1
|
Zhu Y, Su Q, Jiao J, Kelanne N, Kortesniemi M, Xu X, Zhu B, Laaksonen O. Exploring the Sensory Properties and Preferences of Fruit Wines Based on an Online Survey and Partial Projective Mapping. Foods 2023; 12:foods12091844. [PMID: 37174382 PMCID: PMC10178241 DOI: 10.3390/foods12091844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Non-grapefruits with unique sensory properties and potential health benefits provide added value to fruit wine production. This study aimed to explore consumers' fruit wine preferences and descriptors for the varied fruit wines. First, 234 consumers participated in an online survey concerning their preferences for different wines (grape, blueberry, hawthorn, goji, Rosa roxburghii, and apricot). In addition, their attitudes towards general health interests, food neophobia, alcoholic drinks, and sweetness were collected. Grape wine and blueberry wine were the most favored wines, and goji wine was the least liked fruit wine sample. Moreover, 89 consumers were invited to evaluate 10 commercial fruit wines by using partial projective mapping based on appearance, aroma, and flavor (including taste and mouthfeel) to obtain a comprehensive sensory characterization. Multifactor analysis results showed that consumers could differentiate the fruit wines. Participants preferred fruit wines with "sweet", "sour", and "balanced fragrance", whereas "bitter", "astringent", "deep appearance", and "medicinal fragrance" were not preferred. Attitudes toward health, food neophobia, alcohol, and sweetness had less influence than taste and aroma (sensory attributes) on the preferences for fruit wine products. More frequent self-reported wine usage resulted in higher consumption frequency and liking ratings compared to non-users. Overall, the main factors influencing consumer preference for fruit wines were the sensory characteristics of the products, especially the taste.
Collapse
Affiliation(s)
- Yuxuan Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qingyu Su
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jingfang Jiao
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Niina Kelanne
- Food Sciences, Department of Life Technologies, University of Turku, 20500 Turku, Finland
| | - Maaria Kortesniemi
- Food Sciences, Department of Life Technologies, University of Turku, 20500 Turku, Finland
| | - Xiaoqing Xu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Oskar Laaksonen
- Food Sciences, Department of Life Technologies, University of Turku, 20500 Turku, Finland
| |
Collapse
|
2
|
Hawaz E, Tafesse M, Tesfaye A, Kiros S, Beyene D, Kebede G, Boekhout T, Groenwald M, Theelen B, Degefe A, Degu S, Admasu A, Hunde B, Muleta D. Optimization of bioethanol production from sugarcane molasses by the response surface methodology using Meyerozyma caribbica isolate MJTm3. ANN MICROBIOL 2023. [DOI: 10.1186/s13213-022-01706-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abstract
Purpose
Yeast strains tolerant to a wide range of stress conditions are needed for the production of bioethanol from substrates rich in sugar. In our earlier research findings, Meyerozyma caribbica isolate MJTm3 (OM329077) demonstrated remarkable stress tolerance and fermentative activity. The present study aimed to optimize six fermentation parameters to generate conducive fermentation conditions for ethanol production by M. caribbica isolate MJTm3.
Method
The response surface method (RSM) based on central composite design (CCD) was employed to optimize process conditions for higher bioethanol yield. The optimization process was carried out based on six independent parameters, namely temperature (25–35 °C), pH (5.5–6.5), inoculum size (10–20% (v/v)), molasses concentration (25–35 (w/v)), mixing rate (110–150 rpm), and incubation period (48–72-h). Analysis of ethanol concentration was done by HPLC equipped with a UV detector.
Result
The optimal conditions of the parameters resulting in a maximum predicted ethanol yield were as follows: pH 5.5, an inoculum size of 20%, a molasses concentration of 25 °Bx, a temperature of 30 °C, an incubation period of 72-h, and a mixing rate of 160 revolutions per minute (rpm). Using the above optimum conditions, the model predicted a bioethanol yield of 79%, 92% of the theoretical yield, a bioethanol concentration of 49 g L−1, and a productivity of 0.68 g L−1 h−1. A batch fermentation experiment was carried out to validate the predicted values and resulted in a bioethanol yield of 86%, 95% of theoretical yield, a bioethanol concentration of 56 g L−1, and productivity of 0.78 g L−1 h−1. On the other hand, the surface plot analysis revealed that the synergistic effect of the molasses concentration and the mixing rate were vital to achieving the highest bioethanol yield. These values suggested that the RSM with CCD was an effective method in producing the highest possible output of bioethanol from molasses in actual operation.
Conclusion
The study confirmed the potential of using M. caribbica isolate MJTm3 for bioethanol production from sugarcane molasses under the abovementioned optimal fermentation conditions.
Collapse
|
3
|
Cury BJ, Boeing T, Somensi LB, Campos A, Cechinel-Filho V, de Souza P, da Silva LM. Dimethyl Cardamonin from Fruits of Campomanesia reitziana D. Legrand Promotes Gastroprotection and Gastric Healing Effects in Rodents. Chem Biodivers 2022; 19:e202200727. [PMID: 36251014 DOI: 10.1002/cbdv.202200727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/17/2022] [Indexed: 12/27/2022]
Abstract
Campomanesia reitziana D. Legrand (Myrtaceae) displays antiulcer properties when given to rodents. The major active chemical components of C. reitziana are chalcones, including 4',6'-dihydroxy-2'-methoxy-3',5'-dimethylchalcone or dimethyl cardamonin (DMC); therefore, we hypothesized that this compound could have antiulcer effects and the present study aimed to evaluate its gastroprotective and gastric healing properties. DMC was isolated from the fruits of C. reitziana, and its gastroprotective effect was evaluated by ethanol and indomethacin-induced gastric ulcer models in mice (0.1 mg/kg, i.p. and 1 and 3 mg/kg, p.o.). Oxidative stress and inflammatory parameters were analyzed in the gastric tissue. Moreover, its gastric healing effect was evaluated in rats. In addition, the compound's mode of action was evaluated in vivo and in vitro by measuring H+ -K+ -ATPase activity. Finally, the cytotoxic potential of DMC was tested in fibroblasts and human gastric adenocarcinoma cells. The DMC reduced the ethanol-induced gastric ulcer in mice by 77 %, increased the adhered mucus, and reduced lipoperoxides levels. The block of nonprotein sulfhydryls (NP-SH) compounds by pretreatment with N-ethylmaleimide (NEM), the inhibition of nitric oxide synthase with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), or the antagonism of α2 receptor using yohimbine reversed the gastroprotective effects of DMC. Furthermore, DMC reduced the acidity of gastric content in pylorus-ligated rats but did not change H+ , K+ -ATPase (isolated from rabbit) activity in vitro. DMC reduced the lesion area in acetic acid-induced ulcers and decreased myeloperoxidase activity. DMC did not change the viability of fibroblast cells (L929) but reduced the viability of human gastric adenocarcinoma cells (AGS). The results confirmed that DMC could significantly enhance the gastric healing process and prevent ulcers due to improving protective factors on the gastric mucosa and reducing gastric acid secretion.
