1
|
Yan K, Li M, Ma X, Chen S, Ding B, Huo J, Zhai R, Sha Y, Xu Z, Jin M. Harnessing native nitrogen in lignocellulosic biomass for cellulosic ethanol production by ancestral xylose isomerase-engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2025; 432:132662. [PMID: 40360031 DOI: 10.1016/j.biortech.2025.132662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 05/03/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
Efficient xylose-utilizing Saccharomyces cerevisiae, straightforward pretreatment, elimination of detoxification steps, reduced cellulase dosage, and cost-effective nutrients are critical for the commercialization of lignocellulosic ethanol production. In this study, three highly efficient xylose-utilizing S. cerevisiae, which were capable of consuming 40 g/L xylose within 14 h and consuming a mixture of 80 g/L glucose and 40 g/L xylose within 18 h, were developed by integrating artificial ancestral xylose isomerases into diploid S. cerevisiae genome, followed by laboratory evolution and colony screening. Thereafter, a practical lignocellulosic ethanol process was established, which incorporated DLC(sa) pretreatment (densifying lignocellulosic biomass using sulfuric acid as the reagent), a low cellulase dosage of 14.81 FPU per gram of cellulose, and the elimination of washing or detoxification steps, as well as the need for additional nitrogen sources. Using this approach, 54.8 g/L ethanol was produced from 30 wt% hydrolysate prepared from unwashed corn stover. Further analysis revealed that S. cerevisiae utilized the native nitrogen sources present in the hydrolysate for cell growth and metabolism. In summary, this study offers a practical framework and valuable insights for advancing the commercial production of lignocellulosic ethanol.
Collapse
Affiliation(s)
- Kang Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Muzi Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xingwang Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Boning Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Juncheng Huo
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Dos Santos LV, Neitzel T, Lima CS, de Carvalho LM, de Lima TB, Ienczak JL, Corrêa TLR, Pereira GAG. Engineering cellular redox homeostasis to optimize ethanol production in xylose-fermenting Saccharomyces cerevisiae strains. Microbiol Res 2025; 290:127955. [PMID: 39476519 DOI: 10.1016/j.micres.2024.127955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 12/12/2024]
Abstract
The transition from fossil fuels dependency to embracing renewable alternatives is pivotal for mitigating greenhouse gas emissions, with biorefineries playing a central role at the forefront of this transition. As a sustainable alternative, lignocellulosic feedstocks hold great promise for biofuels and biochemicals production. However, the effective utilization of complex sugars, such as xylose, remains a significant hurdle. To address this challenge, yeasts can be engineered as microbial platforms to convert the complex sugars derived from biomass. The efficient use of xylose by XR-XDH strains still poses a significant challenge due to redox imbalance limitations, leading to the accumulation of undesirable by-products. In this study, we focused on engineering the industrial S. cerevisiae strain PE-2, known for its robustness, and compared different strategies to balance cellular redox homeostasis, guided by a genome-scale metabolic model. Flux balance analysis guided the selection of four approaches: i. decoupling NADPH regeneration from CO2 production; ii. altering XDH cofactor affinity; iii. shifting XR cofactor preference; iv. incorporating alternate phosphoketolase and acetic acid conversion pathways. A comparative time-course targeted metabolic profile was conducted to assess the redox status of xylose-fermenting cells under anaerobic conditions. The main limitations of xylose-fermenting strains were tested and the replacement of xylose reductase with a NADH-preferred XR in the LVY142 strain proved to be the most effective strategy, resulting in an increase in ethanol yield and productivity, coupled with a reduction in by-products. Comparative analysis of various genetic approaches provided valuable insights into the complexities of redox engineering, highlighting the need for tailored strategies in yeast metabolic engineering for efficient biofuels and biochemicals production from lignocellulosic feedstocks.
Collapse
Affiliation(s)
- Leandro Vieira Dos Santos
- State University of Campinas (Unicamp), Genetics and Molecular Biology Graduate Program, Institute of Biology, Campinas, São Paulo 13083-862, Brazil; Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK..
| | - Thiago Neitzel
- Ph.D. Program in Bioenergy - Faculty of Food Engineering, University of Campinas (Unicamp), Campinas, SP 13083-862, Brazil
| | - Cleiton Santos Lima
- Department of Biotechnology, Engineering College of Lorena, University of São Paulo, Lorena, São Paulo 12602-810, Brazil
| | - Lucas Miguel de Carvalho
- State University of Campinas (Unicamp), Genetics and Molecular Biology Graduate Program, Institute of Biology, Campinas, São Paulo 13083-862, Brazil; Post Graduate Program in Health Sciences, São Francisco University, Bragança Paulista, São Paulo 12916-900, Brazil
| | - Tatiani Brenelli de Lima
- Proteomic Unit, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles s/n, Badalona, Barcelona 08916, Spain
| | - Jaciane Lutz Ienczak
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | | | - Gonçalo Amarante Guimarães Pereira
- State University of Campinas (Unicamp), Genetics and Molecular Biology Graduate Program, Institute of Biology, Campinas, São Paulo 13083-862, Brazil.
| |
Collapse
|
3
|
Das S, Chandukishore T, Ulaganathan N, Dhodduraj K, Gorantla SS, Chandna T, Gupta LK, Sahoo A, Atheena PV, Raval R, Anjana PA, DasuVeeranki V, Prabhu AA. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass. Int J Biol Macromol 2024; 266:131290. [PMID: 38569993 DOI: 10.1016/j.ijbiomac.2024.131290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Lignocellulosic biomass (LCB) has been a lucrative feedstock for developing biochemical products due to its rich organic content, low carbon footprint and abundant accessibility. The recalcitrant nature of this feedstock is a foremost bottleneck. It needs suitable pretreatment techniques to achieve a high yield of sugar fractions such as glucose and xylose with low inhibitory components. Cellulosic sugars are commonly used for the bio-manufacturing process, and the xylose sugar, which is predominant in the hemicellulosic fraction, is rejected as most cell factories lack the five‑carbon metabolic pathways. In the present review, more emphasis was placed on the efficient pretreatment techniques developed for disintegrating LCB and enhancing xylose sugars. Further, the transformation of the xylose to value-added products through chemo-catalytic routes was highlighted. In addition, the review also recapitulates the sustainable production of biochemicals by native xylose assimilating microbes and engineering the metabolic pathway to ameliorate biomanufacturing using xylose as the sole carbon source. Overall, this review will give an edge on the bioprocessing of microbial metabolism for the efficient utilization of xylose in the LCB.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - T Chandukishore
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Nivedhitha Ulaganathan
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Kawinharsun Dhodduraj
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Sai Susmita Gorantla
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Teena Chandna
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Laxmi Kumari Gupta
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - P V Atheena
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - P A Anjana
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Venkata DasuVeeranki
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashish A Prabhu
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
4
|
Ma X, Sun C, Xian M, Guo J, Zhang R. Progress in research on the biosynthesis of 1,2,4-butanetriol by engineered microbes. World J Microbiol Biotechnol 2024; 40:68. [PMID: 38200399 DOI: 10.1007/s11274-024-03885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
1,2,4-butanetriol (BT) is a polyol with unique chemical properties, which has a stereocenter and can be divided into D-BT (the S-enantiomer) and L-BT (the R-enantiomer). BT can be used for the synthesis of 1,2,4-butanetriol trinitrate, 3-hydroxytetrahydrofuran, polyurethane, and other chemicals. It is widely used in the military industry, medicine, tobacco, polymer. At present, the BT is mainly synthesized by chemical methods, which are accompanied by harsh reaction conditions, poor selectivity, many by-products, and environmental pollution. Therefore, BT biosynthesis methods with the advantages of mild reaction conditions and green sustainability have become a current research hotspot. In this paper, the research status of microbial synthesis of BT was summarized from the following three aspects: (1) the biosynthetic pathway establishment for BT from xylose; (2) metabolic engineering strategies employed for improving BT production from xylose; (3) other substrates for BT production. Finally, the challenges and prospects of biosynthetic BT were discussed for future methods to improve competitiveness for industrial production.
