1
|
Krishna J, Subash Chandra Bose K, Varadharaj S, Sankaranarayanan M. A metabolic-engineering framework approach via fed-batch fermentation for enhancing glucaric acid production in Komagataella phaffii. Enzyme Microb Technol 2025; 187:110627. [PMID: 40101541 DOI: 10.1016/j.enzmictec.2025.110627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Glucaric acid (D-saccharic acid) is an organic compound belonging to glucuronic acid derivatives, whose commercial synthesis involves the use of hazardous solvents. Biosynthetic production in Saccharomyces cerevisiae has limitations, such as ethanolic fermentation, redox strategy limitations, and low pH toxicity. Komagataella phaffii (K. phaffii) formly known Pichia pastoris, an alternative and robust engineerable organism, is a promising biotransformation agent for glucaric acid production. However, K. phaffii lacks native biosynthetic pathways for glucaric acid synthesis at the industrial scale. There is no proof-of-concept glucaric acid production system. Therefore, gene expression profiling-based metabolic engineering of glucaric acid producing gene cassette was performed using in-fusion cloning. Product production was enhanced using fed-batch fermentation of the key metabolite, myo-inositol; this improved the yield of glucaric acid. The expression was optimized through cofactor recycling and codon optimization for the UDH gene. Fed-batch fermentation with mixed supplementation (Myo-inositol + Monosodium glutamate) as substrate in engineered K. phaffii (X33-GA) enhanced glucaric acid synthesis to 17.6 g/L. In addition, we present simple HPLC and LC-MS techniques for quantifying glucaric acid and its precursors in the fermentation samples. The proof-of-concept results from both shake flask and bioreactor studies provide a unique perspective on sustainable, cost-effective, and green technological alternatives for glucaric acid synthesis.
Collapse
Affiliation(s)
| | | | - Sindhu Varadharaj
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu 600025, India
| | | |
Collapse
|
2
|
Tan SI, Liu Z, Tran VG, Martin TA, Zhao H. Issatchenkia orientalis as a platform organism for cost-effective production of organic acids. Metab Eng 2025; 89:12-21. [PMID: 39954846 DOI: 10.1016/j.ymben.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Driven by the urgent need to reduce the reliance on fossil fuels and mitigate environmental impacts, microbial cell factories capable of producing value-added products from renewable resources have gained significant attention over the past few decades. Notably, non-model yeasts with unique physiological characteristics have emerged as promising candidates for industrial applications, particularly for the production of organic acids. Among them, Issatchenkia orientalis stands out for its exceptional natural tolerance to low pH and high osmotic pressure, traits that are critical for overcoming the limitations of conventional microbial organisms. The acid tolerance of I. orientalis enables organic acid production under low pH conditions, bypassing the need for expensive neutral pH control typically required in conventional processes. Organic acids produced by I. orientalis, such as lactic acid, succinic acid, and itaconic acid, are widely used as building blocks for bioplastics, food additives, and pharmaceuticals. This review summarizes the key findings from systems biology studies on I. orientalis over the past two decades, providing insights into its unique metabolic and physiological traits. Advances in genetic tool development for this non-model yeast are also discussed, enabling targeted metabolic engineering to enhance its production capabilities. Additionally, case studies are highlighted to illustrate the potential of I. orientalis as a platform organism. Finally, the remaining challenges and future directions are addressed to further develop I. orientalis into a robust and versatile microbial cell factory for sustainable biomanufacturing.
Collapse
Affiliation(s)
- Shih-I Tan
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| | - Zijun Liu
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| | - Vinh Gia Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| | - Teresa Anne Martin
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
3
|
Tang AY, Gonzalez CL, Mantri KA, Lalwani MA, Avalos JL. Anti-Pdc1p Nanobody as a Genetically Encoded Inhibitor of Ethanol Production Enables Dual Transcriptional and Post-translational Controls of Yeast Fermentations. ACS Synth Biol 2025; 14:1072-1083. [PMID: 40098243 DOI: 10.1021/acssynbio.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Microbial fermentation provides a sustainable method of producing valuable chemicals. Adding dynamic control to fermentations can significantly improve titers, but most systems rely on transcriptional controls of metabolic enzymes, leaving existing intracellular enzymes unregulated. This limits the ability of transcriptional controls to switch off metabolic pathways, especially when metabolic enzymes have long half-lives. We developed a two-layer transcriptional/post-translational control system for yeast fermentations. Specifically, the system uses blue light to transcriptionally activate the major pyruvate decarboxylase PDC1, required for cell growth and concomitant ethanol production. Switching to darkness transcriptionally inactivates PDC1 and instead activates the anti-Pdc1p nanobody, NbJRI, to act as a genetically encoded inhibitor of Pdc1p accumulated during the growth phase. This dual transcriptional/post-translational control improves the production of 2,3-BDO and citramalate by up to 100 and 92% compared to using transcriptional controls alone in dynamic two-phase fermentations. This study establishes the NbJRI nanobody as an effective genetically encoded inhibitor of Pdc1p that can enhance the production of pyruvate-derived chemicals.
Collapse
Affiliation(s)
- Allison Y Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Christopher L Gonzalez
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Krishi A Mantri
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Makoto A Lalwani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Feng C, Chen J, Ye W, Wang Z. Nitrile hydratase as a promising biocatalyst: recent advances and future prospects. Biotechnol Lett 2024; 46:1171-1185. [PMID: 39269672 DOI: 10.1007/s10529-024-03530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Amides are an important type of synthetic intermediate used in the chemical, agrochemical, pharmaceutical, and nutraceutical industries. The traditional chemical process of converting nitriles into the corresponding amides is feasible but is restricted because of the harsh conditions required. In recent decades, nitrile hydratase (NHase, EC 4.2.1.84) has attracted considerable attention because of its application in nitrile transformation as a prominent biocatalyst. In this review, we provide a comprehensive survey of recent advances in NHase research in terms of natural distribution, enzyme screening, and molecular modification on the basis of its characteristics and catalytic mechanism. Additionally, industrial applications and recent significant biotechnology advances in NHase bioengineering and immobilization techniques are systematically summarized. Moreover, the current challenges and future perspectives for its further development in industrial applications for green chemistry were also discussed. This study contributes to the current state-of-the-art, providing important technical information for new NHase applications in manufacturing industries.
Collapse
Affiliation(s)
- Chao Feng
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jing Chen
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Wenxin Ye
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Zhanshi Wang
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Li H, Zhang S, Dong Z, Shan X, Zhou J, Zeng W. De Novo Biosynthesis of Dihydroquercetin in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19436-19446. [PMID: 39180741 DOI: 10.1021/acs.jafc.4c05546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Dihydroquercetin is a vital flavonoid compound with a wide range of physiological activities. However, factors, such as metabolic regulation, limit the heterologous synthesis of dihydroquercetin in microorganisms. In this study, flavanone 3-hydroxylase (F3H) and flavanone 3'-hydroxylase (F3'H) were screened from different plants, and their co-expression in Saccharomyces cerevisiae was optimized. Promoter engineering and redox partner engineering were used to optimize the corresponding expression of genes involved in the dihydroquercetin synthesis pathway. Dihydroquercetin production was further improved through multicopy integration pathway genes and systems metabolic engineering. By increasing NADPH and α-ketoglutarate supply, the catalytic efficiency of F3'H and F3H was improved, thereby effectively increasing dihydroquercetin production (235.1 mg/L). Finally, 873.1 mg/L dihydroquercetin titer was obtained by fed-batch fermentation in a 5-L bioreactor, which is the highest dihydroquercetin production achieved through de novo microbial synthesis. These results established a pivotal groundwork for flavonoids synthesis.