Collapse
Affiliation(s)
- Benhur Judah Cury
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Santa Catarina, Brazil
| | - Thaise Boeing
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Santa Catarina, Brazil
| | - Lincon Bordignon Somensi
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Santa Catarina, Brazil
| | - Adriana Campos
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Santa Catarina, Brazil
| | - Valdir Cechinel-Filho
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Santa Catarina, Brazil
| | - Priscila de Souza
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Santa Catarina, Brazil
| | - Luisa Mota da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Santa Catarina, Brazil
| |
Collapse
|
4
|
Hawaz E, Tafesse M, Tesfaye A, Beyene D, Kiros S, Kebede G, Boekhout T, Theelen B, Groenewald M, Degefe A, Degu S, Admas A, Muleta D. Isolation and characterization of bioethanol producing wild yeasts from bio-wastes and co-products of sugar factories. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01695-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Yeasts are widely used for the production of bioethanol from biomasses rich in sugar. The present study was aimed at isolating, screening, and characterizing fermentative wild yeast recovered from bio-waste and co-products of Ethiopian sugar factories for bioethanol production using sugarcane molasses as a substrate.
Method
The wild yeasts were identified according to their cellular morphology and D1/D2 and ITS1-5.8S-ITS2 rDNA sequencing. Analysis of ethanol and by-product concentration was done by HPLC equipped with a UV detector. Higher alcohols, acetaldehyde, and methanol were analyzed using GC-MS equipped with a flame ionization detector (FID).
Result
Seven strains (Meyerozyma caribbica MJTm3, Meyerozyma caribbica MJTPm4, Meyerozyma caribbica SHJF, Saccharomyces cerevisiae TA2, Wickerhamomyces anomalus MJTPm2, Wickerhamomyces anomalus 4m10, and Wickerhamomyces anomalus HCJ2F) were found tolerant to 18% (v/v) ethanol, whereas one strain Meyerozyma caribbica MJTm3 tolerated 20%. These strains also showed tolerance to 45°C, 50% of sugar, and pH 2–10. Meyerozyma caribbica MJTm3 produced 12.7% (v/v) of alcohol with an actual ethanol concentration of 26 g L−1, an ethanol yield of 47%, 78% of theoretical yield, and a productivity of 0.54 g L−1 h−1 from 30 °Brix of molasses at 48 h incubation under laboratory scale. Based on the one variable at a time optimization (OVAT), the optimal parameters for maximum bioethanol production were at initial pH 5.5, 35 °Brix, 30°C, 15% inoculum size, 150 rpm, 4 g L−1 di-ammonium phosphate supplement, and 48 h incubation. Under these optimum conditions, 14% (v/v) alcohol, 42 g L−1 actual ethanol concentration, 69% ethanol yield, 89% of theoretical yield, and productivity of 0.88 g L−1 h−1 were obtained.
Conclusion
These results indicated that M. caribbica MJTm3 should further be evaluated, optimized, and improved for industrial bioethanol production due to its fermentation potential.
Collapse
|
5
|
Liang Z, Su H, Ren X, Lin X, He Z, Li X, Zheng Y. Analysis of Key Genes Responsible for Low Urea Production in Saccharomyces cerevisiae JH301. Front Microbiol 2022; 13:894661. [PMID: 35558109 PMCID: PMC9087593 DOI: 10.3389/fmicb.2022.894661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/31/2022] [Indexed: 01/23/2023] Open
Abstract
There is a potential safety risk with ethyl carbamate (EC) in Hongqu Huangjiu production; 90% of the EC in rice wine is produced by the reaction of the urea with the alcohol of Saccharomyces cerevisiae. In our previous experiments, we screened and obtained a S. cerevisiae strain JH301 that offered low urea production. However, the key genes responsible for low urea production of strain JH301 remain unclear. Here, the whole genome sequencing of S. cerevisiae strain JH301 was accomplished via a next-generation high-throughput sequencing and long-read sequencing technology. There are six main pathways related to the urea metabolism of strain JH301 based on KEGG pathway mapping. Three species-specific genes are related to the urea metabolism pathways and were found in comparative genome analysis between strains JH301 and S288c during Hongqu Huangjiu production for the first time. Finally, the ARG80 gene was found to be likely a key gene responsible for low urea production of S. cerevisiae strain JH301, as determined by PCR and qRT-PCR check analyses from DNA and RNA levers. In conclusion, the results are useful for a scientific understanding of the mechanism of low urea production by Saccharomyces cerevisiae during Hongqu Huangjiu fermentation. It also is important to control the urea and EC contents in Hongqu Huangjiu production.
Collapse
Affiliation(s)
- Zhangcheng Liang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Hao Su
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Xiangyun Ren
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Xiaozi Lin
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Zhigang He
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Xiangyou Li
- Fujian Pinghuhong Biological Technology Co., Ltd., Fuzhou, China
| | - Yan Zheng
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| |
Collapse
|
6
|
Influence of Different Bacteria Inocula and Temperature Levels on the Chemical Composition and Antioxidant Activity of Prickly Pear Vinegar Produced by Surface Culture. Foods 2022; 11:foods11030303. [PMID: 35159455 PMCID: PMC8834249 DOI: 10.3390/foods11030303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/07/2022] [Accepted: 01/20/2022] [Indexed: 12/10/2022] Open
Abstract
This work intends to determine the effect on the aroma profile, phenolic content and antioxidant activity of prickly pear vinegars produced by the surface culture at two different fermentation temperatures and using different acetic acid bacteria (AAB) inocula. Prickly pear wine was fermented at two temperature levels (30 and 37 °C) by using bacteria inocula containing Acetobacter, Gluconobacter or a mixture of bacteria isolated from Sherry vinegars. Eighty-five individual volatile compounds from different families and sixteen polyphenolic compounds have been identified. It was confirmed that the highest temperature tested (37 °C) resulted in a lower concentration of volatile compounds, while no significant effect on the vinegars' volatile composition could be associated with the AAB inoculum used. Contrariwise, the highest content of polyphenolic compounds was detected in those vinegars produced at 37 °C and their concentration was also affected by the type of AAB inoculum used. Prickly pear wine displayed greater antioxidant activity than juices or vinegars, while the vinegars obtained through the mixture of AAB from Sherry vinegar showed higher antiradical activity than those obtained through either of the two AAB genera used in this study. It can be therefore concluded that, although the volatile content of vinegars decreased when fermented at a higher temperature, vinegars with a higher content in polyphenols could be obtained by means of partial fermentations at 37 °C, as long as thermotolerant bacteria were employed.
