading Bacterium Isolated from Cattle Pasture Soil. GENOME ANNOUNCEMENTS 2013; 1:e00911-13. [PMID: 24201196 PMCID: PMC3820777 DOI: 10.1128/genomea.00911-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/02/2013] [Indexed: 11/20/2022]
Abstract
Sphingobium sp. strain KK22 was isolated from a bacterial consortium that originated from cattle pasture soil from Texas. Strain KK22 grows on phenanthrene and has been shown to biotransform the high-molecular-weight (HMW) polycyclic aromatic hydrocarbon (PAH) benz[a]anthracene. The genome of strain KK22 was sequenced to investigate the genes involved in aromatic pollutant biotransformation.
Collapse
Affiliation(s)
- Allyn H. Maeda
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Kanazawa-ku, Yokohama, Japan
| | - Shinro Nishi
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yasuhiro Ozeki
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Kanazawa-ku, Yokohama, Japan
| | - Yukari Ohta
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yuji Hatada
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Robert A. Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Kanazawa-ku, Yokohama, Japan
| |
Collapse
|
18
|
Baboshin MA, Golovleva LA. Aerobic bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) and its kinetic aspects. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712060021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Martin F, Malagnoux L, Violet F, Jakoncic J, Jouanneau Y. Diversity and catalytic potential of PAH-specific ring-hydroxylating dioxygenases from a hydrocarbon-contaminated soil. Appl Microbiol Biotechnol 2012; 97:5125-35. [PMID: 22903320 DOI: 10.1007/s00253-012-4335-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/20/2012] [Accepted: 07/21/2012] [Indexed: 10/28/2022]
Abstract
Ring-hydroxylating dioxygenases (RHDs) catalyze the initial oxidation step of a range of aromatic hydrocarbons including polycyclic aromatic hydrocarbons (PAHs). As such, they play a key role in the bacterial degradation of these pollutants in soil. Several polymerase chain reaction (PCR)-based methods have been implemented to assess the diversity of RHDs in soil, allowing limited sequence-based predictions on RHD function. In the present study, we developed a method for the isolation of PAH-specific RHD gene sequences of Gram-negative bacteria, and for analysis of their catalytic function. The genomic DNA of soil PAH degraders was labeled in situ by stable isotope probing, then used to PCR amplify sequences specifying the catalytic domain of RHDs. Sequences obtained fell into five clusters phylogenetically linked to RHDs from either Sphingomonadales or Burkholderiales. However, two clusters comprised sequences distantly related to known RHDs. Some of these sequences were cloned in-frame in place of the corresponding region of the phnAIa gene from Sphingomonas CHY-1 to generate hybrid genes, which were expressed in Escherichia. coli as chimerical enzyme complexes. Some of the RHD chimeras were found to be competent in the oxidation of two- and three-ring PAHs, but other appeared unstable. Our data are interpreted in structural terms based on 3D modeling of the catalytic subunit of hybrid RHDs. The strategy described herein might be useful for exploring the catalytic potential of the soil metagenome and recruit RHDs with new activities from uncultured soil bacteria.
Collapse
Affiliation(s)
- Florence Martin
- Laboratoire de Chimie et Biologie des Métaux, CEA, DSV, 38054 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
20
|
de Menezes A, Clipson N, Doyle E. Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil. Environ Microbiol 2012; 14:2577-88. [PMID: 22625871 DOI: 10.1111/j.1462-2920.2012.02781.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Soil microbial community response to phenanthrene was evaluated by metatranscriptomics. A marked increase in transcripts involved in aromatic compound metabolism, respiration and stress responses, and concurrent decreases in virulence, carbohydrate, DNA metabolism and phosphorus metabolism transcripts was revealed. Phenanthrene addition led to a 1.8-fold to 33-fold increase in the abundance of dioxygenase, stress response and detoxification transcripts, whereas those of general metabolism were little affected. Heavy metal P-type ATPases and thioredoxin transcripts were more abundant in the phenanthrene-amended soil, and this is the first time these proteins have been associated with polycyclic aromatic hydrocarbon (PAH) stress in microorganisms. Annotation with custom databases constructed with bacterial or fungal PAH metabolism protein sequences showed that increases in PAH-degradatory gene expression occurred for all gene groups investigated. Taxonomic determination of mRNA transcripts showed widespread changes in the bacteria, archaea and fungi, and the actinobacteria were responsible for most of the de novo expression of transcripts associated with dioxygenases, stress response and detoxification genes. This is the first report of an experimental metatranscriptomic study detailing microbial community responses to a pollutant in soil, and offers information on novel in situ effects of PAHs on soil microbes that can be explored further.