Collapse
Affiliation(s)
- Hongbiao Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuai Zhang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zilong Dong
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoyu Shan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
6
|
Tom G, Schmid SP, Baird SG, Cao Y, Darvish K, Hao H, Lo S, Pablo-García S, Rajaonson EM, Skreta M, Yoshikawa N, Corapi S, Akkoc GD, Strieth-Kalthoff F, Seifrid M, Aspuru-Guzik A. Self-Driving Laboratories for Chemistry and Materials Science. Chem Rev 2024; 124:9633-9732. [PMID: 39137296 PMCID: PMC11363023 DOI: 10.1021/acs.chemrev.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Self-driving laboratories (SDLs) promise an accelerated application of the scientific method. Through the automation of experimental workflows, along with autonomous experimental planning, SDLs hold the potential to greatly accelerate research in chemistry and materials discovery. This review provides an in-depth analysis of the state-of-the-art in SDL technology, its applications across various scientific disciplines, and the potential implications for research and industry. This review additionally provides an overview of the enabling technologies for SDLs, including their hardware, software, and integration with laboratory infrastructure. Most importantly, this review explores the diverse range of scientific domains where SDLs have made significant contributions, from drug discovery and materials science to genomics and chemistry. We provide a comprehensive review of existing real-world examples of SDLs, their different levels of automation, and the challenges and limitations associated with each domain.
Collapse
Affiliation(s)
- Gary Tom
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
| | - Stefan P. Schmid
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
| | - Sterling G. Baird
- Acceleration
Consortium, 80 St. George
St, Toronto, Ontario M5S 3H6, Canada
| | - Yang Cao
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Acceleration
Consortium, 80 St. George
St, Toronto, Ontario M5S 3H6, Canada
| | - Kourosh Darvish
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
- Acceleration
Consortium, 80 St. George
St, Toronto, Ontario M5S 3H6, Canada
| | - Han Hao
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Acceleration
Consortium, 80 St. George
St, Toronto, Ontario M5S 3H6, Canada
| | - Stanley Lo
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
| | - Sergio Pablo-García
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
| | - Ella M. Rajaonson
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
| | - Marta Skreta
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
| | - Naruki Yoshikawa
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
| | - Samantha Corapi
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
| | - Gun Deniz Akkoc
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
for Renewable Energy Erlangen-Nürnberg, Cauerstr. 1, 91058 Erlangen, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Felix Strieth-Kalthoff
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- School of
Mathematics and Natural Sciences, University
of Wuppertal, Gaußstraße
20, 42119 Wuppertal, Germany
| | - Martin Seifrid
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695, United States of America
| | - Alán Aspuru-Guzik
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
- Acceleration
Consortium, 80 St. George
St, Toronto, Ontario M5S 3H6, Canada
- Department
of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department
of Materials Science & Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
- Lebovic
Fellow, Canadian Institute for Advanced
Research (CIFAR), 661
University Ave, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
7
|
Zhou W, Ding W, Wu X, Sun J, Bai W. Microbial synthesis of anthocyanins and pyranoanthocyanins: current bottlenecks and potential solutions. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38935054 DOI: 10.1080/10408398.2024.2369703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Anthocyanins (ACNs) are secondary metabolites found in plants. Due to their impressive biological activities, ACNs have gained significant popularity and extensive application within the food, pharmaceutical, and nutraceutical industries. A derivative of ACNs: pyranoanthocyanins (PACNs) possesses more stable properties and interesting biological activities. However, conventional methods for the production of ACNs, including chemical synthesis and plant extraction, involve organic solvents. Microbial synthesis of ACNs from renewable biomass, such as amino acids or flavonoids, is considered a sustainable and environmentally friendly method for large-scale production of ACNs. Recently, the construction of microbial cell factories (MCFs) for the efficient biosynthesis of ACNs and PACNs has attracted much attention. In this review, we summarize the cases of microbial synthesis of ACNs, and analyze the bottlenecks in reconstructing the metabolic pathways for synthesizing PACNs in microorganisms. Consequently, there is an urgent need to investigate the mechanisms behind the development of MCFs for PACNs synthesis. Such research also holds significant promise for advancing the production of food pigments. Meanwhile, we propose potential solutions to the bottleneck problem based on metabolic engineering and enzyme engineering. Finally, the development prospects of natural food and biotechnology are discussed.
Collapse
Affiliation(s)
- Weijie Zhou
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Weiqiu Ding
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, Guangdong, China
| | - Xingyuan Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Jianxia Sun
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangdong, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| |
Collapse
|
8
|
Wu D, Xu F, Xu Y, Huang M, Li Z, Chu J. Towards a hybrid model-driven platform based on flux balance analysis and a machine learning pipeline for biosystem design. Synth Syst Biotechnol 2024; 9:33-42. [PMID: 38234412 PMCID: PMC10793177 DOI: 10.1016/j.synbio.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic modeling and machine learning (ML) are crucial components of the evolving next-generation tools in systems and synthetic biology, aiming to unravel the intricate relationship between genotype, phenotype, and the environment. Nonetheless, the comprehensive exploration of integrating these two frameworks, and fully harnessing the potential of fluxomic data, remains an unexplored territory. In this study, we present, rigorously evaluate, and compare ML-based techniques for data integration. The hybrid model revealed that the overexpression of six target genes and the knockout of seven target genes contribute to enhanced ethanol production. Specifically, we investigated the influence of succinate dehydrogenase (SDH) on ethanol biosynthesis in Saccharomyces cerevisiae through shake flask experiments. The findings indicate a noticeable increase in ethanol yield, ranging from 6 % to 10 %, in SDH subunit gene knockout strains compared to the wild-type strain. Moreover, in pursuit of a high-yielding strain for ethanol production, dual-gene deletion experiments were conducted targeting glycerol-3-phosphate dehydrogenase (GPD) and SDH. The results unequivocally demonstrate significant enhancements in ethanol production for the engineered strains Δsdh4Δgpd1, Δsdh5Δgpd1, Δsdh6Δgpd1, Δsdh4Δgpd2, Δsdh5Δgpd2, and Δsdh6Δgpd2, with improvements of 21.6 %, 27.9 %, and 22.7 %, respectively. Overall, the results highlighted that integrating mechanistic flux features substantially improves the prediction of gene knockout strains not accounted for in metabolic reconstructions. In addition, the finding in this study delivers valuable tools for comprehending and manipulating intricate phenotypes, thereby enhancing prediction accuracy and facilitating deeper insights into mechanistic aspects within the field of synthetic biology.
Collapse
Affiliation(s)
| | | | - Yaying Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Mingzhi Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
9
|
Hassan Z, Westerhoff HV. Arsenic Contamination of Groundwater Is Determined by Complex Interactions between Various Chemical and Biological Processes. TOXICS 2024; 12:89. [PMID: 38276724 PMCID: PMC11154318 DOI: 10.3390/toxics12010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
At a great many locations worldwide, the safety of drinking water is not assured due to pollution with arsenic. Arsenic toxicity is a matter of both systems chemistry and systems biology: it is determined by complex and intertwined networks of chemical reactions in the inanimate environment, in microbes in that environment, and in the human body. We here review what is known about these networks and their interconnections. We then discuss how consideration of the systems aspects of arsenic levels in groundwater may open up new avenues towards the realization of safer drinking water. Along such avenues, both geochemical and microbiological conditions can optimize groundwater microbial ecology vis-à-vis reduced arsenic toxicity.