Collapse
|
7
|
Keșa AL, Pop CR, Mudura E, Salanță LC, Pasqualone A, Dărab C, Burja-Udrea C, Zhao H, Coldea TE. Strategies to Improve the Potential Functionality of Fruit-Based Fermented Beverages. PLANTS (BASEL, SWITZERLAND) 2021; 10:2263. [PMID: 34834623 PMCID: PMC8623731 DOI: 10.3390/plants10112263] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/01/2023]
Abstract
It is only recently that fermentation has been facing a dynamic revival in the food industry. Fermented fruit-based beverages are among the most ancient products consumed worldwide, while in recent years special research attention has been granted to assess their functionality. This review highlights the functional potential of alcoholic and non-alcoholic fermented fruit beverages in terms of chemical and nutritional profiles that impact on human health, considering the natural occurrence and enrichment of fermented fruit-based beverages in phenolic compounds, vitamins and minerals, and pro/prebiotics. The health benefits of fruit-based beverages that resulted from lactic, acetic, alcoholic, or symbiotic fermentation and specific daily recommended doses of each claimed bioactive compound were also highlighted. The latest trends on pre-fermentative methods used to optimize the extraction of bioactive compounds (maceration, decoction, and extraction assisted by supercritical fluids, microwave, ultrasound, pulsed electric fields, high pressure homogenization, or enzymes) are critically assessed. As such, optimized fermentation processes and post-fermentative operations, reviewed in an industrial scale-up, can prolong the shelf life and the quality of fermented fruit beverages.
Collapse
Affiliation(s)
- Ancuța-Liliana Keșa
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, Via Amendola, 165/A, 70126 Bari, Italy;
| | - Cosmin Dărab
- Department of Electric Power Systems, Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania;
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 10 Victoriei Blv., 550024 Sibiu, Romania;
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| |
Collapse
|
8
|
Biotechnological Processes in Fruit Vinegar Production. Foods 2021; 10:foods10050945. [PMID: 33925896 PMCID: PMC8145929 DOI: 10.3390/foods10050945] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022] Open
Abstract
The production of fruit vinegars as a way of making use of fruit by-products is an option widely used by the food industry, since surplus or second quality fruit can be used without compromising the quality of the final product. The acetic nature of vinegars and its subsequent impact on the organoleptic properties of the final product allows almost any type of fruit to be used for its elaboration. A growing number of scientific research studies are being carried out on this matrix, and they are revealing the importance of controlling the processes involved in vinegar elaboration. Thus, in this review, we will deal with the incidence of technological and biotechnological processes on the elaboration of fruit vinegars other than grapes. The preparation and production of the juice for the elaboration of the vinegar by means of different procedures is an essential step for the final quality of the product, among which crushing or pressing are the most employed. The different conditions and processing methods of both alcoholic and acetic fermentation also affect significantly the final characteristics of the vinegar produced. For the alcoholic fermentation, the choice between spontaneous or inoculated procedure, together with the microorganisms present in the process, have special relevance. For the acetic fermentation, the type of acetification system employed (surface or submerged) is one of the most influential factors for the final physicochemical properties of fruit vinegars. Some promising research lines regarding fruit vinegar production are the use of commercial initiators to start the acetic fermentation, the use of thermotolerant bacteria that would allow acetic fermentation to be carried out at higher temperatures, or the use of innovative technologies such as high hydrostatic pressure, ultrasound, microwaves, pulsed electric fields, and so on, to obtain high-quality fruit vinegars.
Collapse
|
9
|
Potential Applicability of Cocoa Pulp ( Theobroma cacao L) as an Adjunct for Beer Production. ScientificWorldJournal 2020; 2020:3192585. [PMID: 32934606 PMCID: PMC7484685 DOI: 10.1155/2020/3192585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/17/2020] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to evaluate the application of cocoa pulp as an adjunct for malt in beer production. The cocoa pulp was analyzed for humidity, proteins, lipids, sugars, total soluble solids, organic acids, and minerals. A study was carried out to reduce the cocoa pulp viscosity by enzymatic depectinization, making its use viable in beer production. The cocoa pulp showed relevant quantities of compounds important in fermentation, such as sugars, acids, and minerals. In fermentation using the adjunct, the proportions of pulp used were 10, 30, and 49%. A significant difference was found between the adjunct and all-malt worts. The 30% cocoa pulp concentration as an adjunct for malt in the fermentation medium contributed the most to the fermentative performance of the yeasts at both 15 and 22°C based on the consumption of apparent extract (°Plato), ethanol production, and cellular growth.
Collapse
|
10
|
Tsegay ZT. Total titratable acidity and organic acids of wines produced from cactus pear ( Opuntia-ficus-indica) fruit and Lantana camara ( L. Camara) fruit blended fermentation process employed response surface optimization. Food Sci Nutr 2020; 8:4449-4462. [PMID: 32884725 PMCID: PMC7455955 DOI: 10.1002/fsn3.1745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 01/02/2023] Open
Abstract
Fruits and fermentation methods are important sources of organic acids that determine organoleptic properties, microbiological and biochemical stability of fruit wines. This study is aimed at investigating total titrable acidity and organic acids of fruit wines produced by response surface optimization of cactus pear and Lantana camara fruits blend and cactus pear fruit alone. The predictive mathematical model of the blended fruit wine is well fitted (R 2 = 0.9618 and absolute average deviation (AAD) = 2.06%). The optimum values of fermentation temperature, inoculum concentration, and Lantana camara fruitjuice concentration to produce predictive total titrable acidity of 0.8% (w/v citric acid) were 24°C, 10% (v/v), and 10.7% (v/v), respectively. The blended fruit wine was with lower total titrable acidity (w/v citric acid) of 0.83 ± 0.058% compared to wine produced from cactus pear fruit alone 1.06 ± 0.27%. The high performance liquid chromatography (HPLC) analysis of both produced wines revealed the difference in concentration of citric (±3.35 mg/ml), L-tartaric (± 3.71 mg/ml), and L-ascorbic acid (± 0.07 mg/ml). Citric acid was predominant organic acid in both fruit wines, and its content in the cactus pear is 7.09 ± 0.07 mg/ml and blended fruit wine 4.74 ± 0.07 mg/ml.