Collapse
Affiliation(s)
- Xiangyu Ma
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Sun
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jing Guo
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Rubing Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| |
Collapse
|
5
|
Nijland JG, Zhang X, Driessen AJM. D-xylose accelerated death of pentose metabolizing Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:67. [PMID: 37069654 PMCID: PMC10111712 DOI: 10.1186/s13068-023-02320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Rapid and effective consumption of D-xylose by Saccharomyces cerevisiae is essential for cost-efficient cellulosic bioethanol production. Hence, heterologous D-xylose metabolic pathways have been introduced into S. cerevisiae. An effective solution is based on a xylose isomerase in combination with the overexpression of the xylulose kinase (Xks1) and all genes of the non-oxidative branch of the pentose phosphate pathway. Although this strain is capable of consuming D-xylose, growth inhibition occurs at higher D-xylose concentrations, even abolishing growth completely at 8% D-xylose. The decreased growth rates are accompanied by significantly decreased ATP levels. A key ATP-utilizing step in D-xylose metabolism is the phosphorylation of D-xylulose by Xks1. Replacement of the constitutive promoter of XKS1 by the galactose tunable promoter Pgal10 allowed the controlled expression of this gene over a broad range. By decreasing the expression levels of XKS1, growth at high D-xylose concentrations could be restored concomitantly with increased ATP levels and high rates of xylose metabolism. These data show that in fermentations with high D-xylose concentrations, too high levels of Xks1 cause a major drain on the cellular ATP levels thereby reducing the growth rate, ultimately causing substrate accelerated death. Hence, expression levels of XKS1 in S. cerevisiae needs to be tailored for the specific growth conditions and robust D-xylose metabolism.
Collapse
Affiliation(s)
- Jeroen G Nijland
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Xiaohuan Zhang
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
6
|
Abdul Manaf SF, Indera Luthfi AA, Md Jahim J, Harun S, Tan JP, Mohd Shah SS. Sequential detoxification of oil palm fronds hydrolysate with coconut shell activated charcoal and pH controlled in bioreactor for xylitol production. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Yang J, Tian Y, Liu H, Kan Y, Zhou Y, Wang Y, Luo Y. Harnessing the Endogenous 2μ Plasmid of Saccharomyces cerevisiae for Pathway Construction. Front Microbiol 2021; 12:679665. [PMID: 34220765 PMCID: PMC8249740 DOI: 10.3389/fmicb.2021.679665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
pRS episomal plasmids are widely used in Saccharomyces cerevisiae, owing to their easy genetic manipulations and high plasmid copy numbers (PCNs). Nevertheless, their broader application is hampered by the instability of the pRS plasmids. In this study, we designed an episomal plasmid based on the endogenous 2μ plasmid with both improved stability and increased PCN, naming it p2μM, a 2μ-modified plasmid. In the p2μM plasmid, an insertion site between the REP1 promoter and RAF1 promoter was identified, where the replication (ori) of Escherichia coli and a selection marker gene of S. cerevisiae were inserted. As a proof of concept, the tyrosol biosynthetic pathway was constructed in the p2μM plasmid and in a pRS plasmid (pRS423). As a result, the p2μM plasmid presented lower plasmid loss rate than that of pRS423. Furthermore, higher tyrosol titers were achieved in S. cerevisiae harboring p2μM plasmid carrying the tyrosol pathway-related genes. Our study provided an improved genetic manipulation tool in S. cerevisiae for metabolic engineering applications, which may be widely applied for valuable product biosynthesis in yeast.
Collapse
Affiliation(s)
- Jing Yang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Yujuan Tian
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huayi Liu
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yeyi Kan
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhou
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Yunzi Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China.,Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
López-Malvar A, Malvar RA, Souto XC, Gomez LD, Simister R, Encina A, Barros-Rios J, Pereira-Crespo S, Santiago R. Elucidating the multifunctional role of the cell wall components in the maize exploitation. BMC PLANT BIOLOGY 2021; 21:251. [PMID: 34078286 PMCID: PMC8170779 DOI: 10.1186/s12870-021-03040-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/14/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Besides the use of maize grain as food and feed, maize stover can be a profitable by-product for cellulosic ethanol production, whereas the whole plant can be used for silage production. However, yield is reduced by pest damages, stem corn borers being one of the most important yield constraints. Overall, cell wall composition is key in determining the quality of maize biomass, as well as pest resistance. This study aims to evaluate the composition of the four cell wall fractions (cellulose, hemicellulose, lignin and hydroxycinnamates) in diverse maize genotypes and to understand how this composition influences the resistance to pests, ethanol capacity and digestibility. RESULTS The following results can be highlighted: (i) pests' resistant materials may show cell walls with low p-coumaric acid and low hemicellulose content; (ii) inbred lines showing cell walls with high cellulose content and high diferulate cross-linking may present higher performance for ethanol production; (iii) and inbreds with enhanced digestibility may have cell walls poor in neutral detergent fibre and diferulates, combined with a lignin polymer composition richer in G subunits. CONCLUSIONS Results evidence that there is no maize cell wall ideotype among the tested for optimal performance for various uses, and maize plants should be specifically bred for each particular application.
Collapse
Affiliation(s)
- Ana López-Malvar
- Facultad, de Biología, Departamento de Biología Vegetal Y Ciencias del Suelo, Universidad de Vigo, As Lagoas Marcosende, 36310, Vigo, Spain.
- Agrobiología Ambiental, Calidad de Suelos Y Plantas (UVIGO), Unidad Asociada a La MBG (CSIC), Vigo, Spain.
| | - Rosa Ana Malvar
- Misión Biológica de Galicia (CSIC), Pazo de Salcedo, Carballeira 8, 36143, Pontevedra, Spain
| | - Xose Carlos Souto
- E.E. Forestales, Dpto. Ingenieria Recursos Naturales Y Medio Ambiente, 36005, Pontevedra, Spain
| | | | - Rachael Simister
- CNAP, Department of Biology, University of York, Heslington, YO10 5DD, York, UK
| | - Antonio Encina
- Dpto. Ingeniería Y Ciencias Agrarias, Área de Fisiología Vegetal, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Jaime Barros-Rios
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle, #311428, Denton, TX, 76203-5017, USA
| | - Sonia Pereira-Crespo
- Laboratorio Interprofesional Galego de Análise Do Leite (LIGAL), Mabegondo, 15318, A Coruña, Abegondo, Spain
| | - Rogelio Santiago
- Facultad, de Biología, Departamento de Biología Vegetal Y Ciencias del Suelo, Universidad de Vigo, As Lagoas Marcosende, 36310, Vigo, Spain
- Agrobiología Ambiental, Calidad de Suelos Y Plantas (UVIGO), Unidad Asociada a La MBG (CSIC), Vigo, Spain
| |
Collapse
|
9
|
Nijland JG, Shin HY, Dore E, Rudinatha D, de Waal PP, Driessen AJM. D-glucose overflow metabolism in an evolutionary engineered high-performance D-xylose consuming Saccharomyces cerevisiae strain. FEMS Yeast Res 2020; 21:6000216. [PMID: 33232441 PMCID: PMC7811511 DOI: 10.1093/femsyr/foaa062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/20/2020] [Indexed: 11/26/2022] Open
Abstract
Co-consumption of D-xylose and D-glucose by Saccharomyces cerevisiae is essential for cost-efficient cellulosic bioethanol production. There is a need for improved sugar conversion rates to minimize fermentation times. Previously, we have employed evolutionary engineering to enhance D-xylose transport and metabolism in the presence of D-glucose in a xylose-fermenting S. cerevisiae strain devoid of hexokinases. Re-introduction of Hxk2 in the high performance xylose-consuming strains restored D-glucose utilization during D-xylose/D-glucose co-metabolism, but at rates lower than the non-evolved strain. In the absence of D-xylose, D-glucose consumption was similar to the parental strain. The evolved strains accumulated trehalose-6-phosphate during sugar co-metabolism, and showed an increased expression of trehalose pathway genes. Upon the deletion of TSL1, trehalose-6-phosphate levels were decreased and D-glucose consumption and growth on mixed sugars was improved. The data suggest that D-glucose/D-xylose co-consumption in high-performance D-xylose consuming strains causes the glycolytic flux to saturate. Excess D-glucose is phosphorylated enters the trehalose pathway resulting in glucose recycling and energy dissipation, accumulation of trehalose-6-phosphate which inhibits the hexokinase activity, and release of trehalose into the medium.