Collapse
Affiliation(s)
- Zahid Hassan
- Department of Molecular Cell Biology, A-Life, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka 1100, Bangladesh
| | - Hans V. Westerhoff
- Department of Molecular Cell Biology, A-Life, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Stellenbosch Institute of Advanced Studies (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
10
|
Galindo-Rodriguez GR, Santoyo-Garcia JH, Rios-Solis L, Dimartino S. In situ recovery of taxadiene using solid adsorption in cultivations with Saccharomyces cerevisiae. Prep Biochem Biotechnol 2024; 54:86-94. [PMID: 37162336 DOI: 10.1080/10826068.2023.2207204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this study, an engineered strain of Saccharomyces cerevisiae was used to produce taxadiene, a precursor in the biosynthetic pathway of the anticancer drug paclitaxel. Taxadiene was recovered in situ with the polymeric adsorbent Diaion © HP-20. Here we tested two bioreactor configurations and adsorbent concentrations to maximize the production and recovery of taxadiene. An external recovery configuration (ERC) was performed with the integration of an expanded bed adsorption column, whereas the internal recovery configuration (IRC) consisted in dispersed beads inside the bioreactor vessel. Taxadiene titers recovered in IRC were higher to ERC by 3.4 and 3.5 fold by using 3% and 12% (w/v) adsorbent concentration respectively. On the other hand, cell growth kinetics were faster in ERC which represents an advantage in productivity (mg of taxadiene/L*h). High resin bead concentration (12% w/v) improved the partition of taxadiene onto the beads up to 98%. This result represents an advantage over previous studies using a 3% resin concentration where the partition of taxadiene on the beads was around 50%. This work highlights the potential of in situ product recovery to improve product partition, reduce processing steps and promote cell growth. Nevertheless, a careful design of bioreactor configuration and process conditions is critical.
Collapse
Affiliation(s)
| | - Jorge H Santoyo-Garcia
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK
- Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK
- Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| | - Simone Dimartino
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
11
|
Zhou J, Huang D, Liu C, Hu Z, Li H, Lou S. Research Progress in Heterologous Crocin Production. Mar Drugs 2023; 22:22. [PMID: 38248646 PMCID: PMC10820313 DOI: 10.3390/md22010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Crocin is one of the most valuable components of the Chinese medicinal plant Crocus sativus and is widely used in the food, cosmetics, and pharmaceutical industries. Traditional planting of C. sativus is unable to fulfill the increasing demand for crocin in the global market, however, such that researchers have turned their attention to the heterologous production of crocin in a variety of hosts. At present, there are reports of successful heterologous production of crocin in Escherichia coli, Saccharomyces cerevisiae, microalgae, and plants that do not naturally produce crocin. Of these, the microalga Dunaliella salina, which produces high levels of β-carotene, the substrate for crocin biosynthesis, is worthy of attention. This article describes the biosynthesis of crocin, compares the features of each heterologous host, and clarifies the requirements for efficient production of crocin in microalgae.
Collapse
Affiliation(s)
- Junjie Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
| | - Danqiong Huang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
| | - Chenglong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Hui Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Sulin Lou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (J.Z.); (D.H.); (C.L.); (Z.H.); (H.L.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
12
|
Feng Q, Ning X, Qin L, Li J, Li C. Quantitative and modularized CRISPR/dCas9-dCpf1 dual function system in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2023; 11:1218832. [PMID: 38026848 PMCID: PMC10666755 DOI: 10.3389/fbioe.2023.1218832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Both CRISPR/dCas9 and CRISPR/dCpf1 genome editing systems have shown exciting promises in modulating yeast cell metabolic pathways. However, each system has its deficiencies to overcome. In this study, to achieve a compensatory effect, we successfully constructed a dual functional CRISPR activation/inhibition (CRISPRa/i) system based on Sp-dCas9 and Fn-dCpf1 proteins, along with their corresponding complementary RNAs. Methods: We validated the high orthogonality and precise quantity targeting of selected yeast promoters. Various activating effector proteins (VP64, p65, Rta, and VP64-p65-Rta) and inhibiting effector proteins (KRAB, MeCP2, and KRAB-MeCP2), along with RNA scaffolds of MS2, PP7 and crRNA arrays were implemented in different combinations to investigate quantitative promoter strength. In the CRISPR/dCas9 system, the regulation rate ranged from 81.9% suppression to 627% activation in the mCherry gene reporter system. Studies on crRNA point mutations and crRNA arrays were conducted in the CRISPR/dCpf1 system, with the highest transcriptional inhibitory rate reaching up to 530% higher than the control. Furthermore, the orthogonal CRISPR/dCas9-dCpf1 inhibition system displayed distinct dual functions, simultaneously regulating the mCherry gene by dCas9/gRNA (54.6% efficiency) and eGFP gene by dCpf1/crRNA (62.4% efficiency) without signal crosstalk. Results and discussion: Finally, we established an engineered yeast cell factory for β-carotene production using the CRISPR/dCas9-dCpf1 bifunctional system to achieve targeted modulation of both heterologous and endogenous metabolic pathways in Saccharomyces cerevisiae. The system includes an activation module of CRISPRa/dCas9 corresponding to a gRNA-protein complex library of 136 plasmids, and an inhibition module of CRISPRi/dCpf1 corresponding to a small crRNA array library. Results show that this CRISPR/dCas9-dCpf1 bifunctional orthogonal system is more quantitatively effective and expandable for simultaneous CRISPRa/i network control compared to single-guide edition, demonstrating higher potential of future application in yeast biotechnology.
Collapse
Affiliation(s)
- Qing Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, China
| | - Xiaoyu Ning
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, China
| | - Lei Qin
- Key Lab for Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| | - Jun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Lab for Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Zhao W, Liu M, Liu K, Liu H, Liu X, Liu J. An Enzymatic Strategy for the Selective Methylation of High-Value-Added Tetrahydroprotoberberine Alkaloids. Int J Mol Sci 2023; 24:15214. [PMID: 37894895 PMCID: PMC10607743 DOI: 10.3390/ijms242015214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Tetrahydroprotoberberines (THPBs) are plant-specific alkaloids with significant medicinal value. They are present in trace amounts in plants and are difficult to chemically synthesize due to stereoselectivity and an unfavorable environment. In this study, a selective methylation strategy was developed for the biocatalysis of seven high-value-added THPB compounds using 4'-O-methyltransferase (Cj4'OMT), norcoclaurine 6-O-methyltransferase (Cj6OMT), and (S)-scoulerine 9-O-methyltransferase (SiSOMT and PsSOMT) in engineered E. coli. The methyltransferases Cj4'OMT, Cj6OMT, PsSOMT, and SiSOMT were expressed heterologously in E. coli. Compound 1 (10-methoxy-2,3,9-tetrahydroxyberbine) was synthesized using the recombinant E. coli strain Cj4'OMT and the substrate 2,3,9,10-tetrahydroxyberbine. Compound 2 (9-methoxy-2,3,10-tetrahydroxyberbine) was produced in the recombinant Escherichia coli (E. coli) strain PsSOMT, and compounds 2 and 3 (discretamine) were produced in the recombinant E. coli strain SiSOMT. Compounds 4 (9,10-methoxy-2,3-tetrahydroxyberbine) and 5 (corypalmine) were obtained by co-culturing the recombinant strains Cj4'OMT and SiSOMT with substrate. Compounds 6 (scoulerine) and 7 (isoscoulerine) were produced by co-culturing the substrate with the recombinant strains Cj4'OMT and Cj6OMT. To increase the yield of novel compound 2, the flask culture conditions of the engineered SiSOMT strain were optimized, resulting in the production of 165.74 mg/L of this compound. This study thus presents an enzymatic approach to the synthesis of high-value-added THPBs with minimum environmental wastage.