Collapse
Affiliation(s)
- Zenebe Tadesse Tsegay
- College of Dryland Agriculture and Natural ResourcesDepartment of Food Science and Post‐Harvest TechnologyMekelle UniversityMekelle231Ethiopia
| |
Collapse
|
11
|
Yin L, Wang C, Zhu X, Ning C, Gao L, Zhang J, Wang Y, Huang R. A multi-step screening approach of suitable non-Saccharomyces yeast for the fermentation of hawthorn wine. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Combination of Lactobacillus plantarum and Saccharomyces cerevisiae DV10 as Starter Culture to Produce Mango Slurry: Microbiological, Chemical Parameters and Antioxidant Activity. Molecules 2019; 24:molecules24234349. [PMID: 31795169 PMCID: PMC6930673 DOI: 10.3390/molecules24234349] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to develop a nondairy fermented product based on mango slurry. Lactobacillus plantarum and Saccharomyces cerevisiae DV10 were used as starter cultures in single and co-cultivations. The microbial populations and metabolites produced during mango slurry fermentation were investigated. At the end of all fermentations, the bacterial populations were higher than 6.0 log CFU/mL. Lactic acid was the main organic acid produced, achieving up to 6.12 g/L after 24 h in co-culture with L. plantarum and S. cerevisiae DV10. Volatile compounds were determined after 24 h of fermentation, the co-cultures of L. plantarum and S. cerevisiae DV10 could decrease terpenes and produce alcohols and esters. The co-cultivations obtained the most total phenolics as well as showed the strongest 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging activity, ferric-reducing antioxidant power (FRAP) and low-density lipoprotein (LDL) oxidation inhibition. Hence, a high-bioactivity probiotic product was successfully obtained via mango slurry fermentation inoculated with a co-culture of L. plantarum and S. cerevisiae DV10.
Collapse
|
13
|
Differential Impacts of Yeasts on Feeding Behavior and Development in Larval Drosophila suzukii (Diptera:Drosophilidae). Sci Rep 2019; 9:13370. [PMID: 31527678 PMCID: PMC6746873 DOI: 10.1038/s41598-019-48863-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/14/2019] [Indexed: 11/23/2022] Open
Abstract
Larval Drosophila encounter and feed on a diverse microbial community within fruit. In particular, free-living yeast microbes provide a source of dietary protein critical for development. However, successional changes to the fruit microbial community may alter host quality through impacts on relative protein content or yeast community composition. For many species of Drosophila, fitness benefits from yeast feeding vary between individual yeast species, indicating differences in yeast nutritional quality. To better understand these associations, we evaluated how five species of yeast impacted feeding preference and development in larval Drosophila suzukii. Larvae exhibited a strong attraction to the yeast Hanseniaspora uvarum in pairwise yeast feeding assays. However, larvae also performed most poorly on diets containing H. uvarum, a mismatch in preference and performance that suggests differences in yeast nutritional quality are not the primary factor driving larval feeding behavior. Together, these results demonstrate that yeast plays a critical role in D. suzukii’s ecology and that larvae may have developed specific yeast associations. Further inquiry, including systematic comparisons of Drosophila larval yeast associations more broadly, will be necessary to understand patterns of microbial resource use in larvae of D. suzukii and other frugivorous species.
Collapse
|
14
|
Therapeutic Potential of Brazilian Cerrado Campomanesia Species on Metabolic Dysfunctions. Molecules 2018; 23:molecules23092336. [PMID: 30216974 PMCID: PMC6225494 DOI: 10.3390/molecules23092336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/25/2022] Open
Abstract
Obesity, in conjunction with other metabolic disorders such as insulin resistance and dyslipidemia, is a feature of metabolic syndrome which is characterized by a pro-inflammatory state and increased oxidative stress. Therefore, antioxidant foods are proposed to prevent and treat these disorders. Medicinal plants are one of the main strategies in this regard. Guavira, a Brazilian Cerrado plant, contains different bioactive compounds with a high antioxidant capacity and without clinical or reproductive toxicity effects. Though there are different varieties of guavira, the principal Brazilian Cerrado guaviras demonstrated hypoglycemic, anti-inflammatory, and hypocholesterolemic actions. There is also a potential antiplatelet agent in C. xanthocarpa, while C. adamantium displayed hypocholesterolemic actions in animal models and human clinical trials. On the other hand, even with a lack of studies related to C. pubescens, it demonstrated anti-inflammatory effects and an antioxidant capacity in in vitro studies. Despite the fact that most of the studies were not performed to evaluate pathological conditions specific to obese animal models or obese subjects, guavira demonstrated effects in metabolic disorders that are commonly related to the obesity context, such as cardiovascular disturbances and hyperglycemia status. This suggests that guavira is a potential therapeutic approach to obesity-induced metabolic syndrome.
Collapse
|
15
|
de Souza AC, Fernandes AC, Silva MS, Schwan RF, Dias DR. Antioxidant activities of tropical fruit wines. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Monique S. Silva
- Department of Biology; Federal University of Lavras (UFLA); Brazil
| | - Rosane F. Schwan
- Department of Biology; Federal University of Lavras (UFLA); Brazil
| | - Disney R. Dias
- Department of Food Science; Federal University of Lavras (UFLA); Brazil
| |
Collapse
|
16
|
Dias DR, Silva MS, Cristina de Souza A, Magalhăes-Guedes KT, Ribeiro FSDR, Schwan RF. Vinegar Production from Jabuticaba ( Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria. Food Technol Biotechnol 2016; 54:351-359. [PMID: 27956867 DOI: 10.17113/ftb.54.03.16.4416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba (Myrciaria jaboticaba) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans. To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar.