Collapse
Affiliation(s)
- Jeroen G Nijland
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
| | - Hyun Yong Shin
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
| | - Eleonora Dore
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
| | - Donny Rudinatha
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
| | - Paul P de Waal
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Groningen, The Netherlands
| |
Collapse
|
10
|
Sun L, Jin YS. Xylose Assimilation for the Efficient Production of Biofuels and Chemicals by Engineered Saccharomyces cerevisiae. Biotechnol J 2020; 16:e2000142. [PMID: 33135317 DOI: 10.1002/biot.202000142] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 10/15/2020] [Indexed: 11/09/2022]
Abstract
Microbial conversion of plant biomass into fuels and chemicals offers a practical solution to global concerns over limited natural resources, environmental pollution, and climate change. Pursuant to these goals, researchers have put tremendous efforts and resources toward engineering the yeast Saccharomyces cerevisiae to efficiently convert xylose, the second most abundant sugar in lignocellulosic biomass, into various fuels and chemicals. Here, recent advances in metabolic engineering of yeast is summarized to address bottlenecks on xylose assimilation and to enable simultaneous co-utilization of xylose and other substrates in lignocellulosic hydrolysates. Distinct characteristics of xylose metabolism that can be harnessed to produce advanced biofuels and chemicals are also highlighted. Although many challenges remain, recent research investments have facilitated the efficient fermentation of xylose and simultaneous co-consumption of xylose and glucose. In particular, understanding xylose-induced metabolic rewiring in engineered yeast has encouraged the use of xylose as a carbon source for producing various non-ethanol bioproducts. To boost the lignocellulosic biomass-based bioeconomy, much attention is expected to promote xylose-utilizing efficiency via reprogramming cellular regulatory networks, to attain robust co-fermentation of xylose and other cellulosic carbon sources under industrial conditions, and to exploit the advantageous traits of yeast xylose metabolism for producing diverse fuels and chemicals.
Collapse
Affiliation(s)
- Liang Sun
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
11
|
Nijland JG, Li X, Shin HY, de Waal PP, Driessen AJM. Efficient, D-glucose insensitive, growth on D-xylose by an evolutionary engineered Saccharomyces cerevisiae strain. FEMS Yeast Res 2020; 19:5647354. [PMID: 31782779 DOI: 10.1093/femsyr/foz083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
Optimizing D-xylose consumption in Saccharomyces cerevisiae is essential for cost-efficient cellulosic bioethanol production. An evolutionary engineering approach was used to elevate D-xylose consumption in a xylose-fermenting S. cerevisiae strain carrying the D-xylose-specific N367I mutation in the endogenous chimeric Hxt36 hexose transporter. This strain carries a quadruple hexokinase deletion that prevents glucose utilization, and allows for selection of improved growth rates on D-xylose in the presence of high D-glucose concentrations. Evolutionary engineering resulted in D-glucose-insensitive growth and consumption of D-xylose, which could be attributed to glucose insensitive D-xylose uptake via a novel chimeric Hxt37 N367I transporter that emerged from a fusion of the HXT36 and HXT7 genes, and a down regulation of a set of Hxt transporters that mediate glucose sensitive xylose transport. RNA sequencing revealed the downregulation of HXT1 and HXT2 which, together with the deletion of HXT7, resulted in a 21% reduction of the expression of all plasma membrane transporters genes. Morphological analysis showed an increased cell size and corresponding increased cell surface area of the evolved strain, which could be attributed to genome duplication. Mixed strain fermentation of the D-xylose-consuming strain DS71054-evo6 with the D-glucose consuming CEN.PK113-7D strain resulted in decreased residual sugar concentrations and improved ethanol production yields compared to a strain which sequentially consumes D-glucose and D-xylose.
Collapse
Affiliation(s)
- Jeroen G Nijland
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology (GBB), University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Xiang Li
- Department of Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology (GBB), University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Hyun Yong Shin
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology (GBB), University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Paul P de Waal
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology (GBB), University of Groningen, Zernike Institute for Advanced Materials and Kluyver Centre for Genomics of Industrial Fermentation, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| |
Collapse
|
12
|
Wang L, Yu H, Xu J, Ruan H, Zhang W. Deciphering the crucial roles of AraC-type transcriptional regulator Cgl2680 on NADPH metabolism and L-lysine production in Corynebacterium glutamicum. World J Microbiol Biotechnol 2020; 36:82. [PMID: 32458148 DOI: 10.1007/s11274-020-02861-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/20/2020] [Indexed: 11/28/2022]
Abstract
Lysine is widely used in food, medical and feed industries. The biosynthesis of L-lysine is closely related to NADPH level, but the regulation mechanism between the biosynthesis of L-lysine in C. glutamicum and the cofactor NADPH is still not clear. Here, a high intracellular NADPH level strain C. glutamicum XQ-5Δpgi::(zwf-gnd) was constructed by blocking the glycolytic pathway and overexpressing the pentose phosphate pathway in the lysine-producing strain C. glutamicum XQ-5, and the intracellular NADPH level in strain XQ-5Δpgi::(zwf-gnd) was increased from 3.57 × 10-5 nmol/(104 cells) to 1.8 × 10-4 nmol/(104 cell). Transcriptome analyses pointed to Cgl2680 as an important regulator of NADPH levels and L-lysine biosynthesis in C. glutamicum. By knocking out the gene Cgl2680, the intracellular NADPH level of the recombinant C. glutamicum lysCfbr ΔCgl2680 was raised from 7.95 × 10-5 nmol/(104 cells) to 2.04 × 10-4 nmol/(104 cells), consequently leading to a 2.3-fold increase in the NADPH/NADP+ ratio. These results indicated that the regulator Cgl2680 showed the negative regulation for NADPH regeneration. In addition, Cgl2680-deficient strain C. glutamicum lysCfbr ΔCgl2680 showed the increase of yield of both L-lysine and L-leucine as well as the increase of H2O2 tolerance. Collectively, our data demonstrated that Cgl2680 plays an important role in negatively regulating NADPH regeneration, and these results provides new insights for breeding L-lysine or L-leucine high-yielding strain.
Collapse
Affiliation(s)
- Luping Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Haibo Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Jianzhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| | - Haozhe Ruan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Weiguo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| |
Collapse
|
13
|
Nijland JG, Driessen AJM. Engineering of Pentose Transport in Saccharomyces cerevisiae for Biotechnological Applications. Front Bioeng Biotechnol 2020; 7:464. [PMID: 32064252 PMCID: PMC7000353 DOI: 10.3389/fbioe.2019.00464] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Lignocellulosic biomass yields after hydrolysis, besides the hexose D-glucose, D-xylose, and L-arabinose as main pentose sugars. In second generation bioethanol production utilizing the yeast Saccharomyces cerevisiae, it is critical that all three sugars are co-consumed to obtain an economically feasible and robust process. Since S. cerevisiae is unable to metabolize pentose sugars, metabolic pathway engineering has been employed to introduce the respective pathways for D-xylose and L-arabinose metabolism. However, S. cerevisiae lacks specific pentose transporters, and these sugars enter the cell with low affinity via glucose transporters of the Hxt family. Therefore, in the presence of D-glucose, utilization of D-xylose and L-arabinose is poor as the Hxt transporters prefer D-glucose. To solve this problem, heterologous expression of pentose transporters has been attempted but often with limited success due to poor expression and stability, and/or low turnover. A more successful approach is the engineering of the endogenous Hxt transporter family and evolutionary selection for D-glucose insensitive growth on pentose sugars. This has led to the identification of a critical and conserved asparagine residue in Hxt transporters that, when mutated, reduces the D-glucose affinity while leaving the D-xylose affinity mostly unaltered. Likewise, mutant Gal2 transporter have been selected supporting specific uptake of L-arabinose. In fermentation experiments, the transporter mutants support efficient uptake and consumption of pentose sugars, and even co-consumption of D-xylose and D-glucose when used at industrial concentrations. Further improvements are obtained by interfering with the post-translational inactivation of Hxt transporters at high or low D-glucose concentrations. Transporter engineering solved major limitations in pentose transport in yeast, now allowing for co-consumption of sugars that is limited only by the rates of primary metabolism. This paves the way for a more economical second-generation biofuels production process.
