1
|
Niro A, Pignatelli F, Fallico M, Sborgia A, Passidomo F, Gigliola S, Nacucchi A, Sborgia G, Boscia G, Alessio G, Boscia F, Addabbo G, Reibaldi M, Avitabile T. Polyhexamethylene biguanide hydrochloride (PHMB)-properties and application of an antiseptic agent. A narrative review. Eur J Ophthalmol 2022; 33:11206721221124684. [PMID: 36083163 DOI: 10.1177/11206721221124684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The prevention and management of ocular surface infections is still one of the great challenges for ophthalmologists. The spread of antimicrobial resistance makes it necessary to use antiseptic substances with a broad antimicrobial spectrum. Polyhexamethylene biguanide hydrochloride (Polyhexanide, PHMB) is a broad-spectrum antiseptic with excellent tolerance and a low-risk profile. Its physicochemical action on the phospholipid membrane and DNA replication or repair mechanism, prevents or impedes the development of resistant bacterial strains. PHMB revealed its effective against numerous organisms like viruses, Gram-negative and Gram-positive bacteria, and fungi. Polyhexanide is commonly used as preservative in commercially available disinfecting solutions for contact lens care and in ophthalmic formulations at different concentrations ranging from 1 µg/ml to 50 µg/ml. The administration of 0.02% (200 µg/ml) PHMB is often the first-line therapy of Acanthamoeba keratitis. However, to date, only one close-out randomized controlled study tested the efficacy of 0.02% PHMB in Acanthamoeba keratitis and a phase III study is still ongoing. This paper reviews the antiseptic agent PHMB, focusing on biochemical mechanisms, safety profile and applications in ophthalmology.
Collapse
Affiliation(s)
- Alfredo Niro
- Eye Clinic, Hospital "SS. Annunziata", ASL Taranto, Taranto, Italy
| | | | - Matteo Fallico
- Department of Ophthalmology, University of Catania, Catania, Italy
| | | | - Fedele Passidomo
- Eye Clinic, Hospital "SS. Annunziata", ASL Taranto, Taranto, Italy
| | - Samuele Gigliola
- Eye Clinic, Hospital "SS. Annunziata", ASL Taranto, Taranto, Italy
| | | | - Giancarlo Sborgia
- Eye Clinic, Department of Medical Science, Neuroscience and Sense Organs, 9295University of Bari, Bari, Italy
| | - Giacomo Boscia
- Eye Clinic Section, Department of Surgical Sciences, 9314University of Turin, Turin, Italy
| | - Giovanni Alessio
- Eye Clinic, Department of Medical Science, Neuroscience and Sense Organs, 9295University of Bari, Bari, Italy
| | - Francesco Boscia
- Eye Clinic, Department of Medical Science, Neuroscience and Sense Organs, 9295University of Bari, Bari, Italy
| | - Giuseppe Addabbo
- Eye Clinic, Hospital "SS. Annunziata", ASL Taranto, Taranto, Italy
| | - Michele Reibaldi
- Eye Clinic Section, Department of Surgical Sciences, 9314University of Turin, Turin, Italy
| | | |
Collapse
|
2
|
Evaluation of the Biocontrol Potential of a Commercial Yeast Starter against Fuel-Ethanol Fermentation Contaminants. FERMENTATION 2022. [DOI: 10.3390/fermentation8050233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lactic acid bacteria (LAB) and Brettanomyces bruxellensis are the main contaminants of bioethanol fermentations. Those contaminations affect Saccharomyces cerevisiae performance and reduce ethanol yields and productivity, leading to important economic losses. Currently, chemical treatments such as acid washing and/or antibiotics are used to control those contaminants. However, these control measures carry environmental risks, and more environmentally friendly methods are required. Several S. cerevisiae wine strains were found to secrete antimicrobial peptides (AMPs) during alcoholic fermentation that are active against LAB and B. bruxellensis strains. Thus, in the present study, we investigated if the fuel-ethanol commercial starter S. cerevisiae Ethanol Red (ER) also secretes those AMPs and evaluated its biocontrol potential by performing alcoholic fermentations with mixed-cultures of ER and B. bruxellensis strains and growth assays of LAB in ER pre-fermented supernatants. Results showed that all B. bruxellensis strains were significantly inhibited by the presence of ER, although LAB strains were less sensitive to ER fermentation metabolites. Peptides secreted by ER during alcoholic fermentation were purified by gel-filtration chromatography, and a bioactive fraction was analyzed by ELISA and mass spectrometry. Results confirmed that ER secretes the AMPs previously identified. That bioactive fraction was used to determine minimal inhibitory concentrations (MICs) against several LAB and B. bruxellensis strains. MICs of 1–2 mg/mL were found for B. bruxellensis strains and above 2 mg/mL for LAB. Our study demonstrates that the AMPs secreted by ER can be used as a natural preservative in fuel-ethanol fermentations.