Collapse
Affiliation(s)
- Disney Ribeiro Dias
- Department of Food Science, Federal University of Lavras (UFLA), University Campus,
37200-000 Lavras, MG, Brazil
| | - Monique Suela Silva
- Department of Biology, Federal University of Lavras (UFLA), University Campus,
37200-000 Lavras, MG, Brazil
| | - Angélica Cristina de Souza
- Department of Biology, Federal University of Lavras (UFLA), University Campus,
37200-000 Lavras, MG, Brazil
| | | | | | - Rosane Freitas Schwan
- Department of Biology, Federal University of Lavras (UFLA), University Campus,
37200-000 Lavras, MG, Brazil
| |
Collapse
|
17
|
Štornik A, Skok B, Trček J. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar. Food Technol Biotechnol 2016; 54:113-119. [PMID: 27904401 DOI: 10.17113/ftb.54.01.16.4082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplified 16S-23S rRNA gene ITS regions, we identified four different HaeIII and five different HpaII restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S-23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90%), Acetobacter ghanensis (12.50%), Komagataeibacter oboediens (9.35%) and Komagataeibacter saccharivorans (6.25%). Using the same analytical approach in conventional apple cider vinegar, we identified only two different HaeIII and two different HpaII restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70%) and Komagataeibacter oboediens (33.30%). Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1-5.8S rDNA‒ITS2 region as Candida ethanolica, Pichia membranifaciens and Saccharomycodes ludwigii. This study has shown for the first time that the bacterial microbiota for the industrial production of organic apple cider vinegar is clearly more heterogeneous than the bacterial microbiota for the industrial production of conventional apple cider vinegar. Further chemical analysis should reveal if a difference in microbiota composition influences the quality of different types of apple cider vinegar.
Collapse
Affiliation(s)
- Aleksandra Štornik
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor,
Koroška cesta 160, SI-2000 Maribor, Slovenia
| | - Barbara Skok
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor,
Koroška cesta 160, SI-2000 Maribor, Slovenia
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor,
Koroška cesta 160, SI-2000 Maribor, Slovenia; Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17,
SI-2000 Maribor, Slovenia
| |
Collapse
|
18
|
Schvab MDC, Ferreyra MM, Davies CV, Stefani A, Cayetano MC, Gerard LM, Gonzalez RF. Effects of orange winemaking variables on antioxidant activity and bioactive compounds. FOOD SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1590/1678-457x.6571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Jagtap UB, Bapat VA. Wines from fruits other than grapes: Current status and future prospectus. FOOD BIOSCI 2015. [DOI: 10.1016/j.fbio.2014.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Optimization of bioprocessing parameters using response surface methodology for bael (Aegle marmelos L.) wine with the analysis of antioxidant potential, colour and heavy metal concentration. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13749-014-0064-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Kamda AGS, Ramos CL, Fokou E, Duarte WF, Mercy A, Germain K, Dias DR, Schwan RF. In vitro determination of volatile compound development during starter culture-controlled fermentation of Cucurbitaceae cotyledons. Int J Food Microbiol 2015; 192:58-65. [DOI: 10.1016/j.ijfoodmicro.2014.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/16/2014] [Accepted: 09/27/2014] [Indexed: 11/25/2022]
|
22
|
Brandão CC, Asquieri ER, Attaran S, Damiani C. Study of the aging of fermented of yacon (Smallanthus sonchifolius) and sensory profile and acceptance. FOOD SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1590/s0101-20612014005000032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Ramos CL, Duarte WF, Freire AL, Dias DR, Eleutherio ECA, Schwan RF. Evaluation of stress tolerance and fermentative behavior of indigenous Saccharomyces cerevisiae. Braz J Microbiol 2013; 44:935-44. [PMID: 24516430 PMCID: PMC3910215 DOI: 10.1590/s1517-83822013005000051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 09/10/2012] [Indexed: 11/30/2022] Open
Abstract
Sixty six indigenous Saccharomyces cerevisiae strains were evaluated in stressful conditions (temperature, osmolarity, sulphite and ethanol tolerance) and also ability to flocculate. Eighteen strains showed tolerant characteristics to these stressful conditions, growing at 42 °C, in 0.04% sulphite, 1 mol L−1 NaCl and 12% ethanol. No flocculent characteristics were observed. These strains were evaluated according to their fermentative performance in sugar cane juice. The conversion factors of substrates into ethanol (Yp/s), glycerol (Yg/s) and acetic acid (Yac/s), were calculated. The highest values of Yp/s in sugar cane juice fermentation were obtained by four strains, one isolated from fruit (0.46) and the others from sugar cane (0.45, 0.44 and 0.43). These values were higher than the value obtained using traditional yeast (0.38) currently employed in the Brazilian bioethanol industry. The parameters Yg/s and Yac/s were low for all strains. The UFLA FW221 presented the higher values for parameter related to bioethanol production. Thus, it was tested in co-culture with Lactobacillus fermentum. Besides this, a 20-L vessel for five consecutive batches of fermentation was performed. This strain was genetically stable and remained viable during all batches, producing high amounts of ethanol. The UFLA FW221 isolated from fruit was suitable to produce bioethanol in sugar cane juice. Therefore, the study of the biodiversity of yeasts from different environmental can reveal strains with desired characteristics to industrial applications.
Collapse
Affiliation(s)
| | | | - Ana Luiza Freire
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, Brazil
| | - Disney Ribeiro Dias
- Departamento de Ciência de Alimentos, Universidade Federal de Lavras, Lavras, MG, Brazil
| | | | | |
Collapse
|
24
|
Santos CCADA, Duarte WF, Carreiro SC, Schwan RF. Inoculated fermentation of orange juice (Citrus sinensisL.) for production of a citric fruit spirit. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/jib.89] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Whasley F. Duarte
- Department of Biology; Federal University of Lavras; CP 3037 - Campus Universitário CEP 37.200-000 Lavras MG Brazil
| | - Solange Cristina Carreiro
- Department of Food Engineer; Federal University of Tocantins (UFT); Av. NS15, ALCNO 14, Bloco II, Room 22 CEP 77020-210 - Palmas TO Brazil
| | - Rosane F. Schwan
- Department of Biology; Federal University of Lavras; CP 3037 - Campus Universitário CEP 37.200-000 Lavras MG Brazil
| |
Collapse
|
25
|
Hidalgo C, Torija MJ, Mas A, Mateo E. Effect of inoculation on strawberry fermentation and acetification processes using native strains of yeast and acetic acid bacteria. Food Microbiol 2012; 34:88-94. [PMID: 23498182 DOI: 10.1016/j.fm.2012.11.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/20/2012] [Accepted: 11/27/2012] [Indexed: 11/25/2022]
Abstract
The aim of this work was to analyze the microbiota involved in the traditional vinegar elaboration of strawberry fruit during a spontaneous and inoculated process. In the spontaneous processes, low biodiversity was detected in both alcoholic fermentation (AF) and acetification. Nevertheless, a strain of Saccharomyces cerevisiae and of Acetobacter malorum were selected and tested as starter cultures in the inoculation study. The inoculated processes with these strains were compared with another spontaneous process, yielding a significant reduction in time for AF with a total imposition of the S. cerevisiae strain. The resulting strawberry wine was acetified in different containers (glass and wood) yielding an initial imposition of the A. malorum inoculated strain, although displacement by Gluconacetobacter species was observed in the wood barrels.