Collapse
Affiliation(s)
- Alexandre de Menezes
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
21
|
Genome sequence of benzo(a)pyrene-degrading bacterium Novosphingobium pentaromativorans US6-1. J Bacteriol 2012; 194:907. [PMID: 22275104 DOI: 10.1128/jb.06476-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novosphingobium pentaromativorans US6-1 showed a good ability to degrade high-molecular-weight polycyclic aromatic hydrocarbons. We report the draft genome sequence of strain US6-1, which contains a main chromosome (5,096,413 bp, G+C content of 63.1%) and two plasmids (188,476 and 60,085 bp). The majority of the aromatic-hydrocarbon-degrading genes are encoded in the larger plasmid.
Collapse
|
22
|
Terrat S, Peyretaillade E, Gonçalves O, Dugat-Bony E, Gravelat F, Moné A, Biderre-Petit C, Boucher D, Troquet J, Peyret P. Detecting variants with Metabolic Design, a new software tool to design probes for explorative functional DNA microarray development. BMC Bioinformatics 2010; 11:478. [PMID: 20860850 PMCID: PMC2955052 DOI: 10.1186/1471-2105-11-478] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 09/23/2010] [Indexed: 12/15/2022] Open
Abstract
Background Microorganisms display vast diversity, and each one has its own set of genes, cell components and metabolic reactions. To assess their huge unexploited metabolic potential in different ecosystems, we need high throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes. However, most classical functional microarrays use specific probes that monitor only known sequences, and so fail to cover the full microbial gene diversity present in complex environments. We have thus developed an algorithm, implemented in the user-friendly program Metabolic Design, to design efficient explorative probes. Results First we have validated our approach by studying eight enzymes involved in the degradation of polycyclic aromatic hydrocarbons from the model strain Sphingomonas paucimobilis sp. EPA505 using a designed microarray of 8,048 probes. As expected, microarray assays identified the targeted set of genes induced during biodegradation kinetics experiments with various pollutants. We have then confirmed the identity of these new genes by sequencing, and corroborated the quantitative discrimination of our microarray by quantitative real-time PCR. Finally, we have assessed metabolic capacities of microbial communities in soil contaminated with aromatic hydrocarbons. Results show that our probe design (sensitivity and explorative quality) can be used to study a complex environment efficiently. Conclusions We successfully use our microarray to detect gene expression encoding enzymes involved in polycyclic aromatic hydrocarbon degradation for the model strain. In addition, DNA microarray experiments performed on soil polluted by organic pollutants without prior sequence assumptions demonstrate high specificity and sensitivity for gene detection. Metabolic Design is thus a powerful, efficient tool that can be used to design explorative probes and monitor metabolic pathways in complex environments, and it may also be used to study any group of genes. The Metabolic Design software is freely available from the authors and can be downloaded and modified under general public license.
Collapse
Affiliation(s)
- Sébastien Terrat
- Clermont Université, Université d'Auvergne, Laboratoire: Microorganismes Génome et Environnement, BP 10448, F-63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mallick S, Chakraborty J, Dutta TK. Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Crit Rev Microbiol 2010; 37:64-90. [PMID: 20846026 DOI: 10.3109/1040841x.2010.512268] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Widespread environmental pollution by polycyclic aromatic hydrocarbons (PAHs) poses an immense risk to the environment. Bacteria-mediated attenuation has a great potential for the restoration of PAH-contaminated environment in an ecologically accepted manner. Bacterial degradation of PAHs has been extensively studied and mining of biodiversity is ever expanding the biodegradative potentials with intelligent manipulation of catabolic genes and adaptive evolution to generate multiple catabolic pathways. The present review of bacterial degradation of low-molecular-weight (LMW) PAHs describes the current knowledge about the diverse metabolic pathways depicting novel metabolites, enzyme-substrate/metabolite relationships, the role of oxygenases and their distribution in phylogenetically diverse bacterial species.