Collapse
Affiliation(s)
- Wanli Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Manyu Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Kemeng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Hanqing Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Xiufeng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jihua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
14
|
Wu Y, Feng S, Sun Z, Hu Y, Jia X, Zeng B. An outlook to sophisticated technologies and novel developments for metabolic regulation in the Saccharomyces cerevisiae expression system. Front Bioeng Biotechnol 2023; 11:1249841. [PMID: 37869712 PMCID: PMC10586203 DOI: 10.3389/fbioe.2023.1249841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023] Open
Abstract
Saccharomyces cerevisiae is one of the most extensively used biosynthetic systems for the production of diverse bioproducts, especially biotherapeutics and recombinant proteins. Because the expression and insertion of foreign genes are always impaired by the endogenous factors of Saccharomyces cerevisiae and nonproductive procedures, various technologies have been developed to enhance the strength and efficiency of transcription and facilitate gene editing procedures. Thus, the limitations that block heterologous protein secretion have been overcome. Highly efficient promoters responsible for the initiation of transcription and the accurate regulation of expression have been developed that can be precisely regulated with synthetic promoters and double promoter expression systems. Appropriate codon optimization and harmonization for adaption to the genomic codon abundance of S. cerevisiae are expected to further improve the transcription and translation efficiency. Efficient and accurate translocation can be achieved by fusing a specifically designed signal peptide to an upstream foreign gene to facilitate the secretion of newly synthesized proteins. In addition to the widely applied promoter engineering technology and the clear mechanism of the endoplasmic reticulum secretory pathway, the innovative genome editing technique CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated system) and its derivative tools allow for more precise and efficient gene disruption, site-directed mutation, and foreign gene insertion. This review focuses on sophisticated engineering techniques and emerging genetic technologies developed for the accurate metabolic regulation of the S. cerevisiae expression system.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Tran VG, Mishra S, Bhagwat SS, Shafaei S, Shen Y, Allen JL, Crosly BA, Tan SI, Fatma Z, Rabinowitz JD, Guest JS, Singh V, Zhao H. An end-to-end pipeline for succinic acid production at an industrially relevant scale using Issatchenkia orientalis. Nat Commun 2023; 14:6152. [PMID: 37788990 PMCID: PMC10547785 DOI: 10.1038/s41467-023-41616-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Microbial production of succinic acid (SA) at an industrially relevant scale has been hindered by high downstream processing costs arising from neutral pH fermentation for over three decades. Here, we metabolically engineer the acid-tolerant yeast Issatchenkia orientalis for SA production, attaining the highest titers in sugar-based media at low pH (pH 3) in fed-batch fermentations, i.e. 109.5 g/L in minimal medium and 104.6 g/L in sugarcane juice medium. We further perform batch fermentation using sugarcane juice medium in a pilot-scale fermenter (300×) and achieve 63.1 g/L of SA, which can be directly crystallized with a yield of 64.0%. Finally, we simulate an end-to-end low-pH SA production pipeline, and techno-economic analysis and life cycle assessment indicate our process is financially viable and can reduce greenhouse gas emissions by 34-90% relative to fossil-based production processes. We expect I. orientalis can serve as a general industrial platform for production of organic acids.
Collapse
Affiliation(s)
- Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Somesh Mishra
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sarang S Bhagwat
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Saman Shafaei
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yihui Shen
- Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Jayne L Allen
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Benjamin A Crosly
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shih-I Tan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zia Fatma
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Jeremy S Guest
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Vijay Singh
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Mohammed Y, Ye D, He M, Wang H, Zhu Z, Sun Y. Production of Astaxanthin by Animal Cells via Introduction of an Entire Astaxanthin Biosynthetic Pathway. Bioengineering (Basel) 2023; 10:1073. [PMID: 37760175 PMCID: PMC10525450 DOI: 10.3390/bioengineering10091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Astaxanthin is a fascinating molecule with powerful antioxidant activity, synthesized exclusively by specific microorganisms and higher plants. To expand astaxanthin production, numerous studies have employed metabolic engineering to introduce and optimize astaxanthin biosynthetic pathways in microorganisms and plant hosts. Here, we report the metabolic engineering of animal cells in vitro to biosynthesize astaxanthin. This was accomplished through a two-step study to introduce the entire astaxanthin pathway into human embryonic kidney cells (HEK293T). First, we introduced the astaxanthin biosynthesis sub-pathway (Ast subp) using several genes encoding β-carotene ketolase and β-carotene hydroxylase enzymes to synthesize astaxanthin directly from β-carotene. Next, we introduced a β-carotene biosynthesis sub-pathway (β-Car subp) with selected genes involved in Ast subp to synthesize astaxanthin from geranylgeranyl diphosphate (GGPP). As a result, we unprecedentedly enabled HEK293T cells to biosynthesize free astaxanthin from GGPP with a concentration of 41.86 µg/g dry weight (DW), which represented 66.19% of the total ketocarotenoids (63.24 µg/g DW). Through optimization steps using critical factors in the astaxanthin biosynthetic process, a remarkable 4.14-fold increase in total ketocarotenoids (262.10 µg/g DW) was achieved, with astaxanthin constituting over 88.82%. This pioneering study holds significant implications for transgenic animals, potentially revolutionizing the global demand for astaxanthin, particularly within the aquaculture sector.
Collapse
Affiliation(s)
- Yousef Mohammed
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.M.); (D.Y.); (M.H.); (H.W.); (Z.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.M.); (D.Y.); (M.H.); (H.W.); (Z.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.M.); (D.Y.); (M.H.); (H.W.); (Z.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.M.); (D.Y.); (M.H.); (H.W.); (Z.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.M.); (D.Y.); (M.H.); (H.W.); (Z.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.M.); (D.Y.); (M.H.); (H.W.); (Z.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| |
Collapse
|
17
|
Trujillo Rodríguez L, Ellington AJ, Reisch CR, Chevrette MG. CRISPR-Associated Transposase for Targeted Mutagenesis in Diverse Proteobacteria. ACS Synth Biol 2023. [PMID: 37368499 PMCID: PMC10367135 DOI: 10.1021/acssynbio.3c00065] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Genome editing tools, through the disruption of an organism's native genetic material or the introduction of non-native DNA, facilitate functional investigations to link genotypes to phenotypes. Transposons have been instrumental genetic tools in microbiology, enabling genome-wide, randomized disruption of genes and insertions of new genetic elements. Due to this randomness, identifying and isolating particular transposon mutants (i.e., those with modifications at a genetic locus of interest) can be laborious, often requiring one to sift through hundreds or thousands of mutants. Programmable, site-specific targeting of transposons became possible with recently described CRISPR-associated transposase (CASTs) systems, allowing the streamlined recovery of desired mutants in a single step. Like other CRISPR-derived systems, CASTs can be programmed by guide-RNA that is transcribed from short DNA sequence(s). Here, we describe a CAST system and demonstrate its function in bacteria from three classes of Proteobacteria. A dual plasmid strategy is demonstrated: (i) CAST genes are expressed from a broad-host-range replicative plasmid and (ii) guide-RNA and transposon are encoded on a high-copy, suicidal pUC plasmid. Using our CAST system, single-gene disruptions were performed with on-target efficiencies approaching 100% in Beta- and Gammaproteobacteria (Burkholderia thailandensis and Pseudomonas putida, respectively). We also report a peak efficiency of 45% in the Alphaproteobacterium Agrobacterium fabrum. In B. thailandensis, we performed simultaneous co-integration of transposons at two different target sites, demonstrating CAST's utility in multilocus strategies. The CAST system is also capable of high-efficiency large transposon insertion totaling over 11 kbp in all three bacteria tested. Lastly, the dual plasmid system allowed for iterative transposon mutagenesis in all three bacteria without loss of efficiency. Given these iterative capabilities and large payload capacity, this system will be helpful for genome engineering experiments across several fields of research.
Collapse
Affiliation(s)
- Lidimarie Trujillo Rodríguez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Adam J Ellington
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Christopher R Reisch
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Marc G Chevrette
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
- University of Florida Genetics Institute, Gainesville, Florida 32610, United States
| |
Collapse
|
18
|
Pathiraja D, Park B, Kim B, Stougaard P, Choi IG. Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes. ACS Synth Biol 2023; 12:1782-1793. [PMID: 37265394 DOI: 10.1021/acssynbio.3c00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Marine red algal biomass is a promising feedstock for sustainable production of value-added chemicals. However, the major constituents of red algal biomass, such as agar and carrageenan, are not easily assimilated by most industrial metabolic chassis developed to date. Synthetic biology offers a solution by utilizing nonmodel organisms as metabolic chassis for consolidated biological processes. In this study, the marine heterotrophic bacterium Pseudoalteromonas atlantica T6c was harnessed as a metabolic chassis to produce value-added chemicals from the affordable red algal galactans or agaropectin, a byproduct of industrial agarose production. To construct a heterologous gene expression device in P. atlantica T6c, promoters related to agar metabolism were screened from the differentially expressed genes using RNA-Seq analysis. The expression device was built and tested with selected promoters fused to a reporter gene and tuned by incorporation of a cognate repressor predicted from the agar-specific polysaccharide utilization locus. The feasibility of the marine bacterial metabolic chassis was examined by introducing the biosynthetic gene clusters of β-carotene and violacein. Our results demonstrate that the metabolic chassis platform enables direct conversion of low-cost red algal galactans or industrial waste agaropectin into valuable bioactive pigments without any pretreatment of biomass. The developed marine bacterial chassis could potentially be used in a biorefinery framework to produce value-added chemicals from marine algal galactans.