Collapse
Affiliation(s)
- C Hidalgo
- Biotecnologia Enológica, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo s/n, 43007 Tarragona, Spain
| | | | | | | |
Collapse
|
26
|
Physico-chemical and microbiological characterization of corn and rice ‘calugi’ produced by Brazilian Amerindian people. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Navarrete-Bolaños JL. Improving traditional fermented beverages: How to evolve from spontaneous to directed fermentation. Eng Life Sci 2012. [DOI: 10.1002/elsc.201100128] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
28
|
Hidalgo C, Mateo E, Mas A, Torija M. Identification of yeast and acetic acid bacteria isolated from the fermentation and acetification of persimmon (Diospyros kaki). Food Microbiol 2012; 30:98-104. [DOI: 10.1016/j.fm.2011.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
|
29
|
Kelebek H, Selli S. Identification of phenolic compositions and the antioxidant capacity of mandarin juices and wines. Journal of Food Science and Technology 2011; 51:1094-101. [PMID: 24876641 DOI: 10.1007/s13197-011-0606-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/25/2011] [Accepted: 12/05/2011] [Indexed: 11/27/2022]
Abstract
This research was undertaken to determine the phenolic composition and antioxidant capacity of juices and wines obtained from Robinson, Fremont and Satsuma mandarins. High-performance liquid chromatography coupled with diode-array detection was used for identifying and quantifying phenolic compounds. The total amount of phenolic compounds ranged from 36.6 to 132.6 mg/L for the mandarin juice, and from 14.1 to 54.5 mg/L for the wines. In the juices and wines, the major hydroxybenzoic acid was vanillic acid; the major hydroxycinnamic acid was ferulic acid; and the major flavanone was hesperidin. The antioxidant activity was measured using the DPPH and ABTS radical scavenging assays, and the antioxidant capacity of mandarin juices was found to be higher than that of wines. Results of this study indicated that these mandarin wines had a composition similar to other beverages, thus demonstrating that these fruits have the potential to be used to produce fermented beverages.
Collapse
Affiliation(s)
- Hasim Kelebek
- Adiyaman Vocational School, Department of Food Technology, University of Adiyaman, 02040 Adiyaman, Turkey
| | - Serkan Selli
- Faculty of Agriculture, Department of Food Engineering, University of Cukurova, 01330 Adana, Turkey
| |
Collapse
|
30
|
LaTuga MS, Ellis JC, Cotton CM, Goldberg RN, Wynn JL, Jackson RB, Seed PC. Beyond bacteria: a study of the enteric microbial consortium in extremely low birth weight infants. PLoS One 2011; 6:e27858. [PMID: 22174751 PMCID: PMC3234235 DOI: 10.1371/journal.pone.0027858] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/26/2011] [Indexed: 12/30/2022] Open
Abstract
Extremely low birth weight (ELBW) infants have high morbidity and mortality, frequently due to invasive infections from bacteria, fungi, and viruses. The microbial communities present in the gastrointestinal tracts of preterm infants may serve as a reservoir for invasive organisms and remain poorly characterized. We used deep pyrosequencing to examine the gut-associated microbiome of 11 ELBW infants in the first postnatal month, with a first time determination of the eukaryote microbiota such as fungi and nematodes, including bacteria and viruses that have not been previously described. Among the fungi observed, Candida sp. and Clavispora sp. dominated the sequences, but a range of environmental molds were also observed. Surprisingly, seventy-one percent of the infant fecal samples tested contained ribosomal sequences corresponding to the parasitic organism Trichinella. Ribosomal DNA sequences for the roundworm symbiont Xenorhabdus accompanied these sequences in the infant with the greatest proportion of Trichinella sequences. When examining ribosomal DNA sequences in aggregate, Enterobacteriales, Pseudomonas, Staphylococcus, and Enterococcus were the most abundant bacterial taxa in a low diversity bacterial community (mean Shannon-Weaver Index of 1.02±0.69), with relatively little change within individual infants through time. To supplement the ribosomal sequence data, shotgun sequencing was performed on DNA from multiple displacement amplification (MDA) of total fecal genomic DNA from two infants. In addition to the organisms mentioned previously, the metagenome also revealed sequences for gram positive and gram negative bacteriophages, as well as human adenovirus C. Together, these data reveal surprising eukaryotic and viral microbial diversity in ELBW enteric microbiota dominated bytypes of bacteria known to cause invasive disease in these infants.