Collapse
|
3
|
Queiroz MG, Elsztein C, Strahl S, de Morais Junior MA. The Saccharomyces cerevisiae Ncw2 protein works on the chitin/β-glucan organisation of the cell wall. Antonie van Leeuwenhoek 2021; 114:1141-1153. [PMID: 33945065 DOI: 10.1007/s10482-021-01584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/17/2021] [Indexed: 11/28/2022]
Abstract
The NCW2 gene was recently described as encoding a GPI-bounded protein that assists in the re-modelling of the Saccharomyces cerevisiae cell wall (CW) and in the repair of damage caused by the polyhexamethylene biguanide (PHMB) polymer to the cell wall. Its absence produces a re-organization of the CW structure that result in resistance to lysis by glucanase. Hence, the present study aimed to extend the analysis of the Ncw2 protein (Ncw2p) to determine its physiological role in the yeast cell surface. The results showed that Ncw2p is transported to the cell surface upon O-mannosylation mediated by the Pmt1p-Pmt2p enzyme complex. It co-localises with the yeast bud scars, a region in cell surface formed by chitin deposition. Once there, Ncw2p enables correct chitin/β-glucan structuring during the exponential growth. The increase in molecular mass by hyper-mannosylation coincides with the increasing in chitin deposition, and leads to glucanase resistance. Treatment of the yeast cells with PHMB produced the same biological effects observed for the passage from exponential to stationary growth phase. This might be a possible mechanism of yeast protection against cationic biocides. In conclusion, we propose that Ncw2p takes part in the mechanism involved in the control of cell surface rigidity by aiding on the linkage between chitin and glucan layers in the modelling of the cell wall during cell growth.
Collapse
Affiliation(s)
- Maise Gomes Queiroz
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | - Carolina Elsztein
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | - Sabine Strahl
- Laboratory of Glycobiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Marcos Antonio de Morais Junior
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife, Brazil. .,Departamento de Genética, Universidade Federal de Pernambuco, Av. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50.670-901, Brasil.
| |
Collapse
|
4
|
Queiroz MG, Elsztein C, de Morais MA. The effects of the Ncw2 protein of Saccharomyces cerevisiae on the positioning of chitin in response to cell wall damage. Antonie van Leeuwenhoek 2019; 113:265-277. [PMID: 31598818 DOI: 10.1007/s10482-019-01335-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022]
Abstract
The recently described NCW2 gene encodes a protein that is assumed to be located in the cell wall (CW). This protein was proposed to participate in the repair of CW damages induced by polyhexamethylene biguanide (PHMB). However, much of the information on the biological function(s) of Ncw2p still remains unclear. In view of this, this study seeks to extend the analysis of this gene in light of the way its protein functions in the Cell Wall Integrity (CWI) mechanism. Deletion of the NCW2 gene led to constitutive overexpression of some key CWI genes and increased chitin deposition in the walls of cells exposed to PHMB. This means the lack of Ncw2p might activate a compensatory mechanism that upregulates glucan CWI genes for cell protection by stiffening the CW. This condition seems to alleviate the response through the HOG pathway and makes cells sensitive to osmotic stress. However, Ncw2p may not have been directly involved in tolerance to osmotic stress itself. The results obtained definitely place the NCW2 gene in the list of CWI genes of S. cerevisiae and indicate that its protein has an auxiliary function in the maintenance of the glucan/chitin balance and ensuring the correct structure of the yeast cell wall.