Collapse
Affiliation(s)
- Duleepa Pathiraja
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Byeonghyeok Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Bogun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Peter Stougaard
- Department of Environmental Sciences, Aarhus University, DK-4000, Rockslide, Denmark
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
19
|
Park JH, Bassalo MC, Lin GM, Chen Y, Doosthosseini H, Schmitz J, Roubos JA, Voigt CA. Design of Four Small-Molecule-Inducible Systems in the Yeast Chromosome, Applied to Optimize Terpene Biosynthesis. ACS Synth Biol 2023; 12:1119-1132. [PMID: 36943773 PMCID: PMC10127285 DOI: 10.1021/acssynbio.2c00607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The optimization of cellular functions often requires the balancing of gene expression, but the physical construction and screening of alternative designs are costly and time-consuming. Here, we construct a strain of Saccharomyces cerevisiae that contains a "sensor array" containing bacterial regulators that respond to four small-molecule inducers (vanillic acid, xylose, aTc, IPTG). Four promoters can be independently controlled with low background and a 40- to 5000-fold dynamic range. These systems can be used to study the impact of changing the level and timing of gene expression without requiring the construction of multiple strains. We apply this approach to the optimization of a four-gene heterologous pathway to the terpene linalool, which is a flavor and precursor to energetic materials. Using this approach, we identify bottlenecks in the metabolic pathway. This work can aid the rapid automated strain development of yeasts for the bio-manufacturing of diverse products, including chemicals, materials, fuels, and food ingredients.
Collapse
Affiliation(s)
- Jong Hyun Park
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Marcelo C Bassalo
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Geng-Min Lin
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Ye Chen
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Hamid Doosthosseini
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Joep Schmitz
- DSM Science & Innovation, Biodata & Translational Sciences, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Johannes A Roubos
- DSM Science & Innovation, Biodata & Translational Sciences, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Zhang X, Xie J, Cao S, Zhang H, Pei J, Bu S, Zhao L. Efficient production of the glycosylated derivatives of baicalein in engineered Escherichia coli. Appl Microbiol Biotechnol 2023; 107:2831-2842. [PMID: 36930276 DOI: 10.1007/s00253-023-12464-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Baicalein-7-O-glucoside and baicalein-7-O-rhamnoside have been proven to possess many pharmacological activities and are potential candidate drug leads and herb supplements. However, their further development is largely limited due to low content in host plants. Few studies reported that both bioactive plant components are prepared through the bioconversion of baicalein that is considered as the common biosynthetic precursor of both compounds. Herein, we constructed a series of the engineered whole-cell bioconversion systems in which the deletion of competitive genes and the introduction of exogenous UDP-glucose supply pathway, glucosyltransferase, rhamnosyltransferase, and the UDP-rhamnose synthesis pathway are made. Using these engineered strains, the precursor baicalein is able to be transformed into baicalein-7-O-glucoside and baicalein-7-O-rhamnoside, with high-titer production, respectively. The further optimization of fermentation conditions led to the final production of 568.8 mg/L and 877.0 mg/L for baicalein-7-O-glucoside and baicalein-7-O-rhamnoside, respectively. To the best of our knowledge, it is the highest production in preparation of baicalein-7-O-glucoside from baicalein so far, while the preparation of baicalein-7-O-rhamnoside is the first reported via bioconversion approach. Our study provides a reference for the industrial production of high-value products baicalein-7-O-glucoside and baicalein-7-O-rhamnoside using engineered E. coli. KEY POINTS: • Integrated design for improving the intracellular UDP-glucose pool • High production of rare baicalein glycosides in the engineered E. coli • Baicalein-7-O-glucoside and baicalein-7-O-rhamnoside.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jingcong Xie
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, China
| | - Shiping Cao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Haiyan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Su Bu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
21
|
Zhou S, Fatma Z, Xue P, Mishra S, Cao M, Zhao H, Sweedler JV. Mass Spectrometry-Based High-Throughput Quantification of Bioproducts in Liquid Culture. Anal Chem 2023; 95:4067-4076. [PMID: 36790390 DOI: 10.1021/acs.analchem.2c04845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
To meet the ever-increasing need for high-throughput screening in metabolic engineering, information-rich, fast screening methods are needed. Mass spectrometry (MS) provides an efficient and general approach for metabolite screening and offers the capability of characterizing a broad range of analytes in a label-free manner, but often requires a range of sample clean-up and extraction steps. Liquid extraction surface analysis (LESA) coupled MS is an image-guided MS surface analysis approach that directly samples and introduces metabolites from a surface to MS. Here, we combined the advantages of LESA-MS and an acoustic liquid handler with stable isotope-labeled internal standards. This approach provides absolute quantitation of target chemicals from liquid culture-dried droplets and enables high-throughput quantitative screening for microbial metabolites. In this study, LESA-MS was successfully applied to quantify several different metabolites (itaconic acid, triacetic acid lactone, and palmitic acid) from different yeast strains in different mediums, demonstrating its versatility, accuracy, and efficiency across a range of microbial engineering applications.
Collapse
Affiliation(s)
- Shuaizhen Zhou
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zia Fatma
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shekhar Mishra
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingfeng Cao
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Yeom J, Park JS, Jung SW, Lee S, Kwon H, Yoo SM. High-throughput genetic engineering tools for regulating gene expression in a microbial cell factory. Crit Rev Biotechnol 2023; 43:82-99. [PMID: 34957867 DOI: 10.1080/07388551.2021.2007351] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
With the rapid advances in biotechnological tools and strategies, microbial cell factory-constructing strategies have been established for the production of value-added compounds. However, optimizing the tradeoff between the biomass, yield, and titer remains a challenge in microbial production. Gene regulation is necessary to optimize and control metabolic fluxes in microorganisms for high-production performance. Various high-throughput genetic engineering tools have been developed for achieving rational gene regulation and genetic perturbation, diversifying the cellular phenotype and enhancing bioproduction performance. In this paper, we review the current high-throughput genetic engineering tools for gene regulation. In particular, technological approaches used in a diverse range of genetic tools for constructing microbial cell factories are introduced, and representative applications of these tools are presented. Finally, the prospects for high-throughput genetic engineering tools for gene regulation are discussed.
Collapse
Affiliation(s)
- Jinho Yeom
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Jong Seong Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Seung-Woon Jung
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Sumin Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Hyukjin Kwon
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Yang H, Zhang K, Shen W, Chen L, Xia Y, Zou W, Cao Y, Chen X. Efficient production of cembratriene-ol in Escherichia coli via systematic optimization. Microb Cell Fact 2023; 22:17. [PMID: 36694175 PMCID: PMC9872381 DOI: 10.1186/s12934-023-02022-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The tobacco leaf-derived cembratriene-ol exhibits anti-insect effects, but its content in plants is scarce. Cembratriene-ol is difficult and inefficiently chemically synthesised due to its complex structure. Moreover, the titer of reported recombinant hosts producing cembratriene-ol was low and cannot be applied to industrial production. RESULTS In this study, Pantoea ananatis geranylgeranyl diphosphate synthase (CrtE) and Nicotiana tabacum cembratriene-ol synthase (CBTS) were heterologously expressed to synthsize the cembratriene-ol in Escherichia coli. Overexpression of cbts*, the 1-deoxy-D-xylulose 5-phosphate synthase gene dxs, and isopentenyl diphosphate isomerase gene idi promoted the production of cembratriene-ol. The cembratriene-ol titer was 1.53-folds higher than that of E. coli Z17 due to the systematic regulation of ggpps, cbts*, dxs, and idi expression. The production of cembratriene-ol was boosted via the overexpression of genes ispA, ispD, and ispF. The production level of cembratriene-ol in the optimal medium at 72 h was 8.55-folds higher than that before fermentation optimisation. The cembratriene-ol titer in the 15-L fermenter reached 371.2 mg L- 1, which was the highest titer reported. CONCLUSION In this study, the production of cembratriene-ol in E. coli was significantly enhanced via systematic optimization. It was suggested that the recombinant E. coli producing cembratriene-ol constructed in this study has potential for industrial production and applications.