Collapse
Affiliation(s)
- Mariam Susan LaTuga
- Department of Pediatrics, Albert Einstein College of Medicine, New York, New York, United States of America
| | | | - Charles Michael Cotton
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- Jean and George Brumley, Jr Neonatal-Perinatal Research Institute, Duke University, Durham, North Carolina, United States of America
| | - Ronald N. Goldberg
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- Jean and George Brumley, Jr Neonatal-Perinatal Research Institute, Duke University, Durham, North Carolina, United States of America
| | - James L. Wynn
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- Jean and George Brumley, Jr Neonatal-Perinatal Research Institute, Duke University, Durham, North Carolina, United States of America
| | - Robert B. Jackson
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Nicholas School of the Environment and Center on Global Change, Duke University, Durham, North Carolina, United States of America
| | - Patrick C. Seed
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Microbial Pathogenesis, Duke University, Durham, North Carolina, United States of America
- Jean and George Brumley, Jr Neonatal-Perinatal Research Institute, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
31
|
Oliveira M, Pantoja L, Duarte W, Collela C, Valarelli L, Schwan R, Dias D. Fruit wine produced from cagaita (Eugenia dysenterica DC) by both free and immobilised yeast cell fermentation. Food Res Int 2011. [DOI: 10.1016/j.foodres.2011.02.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Lee PR, Yu B, Curran P, Liu SQ. Effect of fusel oil addition on volatile compounds in papaya wine fermented with Williopsis saturnus var. mrakii NCYC 2251. Food Res Int 2011. [DOI: 10.1016/j.foodres.2010.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Duarte WF, Amorim JC, de Assis Lago L, Dias DR, Schwan RF. Optimization of Fermentation Conditions for Production of the Jabuticaba (Myrciaria cauliflora) Spirit Using the Response Surface Methodology. J Food Sci 2011; 76:C782-90. [DOI: 10.1111/j.1750-3841.2011.02169.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Alves JA, de Oliveira Lima LC, Nunes CA, Dias DR, Schwan RF. Chemical, Physical-Chemical, and Sensory Characteristics of Lychee (Litchi chinensis Sonn) Wines. J Food Sci 2011; 76:S330-6. [DOI: 10.1111/j.1750-3841.2011.02188.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Magalhães KT, de Melo Pereira GV, Campos CR, Dragone G, Schwan RF. Brazilian kefir: structure, microbial communities and chemical composition. Braz J Microbiol 2011; 42:693-702. [PMID: 24031681 PMCID: PMC3769826 DOI: 10.1590/s1517-838220110002000034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 01/13/2011] [Indexed: 11/22/2022] Open
Abstract
Microbial ecology and chemical composition of Brazilian kefir beverage was performed. The microorganisms associated with Brazilian kefir were investigated using a combination of phenotypic and genotypic methods. A total of 359 microbial isolates were identified. Lactic acid bacteria (60.5%) were the major isolated group identified, followed by yeasts (30.6%) and acetic acid bacteria (8.9%). Lactobacillus paracasei (89 isolates), Lactobacillus parabuchneri (41 isolates), Lactobacillus casei (32 isolates), Lactobacillus kefiri (31 isolates), Lactococcus lactis (24 isolates), Acetobacter lovaniensis (32 isolates), Kluyveromyces lactis (31 isolates), Kazachstania aerobia (23 isolates), Saccharomyces cerevisiae (41 isolates) and Lachancea meyersii (15 isolates) were the microbial species isolated. Scanning electron microscopy showed that the microbiota was dominated by bacilli (short and curved long) cells growing in close association with lemon-shaped yeasts cells. During the 24 h of fermentation, the protein content increased, while lactose and fat content decreased. The concentration of lactic acid ranged from 1.4 to 17.4 mg/ml, and that of acetic acid increased from 2.1 to 2.73 mg/ml. The production of ethanol was limited, reaching a final mean value of 0.5 mg/ml.
Collapse
Affiliation(s)
| | | | | | - Giuliano Dragone
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710–057, Braga, Portugal
| | | |
Collapse
|
36
|
Characterization of different fruit wines made from cacao, cupuassu, gabiroba, jaboticaba and umbu. Lebensm Wiss Technol 2010. [DOI: 10.1016/j.lwt.2010.03.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Alves JA, Lima LCDO, Dias DR, Nunes CA, Schwan RF. Effects of spontaneous and inoculated fermentation on the volatile profile of lychee (Litchi chinensis Sonn) fermented beverages. Int J Food Sci Technol 2010. [DOI: 10.1111/j.1365-2621.2010.02409.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Duarte WF, Dias DR, Oliveira JM, Vilanova M, Teixeira JA, e Silva JBA, Schwan RF. Raspberry (Rubus idaeus L.) wine: Yeast selection, sensory evaluation and instrumental analysis of volatile and other compounds. Food Res Int 2010. [DOI: 10.1016/j.foodres.2010.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Duarte WF, Dragone G, Dias DR, Oliveira JM, Teixeira JA, Silva JBAE, Schwan RF. Fermentative behavior of Saccharomyces strains during microvinification of raspberry juice (Rubus idaeus L.). Int J Food Microbiol 2010; 143:173-82. [PMID: 20828848 DOI: 10.1016/j.ijfoodmicro.2010.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/19/2010] [Accepted: 08/14/2010] [Indexed: 11/25/2022]
Abstract
Sixteen different strains of Saccharomyces cerevisiae and Saccharomyces bayanus were evaluated in the production of raspberry fruit wine. Raspberry juice sugar concentrations were adjusted to 16° Brix with a sucrose solution, and batch fermentations were performed at 22 °C. Various kinetic parameters, such as the conversion factors of the substrates into ethanol (Y(p/s)), biomass (Y(x/s)), glycerol (Y(g/s)) and acetic acid (Y(ac/s)), the volumetric productivity of ethanol (Q(p)), the biomass productivity (P(x)), and the fermentation efficiency (E(f)) were calculated. Volatile compounds (alcohols, ethyl esters, acetates of higher alcohols and volatile fatty acids) were determined by gas chromatography (GC-FID). The highest values for the E(f), Y(p/s), Y(g/s), and Y(x/s) parameters were obtained when strains commonly used in the fuel ethanol industry (S. cerevisiae PE-2, BG, SA, CAT-1, and VR-1) were used to ferment raspberry juice. S. cerevisiae strain UFLA FW 15, isolated from fruit, displayed similar results. Twenty-one volatile compounds were identified in raspberry wines. The highest concentrations of total volatile compounds were found in wines produced with S. cerevisiae strains UFLA FW 15 (87,435 μg/L), CAT-1 (80,317.01 μg/L), VR-1 (67,573.99 μg/L) and S. bayanus CBS 1505 (71,660.32 μg/L). The highest concentrations of ethyl esters were 454.33 μg/L, 440.33 μg/L and 438 μg/L for S. cerevisiae strains UFLA FW 15, VR-1 and BG, respectively. Similar to concentrations of ethyl esters, the highest concentrations of acetates (1927.67 μg/L) and higher alcohols (83,996.33 μg/L) were produced in raspberry wine from S. cerevisiae UFLA FW 15. The maximum concentration of volatile fatty acids was found in raspberry wine produced by S. cerevisiae strain VR-1. We conclude that S. cerevisiae strain UFLA FW 15 fermented raspberry juice and produced a fruit wine with low concentrations of acids and high concentrations of acetates, higher alcohols and ethyl esters.
