1
|
Integrated Transcriptomic and Metabolomic Analysis of the Mechanism of Foliar Application of Hormone-Type Growth Regulator in the Improvement of Grape (Vitis vinifera L.) Coloration in Saline-Alkaline Soil. PLANTS 2022; 11:plants11162115. [PMID: 36015418 PMCID: PMC9416415 DOI: 10.3390/plants11162115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022]
Abstract
(1) Background: To solve the problems of incomplete coloration and quality decline caused by unreasonable use of regulators in grapes, this study clarified the differences in the effects of a hormone-type growth regulator (AUT) and two commercial regulators on grape coloration and quality through field experiments. (2) Methods: The color indexes (brightness (L*), red/green color difference (a*), yellow/blue color difference (b*), and color index for red grapes (CIRG)) of grape fruit were measured using a CR-400 handheld color difference meter. The titratable acid content, total phenol content, and total sugar content were measured using anthrone colorimetry, folinol colorimetry, and NaOH titration, respectively, and the chalcone isomerase activity, phenylalanine ammoniase activity, dihydroflavol reductase activity, and anthocyanin content were measured using a UV spectrophotometer. (3) Results: The a*, total sugar and total phenol contents, and chalcone isomerase (CHI) and phenylalanine ammoniase (PAL) activities of grape fruit in the AUT treatment significantly increased, while the titratable acid content significantly decreased, compared to those in the CK treatment. The expressions of the differentially expressed genes (DEGs) trpB and argJ in AUT treatment were significantly up-regulated. The expressions of the differentially expressed metabolites (DEMs) phenylalanine and 4-oxoproline were significantly up-regulated, while those of 3,4-dihydroxybenzaldehyde and N-acetyl glutamate were significantly down-regulated. The CIRG significantly increased by 36.4% compared to that in the CK, indicating improved fruit coloration. (4) Conclusion: The AUT could shorten the color conversion period of grape fruit and improve the coloration, taste, and tolerance to saline and alkaline stresses.
Collapse
|
2
|
Wei L, Zhao J, Wang Y, Gao J, Du M, Zhang Y, Xu N, Du H, Ju J, Liu Q, Liu J. Engineering of Corynebacterium glutamicum for high-level γ-aminobutyric acid production from glycerol by dynamic metabolic control. Metab Eng 2021; 69:134-146. [PMID: 34856366 DOI: 10.1016/j.ymben.2021.11.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/28/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022]
Abstract
Synthetic biology seeks to reprogram microbial cells for efficient production of value-added compounds from low-cost renewable substrates. A great challenge of chemicals biosynthesis is the competition between cell metabolism and target product synthesis for limited cellular resource. Dynamic regulation provides an effective strategy for fine-tuning metabolic flux to maximize chemicals production. In this work, we created a tunable growth phase-dependent autonomous bifunctional genetic switch (GABS) by coupling growth phase responsive promoters and degrons to dynamically redirect the carbon flux for metabolic state switching from cell growth mode to production mode, and achieved high-level GABA production from low-value glycerol in Corynebacterium glutamicum. A ribosome binding sites (RBS)-library-based pathway optimization strategy was firstly developed to reconstruct and optimize the glycerol utilization pathway in C. glutamicum, and the resulting strain CgGly2 displayed excellent glycerol utilization ability. Then, the initial GABA-producing strain was constructed by deleting the GABA degradation pathway and introducing an exogenous GABA synthetic pathway, which led to 5.26 g/L of GABA production from glycerol. In order to resolve the conflicts of carbon flux between cell growth and GABA production, we used the GABS to reconstruct the GABA synthetic metabolic network, in which the competitive modules of GABA biosynthesis, including the tricarboxylic acid (TCA) cycle module and the arginine biosynthesis module, were dynamically down-regulated while the synthetic modules were dynamically up-regulated after sufficient biomass accumulation. Finally, the resulting strain G7-1 accumulated 45.6 g/L of GABA with a yield of 0.4 g/g glycerol, which was the highest titer of GABA ever reported from low-value glycerol. Therefore, these results provide a promising technology to dynamically balance the metabolic flux for the efficient production of other high value-added chemicals from a low-value substrate in C. glutamicum.