Collapse
Affiliation(s)
- Haiquan Yang
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Kunjie Zhang
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Wei Shen
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Lei Chen
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Yuanyuan Xia
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Wei Zou
- grid.412605.40000 0004 1798 1351College of Bioengineering, Sichuan University of Science & Engineering, 644000 Yibin, Sichuan China
| | - Yu Cao
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Xianzhong Chen
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
24
|
El-Baky NA, Amara AAAF, Redwan EM. Nutraceutical and therapeutic importance of clots and their metabolites. NUTRACEUTICALS 2023:241-268. [DOI: 10.1016/b978-0-443-19193-0.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
25
|
Enhanced production of acetyl-CoA-based products via peroxisomal surface display in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2022; 119:e2214941119. [PMID: 36409888 PMCID: PMC9860249 DOI: 10.1073/pnas.2214941119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Colocalization of enzymes is a proven approach to increase pathway flux and the synthesis of nonnative products. Here, we develop a method for enzyme colocalization using the yeast peroxisomal membrane as an anchor point. Pathway enzymes were fused to the native Pex15 anchoring motif to enable display on the surface of the peroxisome facing the cytosol. The peroxisome is the sole location of β-oxidation in Saccharomyces cerevisiae, and acetyl-CoA is a by-product that is exported in the form of acetyl-carnitine. To access this untapped acetyl-CoA pool, we surface-anchored the native peroxisomal/mitochondrial enzyme Cat2 to convert acetyl-carnitine to acetyl-CoA directly upon export across the peroxisomal membrane; this increased acetyl-CoA levels 3.7-fold. Subsequent surface attachment of three pathway enzymes - Cat2, a high stability Acc1 (for conversion of acetyl-CoA to malonyl-CoA), and the type III PKS 2-pyrone synthase - demonstrated the success of peroxisomal surface display for both enzyme colocalization and access to acetyl-CoA from exported acetyl-carnitine. Synthesis of the polyketide triacetic acid lactone increased by 21% over cytosolic expression at low gene copy number, and an additional 11-fold (to 766 mg/L) after further optimization. Finally, we explored increasing peroxisomal membrane area through overexpression of the peroxisomal biogenesis protein Pex11. Our findings establish peroxisomal surface display as an efficient strategy for enzyme colocalization and for accessing the peroxisomal acetyl-CoA pool to increase synthesis of acetyl-CoA-based products.
Collapse
|
26
|
Qiao W, Xu S, Liu Z, Fu X, Zhao H, Shi S. Challenges and opportunities in C1-based biomanufacturing. BIORESOURCE TECHNOLOGY 2022; 364:128095. [PMID: 36220528 DOI: 10.1016/j.biortech.2022.128095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The intensifying impact of green-house gas (GHG) emission on environment and climate change has attracted increasing attention, and biorefinery represents one of the most effective routes for reducing GHG emissions from human activities. However, this requires a shift for microbial fermentation from the current use of sugars to the use of biomass, and even better to the primary fixation of single carbon (C1) compounds. Here how microorganisms can be engineered for fixation and conversion of C1 compounds into metabolites that can serve as fuels and platform chemicals are reviewed. Meanwhile, key factors for utilization of these different pathways are discussed, followed by challenges and barriers for the development of C1-based biorefinery.
Collapse
Affiliation(s)
- Weibo Qiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoying Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
27
|
Pandey N, Davison SA, Krishnamurthy M, Trettel DS, Lo CC, Starkenburg S, Wozniak KL, Kern TL, Reardon SD, Unkefer CJ, Hennelly SP, Dale T. Precise Genomic Riboregulator Control of Metabolic Flux in Microbial Systems. ACS Synth Biol 2022; 11:3216-3227. [PMID: 36130255 PMCID: PMC9594778 DOI: 10.1021/acssynbio.1c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Engineered microbes can be used for producing value-added chemicals from renewable feedstocks, relieving the dependency on nonrenewable resources such as petroleum. These microbes often are composed of synthetic metabolic pathways; however, one major problem in establishing a synthetic pathway is the challenge of precisely controlling competing metabolic routes, some of which could be crucial for fitness and survival. While traditional gene deletion and/or coarse overexpression approaches do not provide precise regulation, cis-repressors (CRs) are RNA-based regulatory elements that can control the production levels of a particular protein in a tunable manner. Here, we describe a protocol for a generally applicable fluorescence-activated cell sorting technique used to isolate eight subpopulations of CRs from a semidegenerate library in Escherichia coli, followed by deep sequencing that permitted the identification of 15 individual CRs with a broad range of protein production profiles. Using these new CRs, we demonstrated a change in production levels of a fluorescent reporter by over two orders of magnitude and further showed that these CRs are easily ported from E. coli to Pseudomonas putida. We next used four CRs to tune the production of the enzyme PpsA, involved in pyruvate to phosphoenolpyruvate (PEP) conversion, to alter the pool of PEP that feeds into the shikimate pathway. In an engineered P. putida strain, where carbon flux in the shikimate pathway is diverted to the synthesis of the commodity chemical cis,cis-muconate, we found that tuning PpsA translation levels increased the overall titer of muconate. Therefore, CRs provide an approach to precisely tune protein levels in metabolic pathways and will be an important tool for other metabolic engineering efforts.
Collapse
Affiliation(s)
- Naresh Pandey
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Steffi A. Davison
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Malathy Krishnamurthy
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Daniel S. Trettel
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Chien-Chi Lo
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Shawn Starkenburg
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Katherine L. Wozniak
- Chemistry
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Theresa L. Kern
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sean D. Reardon
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Clifford J. Unkefer
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Scott P. Hennelly
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Taraka Dale
- Bioscience
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States,
| |
Collapse
|
28
|
Development of a Prediction Method of Cell Density in Autotrophic/Heterotrophic Microorganism Mixtures by Machine Learning Using Absorbance Spectrum Data. BIOTECH (BASEL (SWITZERLAND)) 2022; 11:biotech11040046. [PMID: 36278558 PMCID: PMC9624369 DOI: 10.3390/biotech11040046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Microflora is actively used to produce value-added materials in industry, and each cell density should be controlled for stable microflora use. In this study, a simple system evaluating the cell density was constructed with artificial intelligence (AI) using the absorbance spectra data of microflora. To set up the system, the prediction system for cell density based on machine learning was constructed using the spectra data as the feature from the mixture of Saccharomyces cerevisiae and Chlamydomonas reinhardtii. As the results of predicting cell density by extremely randomized trees, when the cell densities of S. cerevisiae and C. reinhardtii were shifted and fixed, the coefficient of determination (R2) was 0.8495; on the other hand, when the cell densities of S. cerevisiae and C. reinhardtii were fixed and shifted, the R2 was 0.9232. To explain the prediction system, the randomized trees regressor of the decision tree-based ensemble learning method as the machine learning algorithm and Shapley additive explanations (SHAPs) as the explainable AI (XAI) to interpret the features contributing to the prediction results were used. As a result of the SHAP analyses, not only the optical density, but also the absorbance of the Soret and Q bands derived from the chloroplasts of C. reinhardtii could contribute to the prediction as the features. The simple cell density evaluating system could have an industrial impact.