Collapse
Affiliation(s)
- Whasley F Duarte
- Department of Biology, Federal University of Lavras (UFLA), CP 3037, Campus Universitário, CEP 37.200-000 Lavras, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
40
|
Lee PR, Ong YL, Yu B, Curran P, Liu SQ. Evolution of volatile compounds in papaya wine fermented with three Williopsis saturnus yeasts. Int J Food Sci Technol 2010. [DOI: 10.1111/j.1365-2621.2010.02369.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Ávila C, Bravo Martins C, Schwan R. Identification and characterization of yeasts in sugarcane silages. J Appl Microbiol 2010; 109:1677-86. [DOI: 10.1111/j.1365-2672.2010.04796.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
de Melo Pereira GV, Ramos CL, Galvão C, Souza Dias E, Schwan RF. Use of specific PCR primers to identify three important industrial species of Saccharomyces genus: Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces pastorianus. Lett Appl Microbiol 2010; 51:131-7. [PMID: 20536703 DOI: 10.1111/j.1472-765x.2010.02868.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To develop species-specific primers capable of distinguishing between three important yeast species in alcoholic fermentation: Saccharomyces bayanus, Saccharomyces cerevisiae and Saccharomyces pastorianus. METHODS AND RESULTS Two sets of primers with sequences complementary to the HO genes from Saccharomyces sensu stricto species were used. The use of the ScHO primers produced a single amplificon of c. 400 or 300 bp with species S. cerevisiae and S. pastorianus, respectively. The second pair of primers (LgHO) was also constructed, within the HO gene, composed of perfectly conserved sequences common for S. bayanus species, which generate amplicon with 700 bp. No amplification product was observed in the DNA samples from non-Saccharomyces yeasts. Saccharomyces species have also been characterized via electrophoretic karyotyping using pulsed-field gel electrophoresis to demonstrate chromosomal polymorphisms and to determine the evolutionary distances between these species. CONCLUSIONS We conclude that our novel species-specific primers could be used to rapidly and accurately identify of the Saccharomyces species most commonly involved in fermentation processes using a PCR-based assay. SIGNIFICANCE AND IMPACT OF THE STUDY The method may be used for routine identification of the most common Saccharomyces sensu stricto yeasts involved in industrial fermentation processes in less than 3 h.
Collapse
|
43
|
Ramos CL, de Almeida EG, Pereira GVDM, Cardoso PG, Dias ES, Schwan RF. Determination of dynamic characteristics of microbiota in a fermented beverage produced by Brazilian Amerindians using culture-dependent and culture-independent methods. Int J Food Microbiol 2010; 140:225-31. [PMID: 20413168 DOI: 10.1016/j.ijfoodmicro.2010.03.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 03/02/2010] [Accepted: 03/18/2010] [Indexed: 11/15/2022]
Abstract
Cauim is a fermented beverages prepared by Tapirapé Amerindians in Brazil from substrates such as cassava, rice, peanuts, pumpkin, cotton seed and maize. Here we study the microorganisms associated with peanut and rice fermentation using a combination of culture-dependent and -independent methods. The bacterial population varied from 7.4 to 8.4 log CFU/ml. The yeast population varied from 4.0 to 6.6 log CFU/ml. A total of 297 bacteria and yeasts strains were isolated during fermentation, with 198 bacteria and 99 yeast. The Lactobacillus genus was dominant throughout fermentation. Bacteria and yeast community dynamics during the fermentation process were monitored by PCR-DGGE analysis. Both culture-dependent and -independent methods indicated that the bacterial species L. plantarum, L. fermentum, L. paracasei and L. brevis as well as the yeast species P. guilliermondii, K. lactis, Candida sp, R. toruloides and Saccharomyces cerevisiae, were dominant during fermentation. Multivariate analysis of microorganisms during beverage fermentation showed that the microbial community changed during the fermentation process.
Collapse
Affiliation(s)
- Cíntia Lacerda Ramos
- Departamento de Biologia, Universidade Federal de Lavras, 37.200-000, Lavras, MG, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Microbial communities and chemical changes during fermentation of sugary Brazilian kefir. World J Microbiol Biotechnol 2010; 26:1241-50. [DOI: 10.1007/s11274-009-0294-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
|
45
|
Sudheer Kumar Y, Prakasam RS, Reddy OVS. Optimisation of fermentation conditions for mango (Mangifera indicaL.) wine production by employing response surface methodology. Int J Food Sci Technol 2009. [DOI: 10.1111/j.1365-2621.2009.02076.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Campos CR, Silva CF, Dias DR, Basso LC, Amorim HV, Schwan RF. Features of Saccharomyces cerevisiae as a culture starter for the production of the distilled sugar cane beverage, cachaça in Brazil. J Appl Microbiol 2009; 108:1871-9. [PMID: 19863684 DOI: 10.1111/j.1365-2672.2009.04587.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To evaluate the dominance and persistence of strains of Saccharomyces cerevisiae during the process of sugar cane fermentation for the production of cachaça and to analyse the microbial compounds produced in each fermentative process. METHODS AND RESULTS Three S. cerevisiae strains were evaluated during seven consecutive 24-h fermentation batches using recycled inocula. The UFLA CA 116 strain had the largest population of viable organisms, and the maximum population was achieved in the fourth batch after 96 h of fermentation. The UFLA CA 1162 and UFLA CA 1183 strains grew more slowly, and the maximum population was reached in the seventh batch. Molecular characterization of isolated yeast cells using PFGE (pulse field gel electrophoresis) revealed that more than 86% of the isolates corresponded to the initially inoculated yeast strain. The concentration of aldehydes, esters, methanol, alcohol and volatile acids in the final-aged beverages were within the legal limits. CONCLUSIONS Cachaça produced by select yeast strains exhibits analytical differences. UFLA CA 1162 and UFLA CA 116 S. cerevisiae isolates can be considered the ideal strains for the artisanal production of cachaça in Brazil. SIGNIFICANCE AND IMPACT OF THE STUDY The use of select yeast strains can improve the quality and productivity of cachaça production. Our findings are important for the appropriate monitoring of yeast during sugar cane fermentation. In addition, we demonstrate that UFLA CA 116 and UFLA CA 1162, the ideal yeast strains for cachaça production, are maintained at a high population density. The persistence of these yeast strains in the fermentation of sugar cane juice promotes environmental conditions that prevent or decrease bacterial contamination. Thus, the use of select yeast strains for the production of cachaça is a viable economic alternative to standardize the production of this beverage.
Collapse
Affiliation(s)
- C R Campos
- Biology Department, Universidade Federal de Lavras - UFLA, Lavras, MG, Brazil
| | | | | | | | | | | |
Collapse
|
47
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|