Collapse
Affiliation(s)
- Liang Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jinhua Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yiran Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jinshan Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muhua Du
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yue Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huanmin Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qingdai Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Jun Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
3
|
Sheng Q, Wu XY, Xu X, Tan X, Li Z, Zhang B. Production of l-glutamate family amino acids in Corynebacterium glutamicum: Physiological mechanism, genetic modulation, and prospects. Synth Syst Biotechnol 2021; 6:302-325. [PMID: 34632124 PMCID: PMC8484045 DOI: 10.1016/j.synbio.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
l-glutamate family amino acids (GFAAs), consisting of l-glutamate, l-arginine, l-citrulline, l-ornithine, l-proline, l-hydroxyproline, γ-aminobutyric acid, and 5-aminolevulinic acid, are widely applied in the food, pharmaceutical, cosmetic, and animal feed industries, accounting for billions of dollars of market activity. These GFAAs have many functions, including being protein constituents, maintaining the urea cycle, and providing precursors for the biosynthesis of pharmaceuticals. Currently, the production of GFAAs mainly depends on microbial fermentation using Corynebacterium glutamicum (including its related subspecies Corynebacterium crenatum), which is substantially engineered through multistep metabolic engineering strategies. This review systematically summarizes recent advances in the metabolic pathways, regulatory mechanisms, and metabolic engineering strategies for GFAA accumulation in C. glutamicum and C. crenatum, which provides insights into the recent progress in l-glutamate-derived chemical production.
Collapse
Affiliation(s)
- Qi Sheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinyi Xu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhimin Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Wu XY, Guo XY, Zhang B, Jiang Y, Ye BC. Recent Advances of L-ornithine Biosynthesis in Metabolically Engineered Corynebacterium glutamicum. Front Bioeng Biotechnol 2020; 7:440. [PMID: 31998705 PMCID: PMC6962107 DOI: 10.3389/fbioe.2019.00440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022] Open
Abstract
L-ornithine, a valuable non-protein amino acid, has a wide range of applications in the pharmaceutical and food industries. Currently, microbial fermentation is a promising, sustainable, and environment-friendly method to produce L-ornithine. However, the industrial production capacity of L-ornithine by microbial fermentation is low and rarely meets the market demands. Various strategies have been employed to improve the L-ornithine production titers in the model strain, Corynebacterium glutamicum, which serves as a major indicator for improving the cost-effectiveness of L-ornithine production by microbial fermentation. This review focuses on the development of high L-ornithine-producing strains by metabolic engineering and reviews the recent advances in breeding strategies, such as reducing by-product formation, improving the supplementation of precursor glutamate, releasing negative regulation and negative feedback inhibition, increasing the supply of intracellular cofactors, modulating the central metabolic pathway, enhancing the transport system, and adaptive evolution for improving L-ornithine production.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiao-Yan Guo
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yan Jiang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Joo YC, Hyeon JE, Han SO. Metabolic Design of Corynebacterium glutamicum for Production of l-Cysteine with Consideration of Sulfur-Supplemented Animal Feed. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4698-4707. [PMID: 28560868 DOI: 10.1021/acs.jafc.7b01061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
l-Cysteine is a valuable sulfur-containing amino acid widely used as a nutrition supplement in industrial food production, agriculture, and animal feed. However, this amino acid is mostly produced by acid hydrolysis and extraction from human or animal hairs. In this study, we constructed recombinant Corynebacterium glutamicum strains that overexpress combinatorial genes for l-cysteine production. The aims of this work were to investigate the effect of the combined overexpression of serine acetyltransferase (CysE), O-acetylserine sulfhydrylase (CysK), and the transcriptional regulator CysR on l-cysteine production. The CysR-overexpressing strain accumulated approximately 2.7-fold more intracellular sulfide than the control strain (empty pMT-tac vector). Moreover, in the resulting CysEKR recombinant strain, combinatorial overexpression of genes involved in l-cysteine production successfully enhanced its production by approximately 3.0-fold relative to that in the control strain. This study demonstrates a biotechnological model for the production of animal feed supplements such as l-cysteine using metabolically engineered C. glutamicum.