Collapse
Affiliation(s)
- Jeroen G Nijland
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
14
|
High Gravity Fermentation of Sugarcane Bagasse Hydrolysate by Saccharomyces pastorianus to Produce Economically Distillable Ethanol Concentrations: Necessity of Medium Components Examined. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A major economic obstacle in lignocellulosic ethanol production is the low sugar concentrations in the hydrolysate and subsequent fermentation to economically distillable ethanol concentrations. We have previously demonstrated a two-stage fermentation process that recycles xylose with xylose isomerase to increase ethanol productivity, where the low sugar concentrations in the hydrolysate limit the final ethanol concentrations. In this study, three approaches are combined to increase ethanol concentrations. First, the medium-additive requirements were investigated to reduce ethanol dilution. Second, methods to increase the sugar concentrations in the sugarcane bagasse hydrolysate were undertaken. Third, the two-stage fermentation process was recharacterized with high gravity hydrolysate. It was determined that phosphate and magnesium sulfate are essential to the ethanol fermentation. Additionally, the Escherichia coli extract and xylose isomerase additions were shown to significantly increase ethanol productivity. Finally, the fermentation on hydrolysate had only slightly lower productivity than the reagent-grade sugar fermentation; however, both fermentations had similar final ethanol concentrations. The present work demonstrates the capability to produce ethanol from high gravity sugarcane bagasse hydrolysate using Saccharomyces pastorianus with low yeast inoculum in minimal medium. Moreover, ethanol productivities were on par with pilot-scale commercial starch-based facilities, even when the yeast biomass production stage was included.
Collapse
|
15
|
Hector RE, Mertens JA, Nichols NN. Development and characterization of vectors for tunable expression of both xylose-regulated and constitutive gene expression in Saccharomyces yeasts. N Biotechnol 2019; 53:16-23. [DOI: 10.1016/j.nbt.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
|
16
|
Ruchala J, Kurylenko OO, Dmytruk KV, Sibirny AA. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). J Ind Microbiol Biotechnol 2019; 47:109-132. [PMID: 31637550 PMCID: PMC6970964 DOI: 10.1007/s10295-019-02242-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
This review summarizes progress in the construction of efficient yeast ethanol producers from glucose/sucrose and lignocellulose. Saccharomyces cerevisiae is the major industrial producer of first-generation ethanol. The different approaches to increase ethanol yield and productivity from glucose in S. cerevisiae are described. Construction of the producers of second-generation ethanol is described for S. cerevisiae, one of the best natural xylose fermenters, Scheffersomyces stipitis and the most thermotolerant yeast known Ogataea polymorpha. Each of these organisms has some advantages and drawbacks. S. cerevisiae is the primary industrial ethanol producer and is the most ethanol tolerant natural yeast known and, however, cannot metabolize xylose. S. stipitis can effectively ferment both glucose and xylose and, however, has low ethanol tolerance and requires oxygen for growth. O. polymorpha grows and ferments at high temperatures and, however, produces very low amounts of ethanol from xylose. Review describes how the mentioned drawbacks could be overcome.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Olena O Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
17
|
Liu CG, Xiao Y, Xia XX, Zhao XQ, Peng L, Srinophakun P, Bai FW. Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnol Adv 2019; 37:491-504. [DOI: 10.1016/j.biotechadv.2019.03.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 11/16/2022]
|
18
|
Hossain AS, Teparić R, Mrša V. Comparison of two models of surface display of xylose reductase in the Saccharomyces cerevisiae cell wall. Enzyme Microb Technol 2019; 123:8-14. [DOI: 10.1016/j.enzmictec.2019.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/21/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
|
19
|
Kong II, Turner TL, Kim H, Kim SR, Jin YS. Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains. FEMS Yeast Res 2019; 18:4794945. [PMID: 29325040 DOI: 10.1093/femsyr/foy001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/08/2018] [Indexed: 12/18/2022] Open
Abstract
Microorganisms have been studied and used extensively to produce value-added fuels and chemicals. Yeasts, specifically Saccharomyces cerevisiae, receive industrial attention because of their well-known ability to ferment glucose and produce ethanol. Thousands of natural or genetically modified S. cerevisiae have been found in industrial environments for various purposes. These industrial strains are isolated from industrial fermentation sites, and they are considered as potential host strains for superior fermentation processes. In many cases, industrial yeast strains have higher thermotolerance, increased resistances towards fermentation inhibitors and increased glucose fermentation rates under anaerobic conditions when compared with laboratory yeast strains. Despite the advantages of industrial strains, they are often not well characterized. Through screening and phenotypic characterization of commercially available industrial yeast strains, industrial fermentation processes requiring specific environmental conditions may be able to select an ideal starting yeast strain to be further engineered. Here, we have characterized and compared 21 industrial S. cerevisiae strains under multiple conditions, including their tolerance to varying pH conditions, resistance to fermentation inhibitors, sporulation efficiency and ability to ferment lignocellulosic sugars. These data may be useful for the selection of a parental strain for specific biotechnological applications of engineered yeast.
Collapse
Affiliation(s)
- In Iok Kong
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Timothy Lee Turner
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Heejin Kim
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Son HF, Lee SM, Kim KJ. Structural insight into D-xylose utilization by xylose reductase from Scheffersomyces stipitis. Sci Rep 2018; 8:17442. [PMID: 30487522 PMCID: PMC6261992 DOI: 10.1038/s41598-018-35703-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
Lignocellulosic biomass, of which D-xylose accounts for approximately 35% of the total sugar, has attracted attention as a future energy source for biofuel. To elucidate molecular mechanism of D-xylose utilization, we determined the crystal structure of D-xylose reductase from Schefferzomyces stipitis (SsXR) at a 1.95 Å resolution. We also determined the SsXR structure in complex with the NADPH cofactor and revealed that the protein undergoes an open/closed conformation change upon NADPH binding. The substrate binding pocket of SsXR is somewhat hydrophobic, which seems to result in low binding affinity to the substrate. Phylogenetic tree analysis showed that AKR enzymes annotated with bacterial/archaeal XRs belonged to uncharacterized AKR families and might have no XR function, and yeast/fungi derived enzymes, which belong to the same group with SsXR, can be candidates for XR to increase xylose consumption.
Collapse
Affiliation(s)
- Hyeoncheol Francis Son
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
- KNU Institute for Microorganisms, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
21
|
Kwak S, Jin YS. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb Cell Fact 2017; 16:82. [PMID: 28494761 PMCID: PMC5425999 DOI: 10.1186/s12934-017-0694-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
Efficient xylose utilization is one of the most important pre-requisites for developing an economic microbial conversion process of terrestrial lignocellulosic biomass into biofuels and biochemicals. A robust ethanol producing yeast Saccharomyces cerevisiae has been engineered with heterologous xylose assimilation pathways. A two-step oxidoreductase pathway consisting of NAD(P)H-linked xylose reductase and NAD+-linked xylitol dehydrogenase, and one-step isomerase pathway using xylose isomerase have been employed to enable xylose assimilation in engineered S. cerevisiae. However, the resulting engineered yeast exhibited inefficient and slow xylose fermentation. In order to improve the yield and productivity of xylose fermentation, expression levels of xylose assimilation pathway enzymes and their kinetic properties have been optimized, and additional optimizations of endogenous or heterologous metabolisms have been achieved. These efforts have led to the development of engineered yeast strains ready for the commercialization of cellulosic bioethanol. Interestingly, xylose metabolism by engineered yeast was preferably respiratory rather than fermentative as in glucose metabolism, suggesting that xylose can serve as a desirable carbon source capable of bypassing metabolic barriers exerted by glucose repression. Accordingly, engineered yeasts showed superior production of valuable metabolites derived from cytosolic acetyl-CoA and pyruvate, such as 1-hexadecanol and lactic acid, when the xylose assimilation pathway and target synthetic pathways were optimized in an adequate manner. While xylose has been regarded as a sugar to be utilized because it is present in cellulosic hydrolysates, potential benefits of using xylose instead of glucose for yeast-based biotechnological processes need to be realized.