Collapse
|
29
|
Du YH, Wang MY, Yang LH, Tong LL, Guo DS, Ji XJ. Optimization and Scale-Up of Fermentation Processes Driven by Models. Bioengineering (Basel) 2022; 9:bioengineering9090473. [PMID: 36135019 PMCID: PMC9495923 DOI: 10.3390/bioengineering9090473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
In the era of sustainable development, the use of cell factories to produce various compounds by fermentation has attracted extensive attention; however, industrial fermentation requires not only efficient production strains, but also suitable extracellular conditions and medium components, as well as scaling-up. In this regard, the use of biological models has received much attention, and this review will provide guidance for the rapid selection of biological models. This paper first introduces two mechanistic modeling methods, kinetic modeling and constraint-based modeling (CBM), and generalizes their applications in practice. Next, we review data-driven modeling based on machine learning (ML), and highlight the application scope of different learning algorithms. The combined use of ML and CBM for constructing hybrid models is further discussed. At the end, we also discuss the recent strategies for predicting bioreactor scale-up and culture behavior through a combination of biological models and computational fluid dynamics (CFD) models.
Collapse
Affiliation(s)
- Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Min-Yu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ling-Ling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (D.-S.G.); (X.-J.J.)
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- Correspondence: (D.-S.G.); (X.-J.J.)
| |
Collapse
|
30
|
Cao M, Tran VG, Qin J, Olson A, Mishra S, Schultz JC, Huang C, Xie D, Zhao H. Metabolic engineering of oleaginous yeast Rhodotorula toruloides for overproduction of triacetic acid lactone. Biotechnol Bioeng 2022; 119:2529-2540. [PMID: 35701887 PMCID: PMC9540541 DOI: 10.1002/bit.28159] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/16/2022] [Accepted: 06/12/2022] [Indexed: 12/19/2022]
Abstract
The plant‐sourced polyketide triacetic acid lactone (TAL) has been recognized as a promising platform chemical for the biorefinery industry. However, its practical application was rather limited due to low natural abundance and inefficient cell factories for biosynthesis. Here, we report the metabolic engineering of oleaginous yeast Rhodotorula toruloides for TAL overproduction. We first introduced a 2‐pyrone synthase gene from Gerbera hybrida (GhPS) into R. toruloides and investigated the effects of different carbon sources on TAL production. We then systematically employed a variety of metabolic engineering strategies to increase the flux of acetyl‐CoA by enhancing its biosynthetic pathways and disrupting its competing pathways. We found that overexpression of ATP‐citrate lyase (ACL1) improved TAL production by 45% compared to the GhPS overexpressing strain, and additional overexpression of acetyl‐CoA carboxylase (ACC1) further increased TAL production by 29%. Finally, we characterized the resulting strain I12‐ACL1‐ACC1 using fed‐batch bioreactor fermentation in glucose or oilcane juice medium with acetate supplementation and achieved a titer of 28 or 23 g/L TAL, respectively. This study demonstrates that R. toruloides is a promising host for the production of TAL and other acetyl‐CoA‐derived polyketides from low‐cost carbon sources.
Collapse
Affiliation(s)
- Mingfeng Cao
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Andrew Olson
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John C Schultz
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chunshuai Huang
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
31
|
Qi H, Yu L, Li Y, Cai M, He J, Liu J, Hao L, Xu H, Qiao M. Developing Multi-Copy Chromosomal Integration Strategies for Heterologous Biosynthesis of Caffeic Acid in Saccharomyces cerevisiae. Front Microbiol 2022; 13:851706. [PMID: 35300487 PMCID: PMC8923693 DOI: 10.3389/fmicb.2022.851706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Caffeic acid, a plant-sourced phenolic compound, has a variety of biological activities, such as antioxidant and antimicrobial properties. The caffeic acid biosynthetic pathway was initially constructed in S. cerevisiae, using codon-optimized TAL (coTAL, encoding tyrosine ammonia lyase) from Rhodobacter capsulatus, coC3H (encoding p-coumaric acid 3-hydroxylase) and coCPR1 (encoding cytochrome P450 reductase 1) from Arabidopsis thaliana in 2 μ multi-copy plasmids to produce caffeic acid from glucose. Then, integrated expression of coTAL via delta integration with the POT1 gene (encoding triose phosphate isomerase) as selection marker and episomal expression of coC3H, coCPR1 using the episomal plasmid pLC-c3 were combined, and caffeic acid production was proved to be improved. Next, the delta and rDNA multi-copy integration methods were applied to integrate the genes coC3H and coCPR1 into the chromosome of high p-coumaric acid yielding strain QT3-20. The strain D9 constructed via delta integration outperformed the other strains, leading to 50-fold increased caffeic acid production in optimized rich media compared with the initial construct. The intercomparison between three alternative multi-copy strategies for de novo synthesis of caffeic acid in S. cerevisiae suggested that delta-integration was effective in improving caffeic acid productivity, providing a promising strategy for the production of valuable bio-based chemicals in recombinant S. cerevisiae.
Collapse
Affiliation(s)
- Hang Qi
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Long Yu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanzi Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Miao Cai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiaze He
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiayu Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Luyao Hao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
32
|
Production of Vitamin K by Wild-Type and Engineered Microorganisms. Microorganisms 2022; 10:microorganisms10030554. [PMID: 35336129 PMCID: PMC8954062 DOI: 10.3390/microorganisms10030554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin K is a fat-soluble vitamin that mainly exists as phylloquinone or menaquinone in nature. Vitamin K plays an important role in blood clotting and bone health in humans. For use as a nutraceutical, vitamin K is produced by natural extraction, chemical synthesis, and microbial fermentation. Natural extraction and chemical synthesis methods for vitamin K production have limitations, such as low yield of products and environmental concerns. Microbial fermentation is a more sustainable process for industrial production of natural vitamin K than two other methods. Recent advanced genetic technology facilitates industrial production of vitamin K by increasing the yield and productivity of microbial host strains. This review covers (i) general information about vitamin K and microbial host, (ii) current titers of vitamin K produced by wild-type microorganisms, and (iii) vitamin K production by engineered microorganisms, including the details of strain engineering strategies. Finally, current limitations and future directions for microbial production of vitamin K are also discussed.
Collapse
|
33
|
Plioni I, Kalogeropoulou A, Dimitrellou D, Kandylis P, Kanellaki M, Nigam PS, Koutinas AA. Effect of cellulose crystallinity modification by starch gel treatment for improvement in ethanol fermentation rate by non-GM yeast cell factories. Bioprocess Biosyst Eng 2022; 45:783-790. [PMID: 35188585 DOI: 10.1007/s00449-022-02706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Abstract
This paper studies the reduction of crystallinity degree (CD) of cellulose treated with starch gel (SG), and the correlation of CD with the fermentation efficiency of cellulose to fuel-grade ethanol. Cellulose bioconversion from wood sawdust, consisting of three processes, was conducted in the same batch (one-step). The XRD and TEM analysis revealed 11% reduction in cellulose CD after its treatment with SG. One-step bioconversion process was performed employing two cell factories (CF) of non-engineered S. cerevisiae. CFs contained non- engineered S. cerevisiae cells covered with either SG entrapping Trichoderma reesei or cellulases prepared in the laboratory and immobilized in SG. The consolidated fermentation of treated cellulose resulted in an increase of bioethanol concentration (60-90%) in 2-day fermentation and the maximum ethanol concentration reached was approximately 5 mL/L (3.95 g/L). The fermentation efficiency for grade-fuel ethanol production was improved by cellulose pretreatment using SG to achieve reduced CD.