Collapse
Affiliation(s)
- Young-Chul Joo
- Department of Biotechnology, Korea University , Seoul 02841, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Biotechnology, Korea University , Seoul 02841, Republic of Korea
- Department of Chemical and Biomolecular Engineering, University of Delaware , Newark, Delaware 19702, United States
| | - Sung Ok Han
- Department of Biotechnology, Korea University , Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Hao N, Mu J, Hu N, Xu S, Yan M, Li Y, Guo K, Xu L. Improvement of l-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase. ACTA ACUST UNITED AC 2015; 42:307-13. [DOI: 10.1007/s10295-014-1561-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/29/2014] [Indexed: 10/24/2022]
Abstract
Abstract
In this study, Corynebacterium glutamicum ATCC 13032 was engineered to produce l-citrulline through a metabolic engineering strategy. To prevent the flux away from l-citrulline and to increase the expression levels of genes involved in the citrulline biosynthesis pathway, the argininosuccinate synthase gene (argG) and the repressor gene (argR) were inactivated. The engineered C. glutamicum ATCC 13032 ∆argG ∆argR (CIT 2) produced higher amounts of l-citrulline (5.43 g/L) compared to the wildtype strain (0.15 g/L). To determine new strategies for further enhancement of l-citrulline production, the effect of l-citrulline on ornithine acetyltransferase (EC 2.3.1.35; OATase; ArgJ) was first investigated. Citrulline was determined to inhibit Ornithine acetyltransferase; for 50 % inhibition, citrulline concentration was 30 mM. The argJ gene from C. glutamicum ATCC 13032 was cloned, and the recombinant shuttle plasmid pXMJ19-argJ was constructed and expressed in C. glutamicum ATCC 13032 ∆argG ∆argR (CIT 2). Overexpression of the argJ gene exhibited increased OAT activity and resulted in a positive effect on citrulline production (8.51 g/L). These results indicate that OAT plays a vital role during l-citrulline production in C. glutamicum.
Collapse
Affiliation(s)
- N Hao
- grid.412022.7 0000000093895210 State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road 211816 Nanjing People’s Republic of China
| | - Jr Mu
- grid.412022.7 0000000093895210 State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road 211816 Nanjing People’s Republic of China
| | - N Hu
- grid.412022.7 0000000093895210 State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road 211816 Nanjing People’s Republic of China
| | - S Xu
- grid.412022.7 0000000093895210 State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road 211816 Nanjing People’s Republic of China
| | - M Yan
- grid.412022.7 0000000093895210 State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road 211816 Nanjing People’s Republic of China
| | - Y Li
- grid.412022.7 0000000093895210 State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road 211816 Nanjing People’s Republic of China
| | - K Guo
- grid.412022.7 0000000093895210 State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road 211816 Nanjing People’s Republic of China
| | - L Xu
- grid.412022.7 0000000093895210 State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University 30 Puzhu South Road 211816 Nanjing People’s Republic of China
| |
Collapse
|
7
|
Production of L-ornithine from sucrose and molasses by recombinant Corynebacterium glutamicum. Folia Microbiol (Praha) 2014; 60:393-8. [DOI: 10.1007/s12223-014-0371-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 12/11/2014] [Indexed: 01/02/2023]
|
8
|
Shin JH, Lee SY. Metabolic engineering of microorganisms for the production of L-arginine and its derivatives. Microb Cell Fact 2014; 13:166. [PMID: 25467280 PMCID: PMC4258820 DOI: 10.1186/s12934-014-0166-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/15/2014] [Indexed: 12/18/2022] Open
Abstract
L-arginine (ARG) is an important amino acid for both medicinal and industrial applications. For almost six decades, the research has been going on for its improved industrial level production using different microorganisms. While the initial approaches involved random mutagenesis for increased tolerance to ARG and consequently higher ARG titer, it is laborious and often leads to unwanted phenotypes, such as retarded growth. Discovery of L-glutamate (GLU) overproducing strains and using them as base strains for ARG production led to improved ARG production titer. Continued effort to unveil molecular mechanisms led to the accumulation of detailed knowledge on amino acid metabolism, which has contributed to better understanding of ARG biosynthesis and its regulation. Moreover, systems metabolic engineering now enables scientists and engineers to efficiently construct genetically defined microorganisms for ARG overproduction in a more rational and system-wide manner. Despite such effort, ARG biosynthesis is still not fully understood and many of the genes in the pathway are mislabeled. Here, we review the major metabolic pathways and its regulation involved in ARG biosynthesis in different prokaryotes including recent discoveries. Also, various strategies for metabolic engineering of bacteria for the overproduction of ARG are described. Furthermore, metabolic engineering approaches for producing ARG derivatives such as L-ornithine (ORN), putrescine and cyanophycin are described. ORN is used in medical applications, while putrescine can be used as a bio-based precursor for the synthesis of nylon-4,6 and nylon-4,10. Cyanophycin is also an important compound for the production of polyaspartate, another important bio-based polymer. Strategies outlined here will serve as a general guideline for rationally designing of cell-factories for overproduction of ARG and related compounds that are industrially valuable.