Collapse
Affiliation(s)
- Suryang Kwak
- Department of Food Science and Human Nutrition and Carl R. Woose Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition and Carl R. Woose Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
22
|
Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol. Metab Eng 2017; 40:176-185. [DOI: 10.1016/j.ymben.2017.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 12/25/2022]
|
23
|
Katahira S, Muramoto N, Moriya S, Nagura R, Tada N, Yasutani N, Ohkuma M, Onishi T, Tokuhiro K. Screening and evolution of a novel protist xylose isomerase from the termite Reticulitermes speratus for efficient xylose fermentation in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:203. [PMID: 28852424 PMCID: PMC5569483 DOI: 10.1186/s13068-017-0890-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/16/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae, a promising host for lignocellulosic bioethanol production, is unable to metabolize xylose. In attempts to confer xylose utilization ability in S. cerevisiae, a number of xylose isomerase (XI) genes have been expressed heterologously in this yeast. Although several of these XI encoding genes were functionally expressed in S. cerevisiae, the need still exists for a S. cerevisiae strain with improved xylose utilization ability for use in the commercial production of bioethanol. Although currently much effort has been devoted to achieve the objective, one of the solutions is to search for a new XI gene that would confer superior xylose utilization in S. cerevisiae. Here, we searched for novel XI genes from the protists residing in the hindgut of the termite Reticulitermes speratus. RESULTS Eight novel XI genes were obtained from a cDNA library, prepared from the protists of the R. speratus hindgut, by PCR amplification using degenerated primers based on highly conserved regions of amino acid sequences of different XIs. Phylogenetic analysis classified these cloned XIs into two groups, one showed relatively high similarities to Bacteroidetes and the other was comparatively similar to Firmicutes. The growth rate and the xylose consumption rate of the S. cerevisiae strain expressing the novel XI, which exhibited highest XI activity among the eight XIs, were superior to those exhibited by the strain expressing the XI gene from Piromyces sp. E2. Substitution of the asparagine residue at position 337 of the novel XI with a cysteine further improved the xylose utilization ability of the yeast strain. Interestingly, introducing point mutations in the corresponding asparagine residues in XIs originated from other organisms, such as Piromyces sp. E2 or Clostridium phytofermentans, similarly improved xylose utilization in S. cerevisiae. CONCLUSIONS A novel XI gene conferring superior xylose utilization in S. cerevisiae was successfully isolated from the protists in the termite hindgut. Isolation of this XI gene and identification of the point mutation described in this study might contribute to improving the productivity of industrial bioethanol.
Collapse
Affiliation(s)
- Satoshi Katahira
- Bioinspired Systems Research-Domain, Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 Japan
| | - Nobuhiko Muramoto
- Bioinspired Systems Research-Domain, Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 Japan
| | - Shigeharu Moriya
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Risa Nagura
- Bioinspired Systems Research-Domain, Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 Japan
| | - Nobuki Tada
- Biotechnology and Afforestation Laboratory, New Business Planning Div, Toyota Motor Corporation, 1099 Marune, Kurozasa-cho, Miyoshi, Aichi 470-0201 Japan
| | - Noriko Yasutani
- Biotechnology and Afforestation Laboratory, New Business Planning Div, Toyota Motor Corporation, 1099 Marune, Kurozasa-cho, Miyoshi, Aichi 470-0201 Japan
| | - Moriya Ohkuma
- RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074 Japan
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074 Japan
| | - Toru Onishi
- Biotechnology and Afforestation Laboratory, New Business Planning Div, Toyota Motor Corporation, 1099 Marune, Kurozasa-cho, Miyoshi, Aichi 470-0201 Japan
| | - Kenro Tokuhiro
- Bioinspired Systems Research-Domain, Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 Japan
| |
Collapse
|
24
|
A Synthetic Hybrid Promoter for Xylose-Regulated Control of Gene Expression in Saccharomyces Yeasts. Mol Biotechnol 2016; 59:24-33. [DOI: 10.1007/s12033-016-9991-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Sato TK, Tremaine M, Parreiras LS, Hebert AS, Myers KS, Higbee AJ, Sardi M, McIlwain SJ, Ong IM, Breuer RJ, Avanasi Narasimhan R, McGee MA, Dickinson Q, La Reau A, Xie D, Tian M, Reed JL, Zhang Y, Coon JJ, Hittinger CT, Gasch AP, Landick R. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae. PLoS Genet 2016; 12:e1006372. [PMID: 27741250 PMCID: PMC5065143 DOI: 10.1371/journal.pgen.1006372] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022] Open
Abstract
The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism. The yeast Saccharomyces cerevisiae is being genetically engineered to produce renewable biofuels from sustainable plant material. Efficient biofuel production from plant material requires conversion of the complex suite of sugars found in plant material, including the five-carbon sugar xylose. Because it does not efficiently metabolize xylose, S. cerevisiae has been engineered with a minimal set of genes that should overcome this problem; however, additional genetic changes are required for optimal fermentative conversion of xylose into biofuel. Despite extensive knowledge of the regulatory networks controlling glucose metabolism, less is known about the regulation of xylose metabolism and how to rewire these networks for effective biofuel production. Here we report genetic mutations that enabled the conversion of xylose into bioethanol by a previously ineffective yeast strain. By comparing altered protein and metabolite abundance within yeast cells containing these mutations, we determined that the mutations synergistically alter metabolic pathways to improve the rate of xylose conversion. One change in a gene with well-characterized aerobic mitochondrial functions was found to play an unexpected role in anaerobic conversion of xylose into ethanol. The results of this work will allow others to rapidly generate yeast strains for the conversion of xylose into biofuels and other products.
Collapse
Affiliation(s)
- Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (TKS); (APG); (RL)
| | - Mary Tremaine
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lucas S. Parreiras
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexander S. Hebert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kevin S. Myers
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alan J. Higbee
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Maria Sardi
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sean J. McIlwain
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Irene M. Ong
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rebecca J. Breuer
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ragothaman Avanasi Narasimhan
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mick A. McGee
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Quinn Dickinson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alex La Reau
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dan Xie
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mingyuan Tian
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer L. Reed
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yaoping Zhang
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joshua J. Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Audrey P. Gasch
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (TKS); (APG); (RL)
| | - Robert Landick
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (TKS); (APG); (RL)
| |
Collapse
|
26
|
Torres AF, Slegers PM, Noordam-Boot CMM, Dolstra O, Vlaswinkel L, van Boxtel AJB, Visser RGF, Trindade LM. Maize feedstocks with improved digestibility reduce the costs and environmental impacts of biomass pretreatment and saccharification. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:63. [PMID: 26981155 PMCID: PMC4791978 DOI: 10.1186/s13068-016-0479-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/03/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Despite the recognition that feedstock composition influences biomass conversion efficiency, limited information exists as to how bioenergy crops with reduced recalcitrance can improve the economics and sustainability of cellulosic fuel conversion platforms. We have compared the bioenergy potential-estimated as total glucose productivity per hectare (TGP)-of maize cultivars contrasting for cell wall digestibility across processing conditions of increasing thermochemical severity. In addition, exploratory environmental impact and economic modeling were used to assess whether the development of bioenergy feedstocks with improved cell wall digestibility can enhance the environmental performance and reduce the costs of biomass pretreatment and enzymatic conversion. RESULTS Systematic genetic gains in cell wall degradability can lead to significant advances in the productivity (TGP) of cellulosic fuel biorefineries under low severity processing; only if gains in digestibility are not accompanied by substantial yield penalties. For a hypothetical maize genotype combining the best characteristics available in the evaluated cultivar panel, TGP under mild processing conditions (~3.7 t ha(-1)) matched the highest realizable yields possible at the highest processing severity. Under this scenario, both, the environmental impacts and processing costs for the pretreatment and enzymatic saccharification of maize stover were reduced by 15 %, given lower chemical and heat consumption. CONCLUSIONS Genetic improvements in cell wall composition leading to superior cell wall digestibility can be advantageous for cellulosic fuel production, especially if "less severe" processing regimes are favored for further development. Exploratory results indicate potential cost and environmental impact reductions for the pretreatment and enzymatic saccharification of maize feedstocks exhibiting higher cell wall degradability. Conceptually, these results demonstrate that the advance of bioenergy cultivars with improved biomass degradability can enhance the performance of currently available biomass-to-ethanol conversion systems.