Collapse
Affiliation(s)
- Maíse Gomes Queiroz
- Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235. Cidade Universitária, Recife, PE, 50.670-901, Brasil
| | - Carolina Elsztein
- Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235. Cidade Universitária, Recife, PE, 50.670-901, Brasil
| | - Marcos Antonio de Morais
- Department of Genetics, Federal University of Pernambuco, Av. Moraes Rego, 1235. Cidade Universitária, Recife, PE, 50.670-901, Brasil.
| |
Collapse
|
5
|
Huai W, Deng Z, Lin W, Chen Q. Enhanced killing of Escherichia coli using a combination of polyhexamethylene biguanide hydrochloride and 1-bromo-3-chloro-5,5- dimethylimidazolidine-2,4-dione. FEMS Microbiol Lett 2017; 364:4329275. [PMID: 29029044 DOI: 10.1093/femsle/fnx210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/29/2017] [Indexed: 11/15/2022] Open
Abstract
The bactericidal activities of polyhexamethylene biguanide hydrochloride (PHMB), 1-bromo-3-chloro-5,5-dimethylimidazolidine-2,4-dione (BCDMH) and the combination of the two (designated as PB) were compared using Escherichia coli as the test organism. PB exhibited strong bactericidal activity: 10 mg/L PHMB combined with 8 mg/L BCDMH resulted in approximately 5.74 log10 reduction (LR), whereas 320 mg/L PHMB or 20 mg/L BCDMH was about 5.53 and 6.56 LR, respectively. Analyses using scanning electron microscopy, flow cytometry and atomic absorption spectroscopy indicated that PB, PHMB and BCDMH disrupted cell membranes and changed membrane structure and permeability, resulting in the leakage of intracellular soluble proteins and ions. PB exerted stronger effects on potassium and magnesium leakage, membrane potential and permeability than BCDMH did. PB caused less protein leakage than PHMB did. These results suggest that at a relatively low concentration, PB exhibited good bactericidal activity and physiological effect on E. coli.
Collapse
Affiliation(s)
- Wan Huai
- School of Life Sciences, Shanghai University, No. 333, Nanchen Road, Shanghai 200444, PR China
| | - Zhirui Deng
- School of Life Sciences, Shanghai University, No. 333, Nanchen Road, Shanghai 200444, PR China
| | - Wenshu Lin
- School of Life Sciences, Shanghai University, No. 333, Nanchen Road, Shanghai 200444, PR China
| | - Qin Chen
- School of Life Sciences, Shanghai University, No. 333, Nanchen Road, Shanghai 200444, PR China
| |
Collapse
|
6
|
Kim HR, Shin DY, Chung KH. In vitro inflammatory effects of polyhexamethylene biguanide through NF-κB activation in A549 cells. Toxicol In Vitro 2016; 38:1-7. [PMID: 27746371 DOI: 10.1016/j.tiv.2016.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 11/26/2022]
Abstract
Polyhexamethylene biguanide (PHMB) is a member of the polymeric guanidine family, which is used as a biocide and preservative in industrial, medicinal, and consumer products. Some studies reported that polyhexamethylene guanidine phosphate, which is also a member of the guanidine family, induced severe inflammation and fibrosis in the lungs. However, limited studies have evaluated the pulmonary toxicity of PHMB associated with inflammatory responses. The aim of this study was to elucidate the inflammatory responses and its mechanisms induced by PHMB in lung cells. A549 cells exposed to PHMB showed decreased viability, reactive oxygen species (ROS) generation, inflammatory cytokine secretion, and nuclear factor kappa B (NF-κB) activation. The cells showed dose-dependent cytotoxicity and slight generation of ROS. PHMB triggered inflammatory cytokine secretion and NF-κB activation by modulating the degradation of IκB-α and the accumulation of nuclear p65. TNF-α plays important roles in IL-8 expression as well as NF-κB activation. Moreover, IL-8 production induced by PHMB was completely suppressed by a NF-κB inhibitor, but not by a ROS scavenger. In conclusion, we suggest that PHMB induces the inflammatory responses via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ha Ryong Kim
- School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, South Korea; Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Da Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, South Korea
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, South Korea.