Collapse
Affiliation(s)
- Somnath Mallick
- Department of Chemistry, Saldiha College, Bankura, West Bengal, India
| | | | | |
Collapse
|
24
|
Kanaly RA, Harayama S. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 2010; 3:136-64. [PMID: 21255317 PMCID: PMC3836582 DOI: 10.1111/j.1751-7915.2009.00130.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 11/26/2022] Open
Abstract
Interest in understanding prokaryotic biotransformation of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) has continued to grow and the scientific literature shows that studies in this field are originating from research groups from many different locations throughout the world. In the last 10 years, research in regard to HMW PAH biodegradation by bacteria has been further advanced through the documentation of new isolates that represent diverse bacterial types that have been isolated from different environments and that possess different metabolic capabilities. This has occurred in addition to the continuation of in-depth comprehensive characterizations of previously isolated organisms, such as Mycobacterium vanbaalenii PYR-1. New metabolites derived from prokaryotic biodegradation of four- and five-ring PAHs have been characterized, our knowledge of the enzymes involved in these transformations has been advanced and HMW PAH biodegradation pathways have been further developed, expanded upon and refined. At the same time, investigation of prokaryotic consortia has furthered our understanding of the capabilities of microorganisms functioning as communities during HMW PAH biodegradation.
Collapse
Affiliation(s)
- Robert A Kanaly
- Department of Genome Systems, Faculty of Bionanoscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Kanagawa-ken, Yokohama 236-0027, Japan.
| | | |
Collapse
|
25
|
Characterization of a ring-hydroxylating dioxygenase from phenanthrene-degrading Sphingomonas sp. strain LH128 able to oxidize benz[a]anthracene. Appl Microbiol Biotechnol 2009; 83:465-75. [PMID: 19172265 DOI: 10.1007/s00253-009-1858-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 01/03/2009] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
Abstract
Sphingomonas sp. strain LH128 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated soil using phenanthrene as the sole source of carbon and energy. A dioxygenase complex, phnA1fA2f, encoding the alpha and beta subunit of a terminal dioxygenase responsible for the initial attack on PAHs, was identified and isolated from this strain. PhnA1f showed 98%, 78%, and 78% identity to the alpha subunit of PAH dioxygenase from Novosphingobium aromaticivorans strain F199, Sphingomonas sp. strain CHY-1, and Sphingobium yanoikuyae strain B1, respectively. When overexpressed in Escherichia coli, PhnA1fA2f was able to oxidize low-molecular-weight PAHs, chlorinated biphenyls, dibenzo-p-dioxin, and the high-molecular-weight PAHs benz[a]anthracene, chrysene, and pyrene. The action of PhnA1fA2f on benz[a]anthracene produced two benz[a]anthracene dihydrodiols.
Collapse
|
26
|
Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 2008; 81:793-811. [PMID: 19002456 DOI: 10.1007/s00253-008-1752-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/06/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
Abstract
The genus Sphingomonas (sensu latu) belongs to the alpha-Proteobacteria and comprises strictly aerobic chemoheterotrophic bacteria that are widespread in various aquatic and terrestrial environments. The members of this genus are often isolated and studied because of their ability to degrade recalcitrant natural and anthropogenic compounds, such as (substituted) biphenyl(s) and naphthalene(s), fluorene, (substituted) phenanthrene(s), pyrene, (chlorinated) diphenylether(s), (chlorinated) furan(s), (chlorinated) dibenzo-p-dioxin(s), carbazole, estradiol, polyethylene glycols, chlorinated phenols, nonylphenols, and different herbicides and pesticides. The metabolic versatility of these organisms suggests that they have evolved mechanisms to adapt quicker and/or more efficiently to the degradation of novel compounds in the environment than members of other bacterial genera. Comparative analyses demonstrate that sphingomonads generally use similar degradative pathways as other groups of microorganisms but deviate from competing microorganisms by the existence of multiple hydroxylating oxygenases and the conservation of specific gene clusters. Furthermore, there is increasing evidence for the existence of plasmids that only can be disseminated among sphingomonads and which undergo after conjugative transfer pronounced rearrangements.
Collapse
|