Collapse
Affiliation(s)
- Andres F. Torres
- />Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- />Plant Biotechnology Laboratory (COCIBA), Universidad San Francisco de Quito USFQ, Diego de Robles y Vía Interoceánica, Cumbayá, Ecuador
| | - Petronella M. Slegers
- />Biobased Chemistry and Technology, Wageningen University and Research Centre, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | | | - Oene Dolstra
- />Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | | | - Anton J. B. van Boxtel
- />Biobased Chemistry and Technology, Wageningen University and Research Centre, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Richard G. F. Visser
- />Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Luisa M. Trindade
- />Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
27
|
Saunders LP, Bowman MJ, Mertens JA, Da Silva NA, Hector RE. Triacetic acid lactone production in industrial Saccharomyces yeast strains. ACTA ACUST UNITED AC 2015; 42:711-21. [DOI: 10.1007/s10295-015-1596-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
Abstract
Abstract
Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into 13 industrial yeast strains of varied genetic background. TAL production varied 63-fold between strains when compared in batch culture with glucose. Ethanol, acetate, and glycerol were also tested as potential carbon sources. Batch cultures with ethanol medium produced the highest titers. Therefore, fed-batch cultivation with ethanol feed was assayed for TAL production in bioreactors, producing our highest TAL titer, 5.2 g/L. Higher feed rates resulted in a loss of TAL and subsequent production of additional TAL side products. Finally, TAL efflux was measured and TAL is actively exported from S. cerevisiae cells. Percent yield for all strains was low, indicating that further metabolic engineering of the strains is required.
Collapse
Affiliation(s)
- Lauren P Saunders
- grid.417548.b 0000000404786311 Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service U.S. Department of Agriculture 1815 North University Street 61604 Peoria IL USA
| | - Michael J Bowman
- grid.417548.b 0000000404786311 Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service U.S. Department of Agriculture 1815 North University Street 61604 Peoria IL USA
| | - Jeffrey A Mertens
- grid.417548.b 0000000404786311 Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service U.S. Department of Agriculture 1815 North University Street 61604 Peoria IL USA
| | - Nancy A Da Silva
- grid.266093.8 0000000106687243 Department of Chemical Engineering and Materials Science University of California 92697 Irvine CA USA
| | - Ronald E Hector
- grid.417548.b 0000000404786311 Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service U.S. Department of Agriculture 1815 North University Street 61604 Peoria IL USA
| |
Collapse
|
28
|
Engineering Saccharomyces pastorianus for the co-utilisation of xylose and cellulose from biomass. Microb Cell Fact 2015; 14:61. [PMID: 25928878 PMCID: PMC4417197 DOI: 10.1186/s12934-015-0242-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/08/2015] [Indexed: 01/24/2023] Open
Abstract
Background Lignocellulosic biomass is a viable source of renewable energy for bioethanol production. For the efficient conversion of biomass into bioethanol, it is essential that sugars from both the cellulose and hemicellulose fractions of lignocellulose be utilised. Results We describe the development of a recombinant yeast system for the fermentation of cellulose and xylose, the most abundant pentose sugar in the hemicellulose fraction of biomass. The brewer’s yeast Saccharomyces pastorianus was chosen as a host as significantly higher recombinant enzyme activities are achieved, when compared to the more commonly used S. cerevisiae. When expressed in S. pastorianus, the Trichoderma reesei xylose oxidoreductase pathway was more efficient at alcohol production from xylose than the xylose isomerase pathway. The alcohol yield was influenced by the concentration of xylose in the medium and was significantly improved by the additional expression of a gene encoding for xylulose kinase. The xylose reductase, xylitol dehydrogenase and xylulose kinase genes were co-expressed with genes encoding for the three classes of T. reesei cellulases, namely endoglucanase (EG2), cellobiohydrolysase (CBH2) and β-glucosidase (BGL1). The initial metabolism of xylose by the engineered strains facilitated production of cellulases at fermentation temperatures. The sequential metabolism of xylose and cellulose generated an alcohol yield of 82% from the available sugars. Several different types of biomass, such as the energy crop Miscanthus sinensis and the industrial waste, brewer’s spent grains, were examined as biomass sources for fermentation using the developed yeast strains. Xylose metabolism and cell growth were inhibited in fermentations carried out with acid-treated spent grain liquor, resulting in a 30% reduction in alcohol yield compared to fermentations carried out with mixed sugar substrates. Conclusions Reconstitution of complete enzymatic pathways for cellulose hydrolysis and xylose utilisation in S. pastorianus facilitates the co-fermentation of cellulose and xylose without the need for added exogenous cellulases and provides a basis for the development of a consolidated process for co-utilisation of hemicellulose and cellulose sugars. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0242-4) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Challenges for the production of bioethanol from biomass using recombinant yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:89-125. [PMID: 26003934 DOI: 10.1016/bs.aambs.2015.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lignocellulose biomass, one of the most abundant renewable resources on the planet, is an alternative sustainable energy source for the production of second-generation biofuels. Energy in the form of simple or complex carbohydrates can be extracted from lignocellulose biomass and fermented by microorganisms to produce bioethanol. Despite 40 years of active and cutting-edge research invested into the development of technologies to produce bioethanol from lignocellulosic biomass, the process remains commercially unviable. This review describes the achievements that have been made in generating microorganisms capable of utilizing both simple and complex sugars from lignocellulose biomass and the fermentation of these sugars into ethanol. We also provide a discussion on the current "roadblocks" standing in the way of making second-generation bioethanol a commercially viable alternative to fossil fuels.
Collapse
|
30
|
Khattab SMR, Kodaki T. Efficient bioethanol production by overexpression of endogenous Saccharomyces cerevisiae xylulokinase and NADPH-dependent aldose reductase with mutated strictly NADP+-dependent Pichia stipitis xylitol dehydrogenase. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. PLoS One 2014; 9:e107499. [PMID: 25222864 PMCID: PMC4164640 DOI: 10.1371/journal.pone.0107499] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/23/2014] [Indexed: 12/30/2022] Open
Abstract
The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH.
Collapse
|
32
|
Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab Eng 2014; 25:20-9. [DOI: 10.1016/j.ymben.2014.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/07/2014] [Accepted: 06/04/2014] [Indexed: 12/24/2022]
|
33
|
Engineering redox balance through cofactor systems. Trends Biotechnol 2014; 32:337-43. [DOI: 10.1016/j.tibtech.2014.04.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/26/2014] [Accepted: 04/02/2014] [Indexed: 12/12/2022]
|
34
|
Kricka W, Fitzpatrick J, Bond U. Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective. Front Microbiol 2014; 5:174. [PMID: 24795706 PMCID: PMC4001029 DOI: 10.3389/fmicb.2014.00174] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/31/2014] [Indexed: 11/13/2022] Open
Abstract
This review focuses on current approaches to metabolic engineering of ethanologenic yeast species for the production of bioethanol from complex lignocellulose biomass sources. The experimental strategies for the degradation of the cellulose and xylose-components of lignocellulose are reviewed. Limitations to the current approaches are discussed and novel solutions proposed.
Collapse
Affiliation(s)
- William Kricka
- School of Genetics and Microbiology, Department of Microbiology, Trinity College Dublin Dublin, Ireland
| | - James Fitzpatrick
- School of Genetics and Microbiology, Department of Microbiology, Trinity College Dublin Dublin, Ireland
| | - Ursula Bond
- School of Genetics and Microbiology, Department of Microbiology, Trinity College Dublin Dublin, Ireland
| |
Collapse
|
35
|
Mumm RH, Goldsmith PD, Rausch KD, Stein HH. Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:61. [PMID: 24725504 PMCID: PMC4022103 DOI: 10.1186/1754-6834-7-61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/19/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). RESULTS Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles substitutes at a higher rate for soybean meal, oil replacement requirements intensify and positively feedback to elevate estimates of land usage. CONCLUSIONS Accounting for anticipated technological changes in the corn ethanol system is important for understanding the associated land base ascribed, and may aid in calibrating parameters for land use models in biofuel life-cycle analyses.