Collapse
Affiliation(s)
- Jae Ho Shin
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea. .,BioProcess Engineering Research Center, KAIST, Daejeon, 305-701, Republic of Korea. .,BioInformatics Research Center, KAIST, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
9
|
Nguyen AQD, Schneider J, Wendisch VF. Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum. J Biotechnol 2014; 201:75-85. [PMID: 25449016 DOI: 10.1016/j.jbiotec.2014.10.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/25/2022]
Abstract
Corynebacterium glutamicum has been engineered for production of the polyamide monomer putrescine or 1,4-diaminobutane. Here, N-acetylputrescine was shown to be a significant by-product of putrescine production by recombinant putrescine producing C. glutamicum strains. A systematic gene deletion approach of 18 (putative) N-acetyltransferase genes revealed that the cg1722 gene product was responsible for putrescine acetylation. The encoded enzyme was purified and characterized as polyamine N-acetyltransferase. The enzyme accepted acetyl-CoA and propionyl-CoA as donors for acetylation of putrescine and other diamines as acceptors, but showed highest catalytic efficiency with the triamine spermidine and the tetraamine spermine and, hence, was named SnaA. Upon deletion of snaA in the putrescine producing strain PUT21, no acteylputrescine accumulated, but about 41% more putrescine as compared to the parent strain. Moreover, a transcriptome approach identified increased expression of the cgmAR operon encoding a putative permease and a transcriptional TetR-family repressor upon induction of putrescine production in C. glutamicum PUT21. CgmR is known to bind to cgmO upstream of cgmAR and gel mobility shift experiments with purified CgmR revealed that putrescine and other diamines perturbed CgmR-cgmO complex formation, but not migration of free cgmO DNA. Deletion of the repressor gene cgmR resulted in expression changes of a number of genes and increased putrescine production of C. glutamicum PUT21 by 19% as compared to the parent strain. Overexpression of the putative transport gene cgmA increased putrescine production by 24% as compared to the control strain. However, cgmA overexpression in PUT21ΔsnaA did not further improve putrescine production, hence, the beneficial effects of both targets were not synergistic at the highest described yield of 0.21 g g(-1).
Collapse
Affiliation(s)
- Anh Q D Nguyen
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Jens Schneider
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
10
|
Petri K, Walter F, Persicke M, Rückert C, Kalinowski J. A novel type of N-acetylglutamate synthase is involved in the first step of arginine biosynthesis in Corynebacterium glutamicum. BMC Genomics 2013; 14:713. [PMID: 24138314 PMCID: PMC3827942 DOI: 10.1186/1471-2164-14-713] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 10/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arginine biosynthesis in Corynebacterium glutamicum consists of eight enzymatic steps, starting with acetylation of glutamate, catalysed by N-acetylglutamate synthase (NAGS). There are different kinds of known NAGSs, for example, "classical" ArgA, bifunctional ArgJ, ArgO, and S-NAGS. However, since C. glutamicum possesses a monofunctional ArgJ, which catalyses only the fifth step of the arginine biosynthesis pathway, glutamate must be acetylated by an as of yet unknown NAGS gene. RESULTS Arginine biosynthesis was investigated by metabolome profiling using defined gene deletion mutants that were expected to accumulate corresponding intracellular metabolites. HPLC-ESI-qTOF analyses gave detailed insights into arginine metabolism by detecting six out of seven intermediates of arginine biosynthesis. Accumulation of N-acetylglutamate in all mutants was a further confirmation of the unknown NAGS activity. To elucidate the identity of this gene, a genomic library of C. glutamicum was created and used to complement an Escherichia coli ΔargA mutant. The plasmid identified, which allowed functional complementation, contained part of gene cg3035, which contains an acetyltransferase domain in its amino acid sequence. Deletion of cg3035 in the C. glutamicum genome led to a partial auxotrophy for arginine. Heterologous overexpression of the entire cg3035 gene verified its ability to complement the E. coli ΔargA mutant in vivo and homologous overexpression led to a significantly higher intracellular N-acetylglutamate pool. Enzyme assays confirmed the N-acetylglutamate synthase activity of Cg3035 in vitro. However, the amino acid sequence of Cg3035 revealed no similarities to members of known NAGS gene families. CONCLUSIONS The N-acetylglutamate synthase Cg3035 is able to catalyse the first step of arginine biosynthesis in C. glutamicum. It represents a novel class of NAGS genes apparently present only in bacteria of the suborder Corynebacterineae, comprising amongst others the genera Corynebacterium, Mycobacterium, and Nocardia. Therefore, the name C-NAGS (Corynebacterineae-type NAGS) is proposed for this new family.