| |
Collapse
|
7
|
NCW2, a Gene Involved in the Tolerance to Polyhexamethylene Biguanide (PHMB), May Help in the Organisation of β-1,3-Glucan Structure of Saccharomyces cerevisiae Cell Wall. Curr Microbiol 2016; 73:341-345. [DOI: 10.1007/s00284-016-1067-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
|
8
|
Pereira LF, Lucatti E, Basso LC, de Morais MA. The fermentation of sugarcane molasses by Dekkera bruxellensis and the mobilization of reserve carbohydrates. Antonie van Leeuwenhoek 2013; 105:481-9. [PMID: 24370978 DOI: 10.1007/s10482-013-0100-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/12/2013] [Indexed: 01/13/2023]
Abstract
The yeast Dekkera bruxellensis is considered to be very well adapted to industrial environments, in Brazil, USA, Canada and European Countries, when different substrates are used in alcoholic fermentations. Our previous study described its fermentative profile with a sugarcane juice substrate. In this study, we have extended its physiological evaluation to fermentation situations by using sugarcane molasses as a substrate to replicate industrial working conditions. The results have confirmed the previous reports of the low capacity of D. bruxellensis cells to assimilate sucrose, which seems to be the main factor that can cause a bottleneck in its use as fermentative yeast. Furthermore, the cells of D. bruxellensis showed a tendency to deviate most of sugar available for biomass and organic acids (lactic and acetic) compared with Saccharomyces cerevisiae, when calculated on the basis of their respective yields. As well as this, the acetate production from molasses medium by both yeasts was in marked contrast with the previous data on sugarcane juice. Glycerol and ethanol production by D. bruxellensis cells achieved levels of 33 and 53 % of the S. cerevisiae, respectively. However, the ethanol yield was similar for both yeasts. It is worth noting that this yeast did not accumulate trehalose when the intracellular glycogen content was 30 % lower than in S. cerevisiae. The lack of trehalose did not affect yeast viability under fermentation conditions. Thus, the adaptive success of D. bruxellensis under industrial fermentation conditions seems to be unrelated to the production of these reserve carbohydrates.
Collapse
Affiliation(s)
- Luciana Filgueira Pereira
- Interdepartmental Research Group on Metabolic Engineering, Federal University of Pernambuco, Recife, Brazil
| | | | | | | |
Collapse
|
9
|
Gnanadhas DP, Marathe SA, Chakravortty D. Biocides--resistance, cross-resistance mechanisms and assessment. Expert Opin Investig Drugs 2013; 22:191-206. [PMID: 23215733 DOI: 10.1517/13543784.2013.748035] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Antibiotic resistance in bacterial pathogens has increased worldwide leading to treatment failures. Concerns have been raised about the use of biocides as a contributing factor to the risk of antimicrobial resistance (AMR) development. In vitro studies demonstrating increase in resistance have often been cited as evidence for increased risks. It is therefore important to understand the mechanisms of resistance employed by bacteria toward biocides used in consumer products and their potential to impart cross-resistance to therapeutic antibiotics. AREAS COVERED In this review, the mechanisms of resistance and cross-resistance reported in the literature toward biocides commonly used in consumer products are summarized. The physiological and molecular techniques used in describing and examining these mechanisms are reviewed and application of these techniques for systematic assessment of biocides for their potential to develop resistance and/or cross-resistance is discussed. EXPERT OPINION The guidelines in the usage of biocides in household or industrial purpose should be monitored and regulated to avoid the emergence of any MDR strains. The genetic and molecular methods to monitor the resistance development to biocides should be developed and included in preclinical and clinical studies.