Collapse
Affiliation(s)
- Rita H Mumm
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Peter D Goldsmith
- Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kent D Rausch
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hans H Stein
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
36
|
Gowtham YK, Miller KP, Hodge DB, Henson JM, Harcum SW. Novel two-stage fermentation process for bioethanol production usingSaccharomyces pastorianus. Biotechnol Prog 2014; 30:300-10. [DOI: 10.1002/btpr.1850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 12/03/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Yogender Kumar Gowtham
- Dept. of Bioengineering; Clemson University; 301 Rhodes Research Center; Clemson SC 29634
| | | | - David B. Hodge
- Dept. of Chemical Engineering and Materials Science; Michigan State University; East Lansing MI 48824
- Dept. of Biosystems & Agricultural Engineering; Michigan State University; East Lansing MI 48824
- DOE Great Lakes Bioenergy Research Center; Michigan State University; East Lansing MI 48824
- Dept. of Civil; Environmental and Natural Resource Engineering, Luleå University of Technology; Luleå 97752 Sweden
| | | | - Sarah W. Harcum
- Dept. of Bioengineering; Clemson University; 301 Rhodes Research Center; Clemson SC 29634
| |
Collapse
|
37
|
Qureshi N. Integrated Processes for Product Recovery. BIOREFINERIES 2014. [DOI: 10.1016/b978-0-444-59498-3.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
38
|
Harcus D, Dignard D, Lépine G, Askew C, Raymond M, Whiteway M, Wu C. Comparative xylose metabolism among the Ascomycetes C. albicans, S. stipitis and S. cerevisiae. PLoS One 2013; 8:e80733. [PMID: 24236198 PMCID: PMC3827475 DOI: 10.1371/journal.pone.0080733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/07/2013] [Indexed: 11/19/2022] Open
Abstract
The ascomycetes Candida albicans, Saccharomyces cerevisiae and Scheffersomyces stipitis metabolize the pentose sugar xylose very differently. S. cerevisiae fails to grow on xylose, while C. albicans can grow, and S. stipitis can both grow and ferment xylose to ethanol. However, all three species contain highly similar genes that encode potential xylose reductases and xylitol dehydrogenases required to convert xylose to xylulose, and xylulose supports the growth of all three fungi. We have created C. albicans strains deleted for the xylose reductase gene GRE3, the xylitol dehydrogenase gene XYL2, as well as the gre3 xyl2 double mutant. As expected, all the mutant strains cannot grow on xylose, while the single gre3 mutant can grow on xylitol. The gre3 and xyl2 mutants are efficiently complemented by the XYL1 and XYL2 from S. stipitis. Intriguingly, the S. cerevisiae GRE3 gene can complement the Cagre3 mutant, while the ScSOR1 gene can complement the Caxyl2 mutant, showing that S. cerevisiae contains the enzymatic capacity for converting xylose to xylulose. In addition, the gre3 xyl2 double mutant of C. albicans is effectively rescued by the xylose isomerase (XI) gene of either Piromyces or Orpinomyces, suggesting that the XI provides an alternative to the missing oxido-reductase functions in the mutant required for the xylose-xylulose conversion. Overall this work suggests that C. albicans strains engineered to lack essential steps for xylose metabolism can provide a platform for the analysis of xylose metabolism enzymes from a variety of species, and confirms that S. cerevisiae has the genetic potential to convert xylose to xylulose, although non-engineered strains cannot proliferate on xylose as the sole carbon source.
Collapse
Affiliation(s)
- Doreen Harcus
- Biotechnology Research Institute, National Research Council, Montréal, Quebec, Canada
| | - Daniel Dignard
- Biotechnology Research Institute, National Research Council, Montréal, Quebec, Canada
| | | | - Chris Askew
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | - Martine Raymond
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Quebec, Canada
| | - Malcolm Whiteway
- Biotechnology Research Institute, National Research Council, Montréal, Quebec, Canada
- Department of Biology, McGill University, Montréal, Quebec, Canada
- Department of Biology, Concordia University, Montréal, Quebec, Canada
- * E-mail: (MW); (CW)
| | - Cunle Wu
- Biotechnology Research Institute, National Research Council, Montréal, Quebec, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
- * E-mail: (MW); (CW)
| |
Collapse
|
39
|
Kim SR, Park YC, Jin YS, Seo JH. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 2013; 31:851-61. [DOI: 10.1016/j.biotechadv.2013.03.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/23/2013] [Accepted: 03/04/2013] [Indexed: 12/27/2022]
|
40
|
Wang X, Jin M, Balan V, Jones AD, Li X, Li BZ, Dale BE, Yuan YJ. Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors. Biotechnol Bioeng 2013; 111:152-64. [DOI: 10.1002/bit.24992] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xin Wang
- Key Laboratory of Systems Bioengineering; Ministry of Education; Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| | - Mingjie Jin
- Biomass Conversion Research Laboratory (BCRL); Department of Chemical Engineering and Materials Science; Michigan State University; 3900 Collins Road MBI International Building Lansing Michigan 48910
| | - Venkatesh Balan
- Biomass Conversion Research Laboratory (BCRL); Department of Chemical Engineering and Materials Science; Michigan State University; 3900 Collins Road MBI International Building Lansing Michigan 48910
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing Michigan
- Department of Chemistry; Michigan State University; East Lansing Michigan
| | - Xia Li
- Key Laboratory of Systems Bioengineering; Ministry of Education; Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering; Ministry of Education; Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| | - Bruce E. Dale
- Biomass Conversion Research Laboratory (BCRL); Department of Chemical Engineering and Materials Science; Michigan State University; 3900 Collins Road MBI International Building Lansing Michigan 48910
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering; Ministry of Education; Department of Pharmaceutical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 P.R. China
| |
Collapse
|
41
|
Hector RE, Dien BS, Cotta MA, Mertens JA. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:84. [PMID: 23721368 PMCID: PMC3673840 DOI: 10.1186/1754-6834-6-84] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/22/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae strains expressing D-xylose isomerase (XI) produce some of the highest reported ethanol yields from D-xylose. Unfortunately, most bacterial XIs that have been expressed in S. cerevisiae are either not functional, require additional strain modification, or have low affinity for D-xylose. This study analyzed several XIs from rumen and intestinal microorganisms to identify enzymes with improved properties for engineering S. cerevisiae for D-xylose fermentation. RESULTS Four XIs originating from rumen and intestinal bacteria were isolated and expressed in a S. cerevisiae CEN.PK2-1C parental strain primed for D-xylose metabolism by over expression of its native D-xylulokinase. Three of the XIs were functional in S. cerevisiae, based on the strain's ability to grow in D-xylose medium. The most promising strain, expressing the XI mined from Prevotella ruminicola TC2-24, was further adapted for aerobic and fermentative growth by serial transfers of D-xylose cultures under aerobic, and followed by microaerobic conditions. The evolved strain had a specific growth rate of 0.23 h-1 on D-xylose medium, which is comparable to the best reported results for analogous S. cerevisiae strains including those expressing the Piromyces sp. E2 XI. When used to ferment D-xylose, the adapted strain produced 13.6 g/L ethanol in 91 h with a metabolic yield of 83% of theoretical. From analysis of the P. ruminicola XI, it was determined the enzyme possessed a Vmax of 0.81 μmole/min/mg protein and a Km of 34 mM. CONCLUSION This study identifies a new xylose isomerase from the rumen bacterium Prevotella ruminicola TC2-24 that has one of the highest affinities and specific activities compared to other bacterial and fungal D-xylose isomerases expressed in yeast. When expressed in S. cerevisiae and used to ferment D-xylose, very high ethanol yield was obtained. This new XI should be a promising resource for constructing other D-xylose fermenting strains, including industrial yeast genetic backgrounds.
Collapse
Affiliation(s)
- Ronald E Hector
- Bioenergy Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - Bruce S Dien
- Bioenergy Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - Michael A Cotta
- Bioenergy Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - Jeffrey A Mertens
- Bioenergy Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| |
Collapse
|
42
|
Wang Y, San KY, Bennett GN. Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol 2013; 24:994-9. [PMID: 23611567 DOI: 10.1016/j.copbio.2013.03.022] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 11/26/2022]
Abstract
Cofactors provide redox carriers for biosynthetic reactions, catabolic reactions and act as important agents in transfer of energy for the cell. Recent advances in manipulating cofactors include culture conditions or additive alterations, genetic modification of host pathways for increased availability of desired cofactor, changes in enzyme cofactor specificity, and introduction of novel redox partners to form effective circuits for biochemical processes and biocatalysts. Genetic strategies to employ ferredoxin, NADH and NADPH most effectively in natural or novel pathways have improved yield and efficiency of large-scale processes for fuels and chemicals and have been demonstrated with a variety of microbial organisms.
