Ferreira Dos Santos Vieira C, Duzi Sia A, Maugeri Filho F, Maciel Filho R, Pinto Mariano A. Isopropanol-butanol-ethanol production by cell-immobilized vacuum fermentation.
BIORESOURCE TECHNOLOGY 2022;
344:126313. [PMID:
34798259 DOI:
10.1016/j.biortech.2021.126313]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The Isopropanol-Butanol-Ethanol productivity by solventogenic clostridia can increase when cells are immobilized on low-cost, renewable fibrous materials; however, butanol inhibition imposes the need for dilute sugar solutions (less than40 g/L). To alleviate this problem, the in-situ vacuum product recovery technique was applied to recover IBE in repeated-batch cultivation of Clostridium beijerinckii DSM 6423 immobilized on sugarcane bagasse. Five repeated batch cycles were conducted in a 7-L bioreactor containing P2 medium (∼60 g/L glucose) and bagasse packed in 3D-printed concentric annular baskets. In three cycles, glucose was consumed by 86% on average, the IBE productivity was 0.35 g/L∙h or 30% and 17% higher relative to free- and immobilized (without vacuum)-cell cultures. Notably, the product stream contained 45 g/L IBE. However, the fermentation was unsatisfactory in two cycles. Finally, by inserting a fibrous bed with hollow annuli in a vacuum fermentation, this work introduces the concept of an internal-loop boiling-driven fibrous-bed bioreactor.
Collapse