Collapse
Affiliation(s)
- Divya Prakash Gnanadhas
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research and Biosafety Laboratories, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
10
|
What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol 2012; 97:979-91. [DOI: 10.1007/s00253-012-4631-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
|
11
|
Jiang Z, Wang B, Che H, Liu B. Structural Characterization and Bacteriostatic and Cytotoxicity to 3T3 Cells Study of Oligobiguanidine (Polyhexamethylene Biguanidine Hydrochloride) and its 3-Glycidoxypropyltrimethoxysilane Derivatives. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2012. [DOI: 10.1080/10601325.2012.722856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
de Lucena RM, Elsztein C, Simões DA, de Morais MA. Participation of CWI, HOG and Calcineurin pathways in the tolerance of Saccharomyces cerevisiae to low pH by inorganic acid. J Appl Microbiol 2012; 113:629-40. [PMID: 22702539 DOI: 10.1111/j.1365-2672.2012.05362.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/26/2012] [Accepted: 06/12/2012] [Indexed: 02/03/2023]
Abstract
AIMS The present work aimed at identifying the metabolic response to acid stress and the mechanisms that lead to cell tolerance and adaptation. METHODS AND RESULTS Two strategies were used: screening deletion mutants for cell growth at neutral and acid pH compared to wild type and measurement by qPCR of the expression of yeast genes involved in different pathways. CONCLUSIONS The results complement our previous findings and showed that the Cell Wall Integrity pathway is the main mechanism for cell tolerance to acid pH, and this damage triggers the protein kinase C (PKC) pathway mainly via the Wsc1p membrane sensor. In addition, cell wall injury might mimic the effects of high osmotic shock and activates the High Osmolarity Glycerol pathway, which amplifies the signal in the upper part of PKC pathway and leads to the activation of Ca(2+) channels by SLT2 overexpression and this Ca(2+) influx further activates calcineurin. Together, these mechanisms induce the expression of genes involved in cell cycle regulation and cell wall regeneration. SIGNIFICANCE AND IMPACT OF THE STUDY These interactions are responsible for long-term adaptation of yeast cells to the acidic environment, and the results could drive future work on the genetic modification of yeast strains for high tolerance to the stresses of the bioethanol fermentation process.
Collapse
Affiliation(s)
- R M de Lucena
- Interdepartmental Research Group in Metabolic Engineering, Federal University of Pernambuco, Recife, Brazil
| | | | | | | |
Collapse
|
13
|
Elsztein C, de Lucena RM, de Morais MA. The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1. BMC Mol Biol 2011; 12:38. [PMID: 21854579 PMCID: PMC3175164 DOI: 10.1186/1471-2199-12-38] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 08/19/2011] [Indexed: 11/19/2022] Open
Abstract
Background Polyhexamethylene biguanide (PHMB) is an antiseptic polymer that is mainly used for cleaning hospitals and pools and combating Acantamoeba infection. Its fungicide activity was recently shown by its lethal effect on yeasts that contaminate the industrial ethanol process, and on the PE-2 strain of Saccharomyces cerevisiae, one of the main fermenting yeasts in Brazil. This pointed to the need to know the molecular mechanism that lay behind the cell resistance to this compound. In this study, we examined the factors involved in PHMB-cell interaction and the mechanisms that respond to the damage caused by this interaction. To achieve this, two research strategies were employed: the expression of some genes by RT-qPCR and the analysis of mutant strains. Results Cell Wall integrity (CWI) genes were induced in the PHMB-resistant Saccharomyces cerevisiae strain JP-1, although they are poorly expressed in the PHMB-sensitive Saccharomyces cerevisiae PE2 strain. This suggested that PHMB damages the glucan structure on the yeast cell wall. It was also confirmed by the observed sensitivity of the yeast deletion strains, Δslg1, Δrom2, Δmkk2, Δslt2, Δknr4, Δswi4 and Δswi4, which showed that the protein kinase C (PKC) regulatory mechanism is involved in the response and resistance to PHMB. The sensitivity of the Δhog1 mutant was also observed. Furthermore, the cytotoxicity assay and gene expression analysis showed that the part played by YAP1 and CTT1 genes in cell resistance to PHMB is unrelated to oxidative stress response. Thus, we suggested that Yap1p can play a role in cell wall maintenance by controlling the expression of the CWI genes. Conclusion The PHMB treatment of the yeast cells activates the PKC1/Slt2 (CWI) pathway. In addition, it is suggested that HOG1 and YAP1 can play a role in the regulation of CWI genes.
Collapse
Affiliation(s)
- Carolina Elsztein
- Interdepartmental Research Group in Metabolic Engineering, Av, Moraes Rego, 1235, Cidade Universitária, 50670-901, Recife, PE, Brazil
| | | | | |
Collapse
|
14
|
Beckner M, Ivey M, Phister T. Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 2011; 53:387-94. [DOI: 10.1111/j.1472-765x.2011.03124.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|