Collapse
Affiliation(s)
- Yipeng Wang
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | | | |
Collapse
|
43
|
Khattab SMR, Saimura M, Kodaki T. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. J Biotechnol 2013; 165:153-6. [PMID: 23578809 DOI: 10.1016/j.jbiotec.2013.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/12/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
Abstract
The xylose-fermenting recombinant Saccharomyces cerevisiae and its improvement have been studied extensively. The redox balance between xylose reductase (XR) and xylitol dehydrogenase (XDH) is thought to be an important factor in effective xylose fermentation. Using protein engineering, we previously successfully reduced xylitol accumulation and improved ethanol production by reversing the dependency of XDH from NAD(+) to NADP(+). We also constructed a set of novel strictly NADPH-dependent XR from Pichia stipitis by site-directed mutagenesis. In the present study, we constructed a set of recombinant S. cerevisiae carrying a novel set of mutated strictly NADPH-dependent XR and NADP(+)-dependent XDH genes with overexpression of endogenous xylulokinase (XK) to study the effects of complete NADPH/NADP(+) recycling on ethanol fermentation and xylitol accumulation. All mutated strains demonstrated reduced xylitol accumulation, ranging 34.4-54.7% compared with the control strain. Moreover, compared with the control strain, the two strains showed 20% and 10% improvement in ethanol production.
Collapse
|
44
|
Molecular Cloning and Overexpression of an Endo-β-1,4-xylanase Gene from Aspergillus niger in Industrial Saccharomyces cerevisiae YS2 Strain. Appl Biochem Biotechnol 2013; 170:320-8. [DOI: 10.1007/s12010-013-0173-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
|
45
|
Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, Jin YS. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One 2013; 8:e57048. [PMID: 23468911 PMCID: PMC3582614 DOI: 10.1371/journal.pone.0057048] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/16/2013] [Indexed: 12/30/2022] Open
Abstract
Economic bioconversion of plant cell wall hydrolysates into fuels and chemicals has been hampered mainly due to the inability of microorganisms to efficiently co-ferment pentose and hexose sugars, especially glucose and xylose, which are the most abundant sugars in cellulosic hydrolysates. Saccharomyces cerevisiae cannot metabolize xylose due to a lack of xylose-metabolizing enzymes. We developed a rapid and efficient xylose-fermenting S. cerevisiae through rational and inverse metabolic engineering strategies, comprising the optimization of a heterologous xylose-assimilating pathway and evolutionary engineering. Strong and balanced expression levels of the XYL1, XYL2, and XYL3 genes constituting the xylose-assimilating pathway increased ethanol yields and the xylose consumption rates from a mixture of glucose and xylose with little xylitol accumulation. The engineered strain, however, still exhibited a long lag time when metabolizing xylose above 10 g/l as a sole carbon source, defined here as xylose toxicity. Through serial-subcultures on xylose, we isolated evolved strains which exhibited a shorter lag time and improved xylose-fermenting capabilities than the parental strain. Genome sequencing of the evolved strains revealed that mutations in PHO13 causing loss of the Pho13p function are associated with the improved phenotypes of the evolved strains. Crude extracts of a PHO13-overexpressing strain showed a higher phosphatase activity on xylulose-5-phosphate (X-5-P), suggesting that the dephosphorylation of X-5-P by Pho13p might generate a futile cycle with xylulokinase overexpression. While xylose consumption rates by the evolved strains improved substantially as compared to the parental strain, xylose metabolism was interrupted by accumulated acetate. Deletion of ALD6 coding for acetaldehyde dehydrogenase not only prevented acetate accumulation, but also enabled complete and efficient fermentation of xylose as well as a mixture of glucose and xylose by the evolved strain. These findings provide direct guidance for developing industrial strains to produce cellulosic fuels and chemicals.
Collapse
Affiliation(s)
- Soo Rin Kim
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jeffrey M. Skerker
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Wei Kang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Anastashia Lesmana
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Na Wei
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Adam P. Arkin
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
46
|
Kondo A, Ishii J, Hara KY, Hasunuma T, Matsuda F. Development of microbial cell factories for bio-refinery through synthetic bioengineering. J Biotechnol 2013; 163:204-16. [DOI: 10.1016/j.jbiotec.2012.05.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/10/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022]
|
47
|
Gu T. Pretreatment of Lignocellulosic Biomass Using Supercritical Carbon Dioxide as a Green Solvent. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2013. [DOI: 10.1007/978-94-007-6052-3_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
48
|
Miller KP, Gowtham YK, Henson JM, Harcum SW. Xylose isomerase improves growth and ethanol production rates from biomass sugars for both Saccharomyces pastorianus and Saccharomyces cerevisiae. Biotechnol Prog 2012; 28:669-80. [PMID: 22866331 DOI: 10.1002/btpr.1535] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion.
Collapse
Affiliation(s)
- Kristen P Miller
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
49
|
Ma TY, Lin TH, Hsu TC, Huang CF, Guo GL, Hwang WS. An improved method of xylose utilization by recombinant Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2012; 39:1477-86. [PMID: 22740288 DOI: 10.1007/s10295-012-1153-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/28/2012] [Indexed: 12/28/2022]
Abstract
The aim of this study was to develop a method to optimize expression levels of xylose-metabolizing enzymes to improve xylose utilization capacity of Saccharomyces cerevisiae. A xylose-utilizing recombinant S. cerevisiae strain YY2KL, able to express nicotinamide adenine dinucleotide phosphate, reduced (NADPH)-dependent xylose reductase (XR), nicotinamide adenine dinucleotide (NAD(+))-dependent xylitol dehydrogenase (XDH), and xylulokinase (XK), showed a low ethanol yield and sugar consumption rate. To optimize xylose utilization by YY2KL, a recombinant expression plasmid containing the XR gene was transformed and integrated into the aur1 site of YY2KL. Two recombinant expression plasmids containing an nicotinamide adenine dinucleotide phosphate (NADP(+))-dependent XDH mutant and XK genes were dually transformed and integrated into the 5S ribosomal DNA (rDNA) sites of YY2KL. This procedure allowed systematic construction of an S. cerevisiae library with different ratios of genes for xylose-metabolizing enzymes, and well-grown colonies with different xylose fermentation capacities could be further selected in yeast protein extract (YPX) medium (1 % yeast extract, 2 % peptone, and 2 % xylose). We successfully isolated a recombinant strain with a superior xylose fermentation capacity and designated it as strain YY5A. The xylose consumption rate for strain YY5A was estimated to be 2.32 g/gDCW/h (g xylose/g dry cell weight/h), which was 2.34 times higher than that for the parent strain YY2KL (0.99 g/gDCW/h). The ethanol yield was also enhanced 1.83 times by this novel method. Optimal ratio and expression levels of xylose-metabolizing enzymes are important for efficient conversion of xylose to ethanol. This study provides a novel method that allows rapid and effective selection of ratio-optimized xylose-utilizing yeast strains. This method may be applicable to other multienzyme systems in yeast.
Collapse
Affiliation(s)
- Tien-Yang Ma
- Cellulosic Ethanol Program, Institute of Nuclear Energy Research, 32546, Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
50
|
Du J, Yuan Y, Si T, Lian J, Zhao H. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 2012; 40:e142. [PMID: 22718979 PMCID: PMC3467037 DOI: 10.1093/nar/gks549] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A major challenge in metabolic engineering and synthetic biology is to balance the flux of an engineered heterologous metabolic pathway to achieve high yield and productivity in a target organism. Here, we report a simple, efficient and programmable approach named ‘customized optimization of metabolic pathways by combinatorial transcriptional engineering (COMPACTER)’ for rapid tuning of gene expression in a heterologous pathway under distinct metabolic backgrounds. Specifically, a library of mutant pathways is created by de novo assembly of promoter mutants of varying strengths for each pathway gene in a target organism followed by high-throughput screening/selection. To demonstrate this approach, a single round of COMPACTER was used to generate both a xylose utilizing pathway with near-highest efficiency and a cellobiose utilizing pathway with highest efficiency that were ever reported in literature for both laboratory and industrial yeast strains. Interestingly, these engineered xylose and cellobiose utilizing pathways were all host-specific. Therefore, COMPACTER represents a powerful approach to tailor-make metabolic pathways for different strain backgrounds, which is difficult if not impossible to achieve by existing pathway engineering methods.
Collapse
Affiliation(s)
- Jing Du
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|