Collapse
Affiliation(s)
| | | | | | | | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27 33615 Bielefeld, Germany.
| |
Collapse
|
11
|
Jiang LY, Zhang YY, Li Z, Liu JZ. Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. J Ind Microbiol Biotechnol 2013; 40:1143-51. [PMID: 23836141 DOI: 10.1007/s10295-013-1306-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/15/2013] [Indexed: 11/28/2022]
Abstract
The experiments presented here were based on the conclusions of our previous proteomic analysis. Increasing the availability of glutamate by overexpression of the genes encoding enzymes in the L-ornithine biosynthesis pathway upstream of glutamate and disruption of speE, which encodes spermidine synthase, improved L-ornithine production by Corynebacterium glutamicum. Production of L-ornithine requires 2 moles of NADPH per mole of L-ornithine. Thus, the effect of NADPH availability on L-ornithine production was also investigated. Expression of Clostridium acetobutylicum gapC, which encodes NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, and Bacillus subtilis rocG, which encodes NAD-dependent glutamate dehydrogenase, led to an increase of L-ornithine concentration caused by greater availability of NADPH. Quantitative real-time PCR analysis demonstrates that the increased levels of NADPH resulted from the expression of the gapC or rocG gene rather than that of genes (gnd, icd, and ppnK) involved in NADPH biosynthesis. The resulting strain, C. glutamicum ΔAPRE::rocG, produced 14.84 g l⁻¹ of L-ornithine. This strategy of overexpression of gapC and rocG will be useful for improving production of target compounds using NADPH as reducing equivalent within their synthetic pathways.
Collapse
Affiliation(s)
- Ling-Yan Jiang
- Biotechnology Research Center and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | | | | | | |
Collapse
|
12
|
Jiang LY, Chen SG, Zhang YY, Liu JZ. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. BMC Biotechnol 2013; 13:47. [PMID: 23725060 PMCID: PMC3681597 DOI: 10.1186/1472-6750-13-47] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/31/2013] [Indexed: 11/10/2022] Open
Abstract
Background L-ornithine is effective in the treatment of liver diseases and helps strengthen the heart. The commercial applications mean that efficient biotechnological production of L-ornithine has become increasingly necessary. Adaptive evolution strategies have been proven a feasible and efficient technique to achieve improved cellular properties without requiring metabolic or regulatory details of the strain. The evolved strains can be further optimised by metabolic engineering. Thus, metabolic evolution strategy was used for engineering Corynebacterium glutamicum to enhance L-ornithine production. Results A C. glutamicum strain was engineered by using a combination of gene deletions and adaptive evolution with 70 passages of growth-based selection. The metabolically evolved C. glutamicum strain, named ΔAPE6937R42, produced 24.1 g/L of L-ornithine in a 5-L bioreactor. The mechanism used by C. glutamicum ΔAPE6937R42 to produce L-ornithine was investigated by analysing transcriptional levels of select genes and NADPH contents. The upregulation of the transcription levels of genes involved in the upstream pathway of glutamate biosynthesis and the elevated NADPH concentration caused by the upregulation of the transcriptional level of the ppnK gene promoted L-ornithine production in C. glutamicum ΔAPE6937R42. Conclusions The availability of NADPH plays an important role in L-ornithine production in C. glutamicum. Our results demonstrated that the combination of growth-coupled evolution with analysis of transcript abundances provides a strategy to engineer microbial strains for improving production of target compounds.
Collapse
Affiliation(s)
- Ling-Yan Jiang
- Biotechnology Research Centre and Biomedicine Centre, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | | | | |
Collapse
|
13
|
Implication of gluconate kinase activity in L-ornithine biosynthesis in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 2012; 39:1869-74. [PMID: 22987028 DOI: 10.1007/s10295-012-1197-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
Abstract
With the purpose of generating a microbial strain for L-ornithine production in Corynebacterium glutamicum, genes involved in the central carbon metabolism were inactivated so as to modulate the intracellular level of NADPH, and to evaluate their effects on L-ornithine production in C. glutamicum. Upon inactivation of the 6-phosphoglucoisomerase gene (pgi) in a C. glutamicum strain, the concomitant increase in intracellular NADPH concentrations from 2.55 to 5.75 mmol g⁻¹ (dry cell weight) was accompanied by reduced growth rate and L-ornithine production, suggesting that L-ornithine production is not solely limited by NADPH availability. In contrast, inactivation of the gluconate kinase gene (gntK) led to a 51.8 % increase in intracellular NADPH concentration, which resulted in a 49.9 % increase in L-ornithine production. These results indicate that excess NADPH is not necessarily rate-limiting, but is required for increased L-ornithine production in C. glutamicum.
Collapse
|
14
|
Improvement of l-Arginine Production by Overexpression of a Bifunctional Ornithine Acetyltransferase in Corynebacterium crenatum. Appl Biochem Biotechnol 2011; 165:845-55. [DOI: 10.1007/s12010-011-9302-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
|