Collapse
Affiliation(s)
- Iris Plioni
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500, Patras, Greece
| | | | - Dimitra Dimitrellou
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500, Patras, Greece.,Department of Food Science and Technology, Ionian University, Kefalonia, 28100, Argostolion, Greece
| | - Panagiotis Kandylis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Kanellaki
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500, Patras, Greece
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Athanasios A Koutinas
- Food Biotechnology Group, Department of Chemistry, University of Patras, 26500, Patras, Greece.
| |
Collapse
|
34
|
Lu H, Yadav V, Zhong M, Bilal M, Taherzadeh MJ, Iqbal HMN. Bioengineered microbial platforms for biomass-derived biofuel production - A review. CHEMOSPHERE 2022; 288:132528. [PMID: 34637864 DOI: 10.1016/j.chemosphere.2021.132528] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Global warming issues, rapid fossil fuel diminution, and increasing worldwide energy demands have diverted accelerated attention in finding alternate sources of biofuels and energy to combat the energy crisis. Bioconversion of lignocellulosic biomass has emerged as a prodigious way to produce various renewable biofuels such as biodiesel, bioethanol, biogas, and biohydrogen. Ideal microbial hosts for biofuel synthesis should be capable of using high substrate quantity, tolerance to inhibiting substances and end-products, fast sugar transportation, and amplified metabolic fluxes to yielding enhanced fermentative bioproduct. Genetic manipulation and microbes' metabolic engineering are fascinating strategies for the economical production of next-generation biofuel from lignocellulosic feedstocks. Metabolic engineering is a rapidly developing approach to construct robust biofuel-producing microbial hosts and an important component for future bioeconomy. This approach has been widely adopted in the last decade for redirecting and revamping the biosynthetic pathways to obtain a high titer of target products. Biotechnologists and metabolic scientists have produced a wide variety of new products with industrial relevance through metabolic pathway engineering or optimizing native metabolic pathways. This review focuses on exploiting metabolically engineered microbes as promising cell factories for the enhanced production of advanced biofuels.
Collapse
Affiliation(s)
- Hedong Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Mengyuan Zhong
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China.
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
35
|
Patel A, Mulder DW, Söll D, Krahn N. Harnessing selenocysteine to enhance microbial cell factories for hydrogen production. FRONTIERS IN CATALYSIS 2022; 2. [PMID: 36844461 PMCID: PMC9961374 DOI: 10.3389/fctls.2022.1089176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogen is a clean, renewable energy source, that when combined with oxygen, produces heat and electricity with only water vapor as a biproduct. Furthermore, it has the highest energy content by weight of all known fuels. As a result, various strategies have engineered methods to produce hydrogen efficiently and in quantities that are of interest to the economy. To approach the notion of producing hydrogen from a biological perspective, we take our attention to hydrogenases which are naturally produced in microbes. These organisms have the machinery to produce hydrogen, which when cleverly engineered, could be useful in cell factories resulting in large production of hydrogen. Not all hydrogenases are efficient at hydrogen production, and those that are, tend to be oxygen sensitive. Therefore, we provide a new perspective on introducing selenocysteine, a highly reactive proteinogenic amino acid, as a strategy towards engineering hydrogenases with enhanced hydrogen production, or increased oxygen tolerance.
Collapse
Affiliation(s)
- Armaan Patel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - David W Mulder
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Department of Chemistry, Yale University, New Haven, CT, United States
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
36
|
Enhanced production and characterization of coenzyme Q10 from Rhodobacter sphaeroides using a potential fermentation strategy. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Tran VG, Zhao H. Engineering robust microorganisms for organic acid production. J Ind Microbiol Biotechnol 2021; 49:6373449. [PMID: 34549297 PMCID: PMC9118992 DOI: 10.1093/jimb/kuab067] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/11/2021] [Indexed: 11/24/2022]
Abstract
Organic acids are an important class of compounds that can be produced by microbial conversion of renewable feedstocks and have huge demands and broad applications in food, chemical, and pharmaceutical industries. An economically viable fermentation process for production of organic acids requires robust microbial cell factories with excellent tolerance to low pH conditions, high concentrations of organic acids, and lignocellulosic inhibitors. In this review, we summarize various strategies to engineer robust microorganisms for organic acid production and highlight their applications in a few recent examples.
Collapse
Affiliation(s)
- Vinh G Tran
- Department of Chemical and Biomolecular Engineering, U.S. Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, U.S. Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.,Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
38
|
Liu L, Chen Y, Yu S, Chen J, Zhou J. Simultaneous transformation of five vectors in Gluconobacter oxydans. Plasmid 2021; 117:102588. [PMID: 34256060 DOI: 10.1016/j.plasmid.2021.102588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022]
Abstract
Gluconobacter oxydans is an obligate Gram-negative bacterium that belongs to the family Acetobacteraceae. It is one of the most frequently used microorganisms in industrial biotechnology to produce chemicals related to incomplete oxidation. However, the fine-tuning of G. oxydans is hampered by the lack of efficient genetic tools to enable sophisticated metabolic manipulations. Thus, a series of shuttle vectors for G. oxydans inspired by a series of wild-type plasmids in different G. oxydans strains were constructed. Fifteen shuttle vectors were employed to express mCherry in G. oxydans WSH-003 using the replication origin of these wild-type plasmids. Among them, the intensity of fluorescent proteins expressed by p15-K-mCherry was about 10 times that of fluorescent proteins expressed by p5-K-mCherry. Quantitative real-time polymerase chain reaction showed that the relative copy number of p15-K-mCherry reached 19 and had high stability. In contrast, some of the plasmids had a relative copy number of less than 10. The co-expression of multiple shuttle vectors revealed five shuttle vectors that could be transformed into G. oxydans WSH-003 and could express five different fluorescent proteins. The shuttle vectors will facilitate genetic operations for Gluconobacter strains to produce useful compounds more efficiently.
Collapse
Affiliation(s)
- Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yue Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
39
|
Zhang Y, Peng J, Zhao H, Shi S. Engineering oleaginous yeast Rhodotorula toruloides for overproduction of fatty acid ethyl esters. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:115. [PMID: 33964988 PMCID: PMC8106135 DOI: 10.1186/s13068-021-01965-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Production of biofuels and green chemicals by microbes is currently of great interest due to the increasingly limited reserves of fossil fuels. Biodiesel, especially fatty acid ethyl esters (FAEEs), is considered as an attractive alternative because of its similarity with petrodiesel and compatibility with existing infrastructures. Cost-efficient bio-production of FAEEs requires a highly lipogenic production host that is suitable for large-scale fermentation. As a non-model oleaginous yeast that can be cultured to an extremely high cell density and accumulate over 70% cell mass as lipids, Rhodotorula toruloides represents an attractive host for FAEEs production. RESULTS We first constructed the FAEE biosynthetic pathways in R. toruloides by introducing various wax ester synthase genes from different sources, and the bifunctional wax ester synthase/acyl-CoA-diacyglycerol acyltransferase (WS/DGAT) gene from Acinetobacter baylyi was successfully expressed, leading to a production of 826 mg/L FAEEs through shake-flask cultivation. We then mutated this bifunctional enzyme to abolish the DGAT activity, and further improved the titer to 1.02 g/L. Finally, to elevate the performance of Δku70-AbWS* in a bioreactor, both batch and fed-batch cultivation strategies were performed. The FAEEs titer, productivity and yield were 4.03 g/L, 69.5 mg/L/h and 57.9 mg/g (mg FAEEs/g glucose) under batch cultivation, and 9.97 g/L, 90.6 mg/L/h, and 86.1 mg/g under fed-batch cultivation. It is worth mentioning that most of the produced FAEEs were secreted out of the cell, which should greatly reduce the cost of downstream processing. CONCLUSION We achieved the highest FAEEs production in yeast with a final titer of 9.97 g/L and demonstrated that the engineered R. toruloides has the potential to serve as a platform strain for efficient production of fatty acid-derived molecules.
Collapse
Affiliation(s)
- Yang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Peng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois At Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
40
|
Zheng S, Zhang G, Wang H, Long Z, Wei T, Li Q. Progress in ultrasound-assisted extraction of the value-added products from microorganisms. World J Microbiol Biotechnol 2021; 37:71. [PMID: 33763773 DOI: 10.1007/s11274-021-03037-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 12/17/2022]
Abstract
Extracting value-added products from microorganisms is an important research focus for the future. Among the many extraction methods, ultrasound-assisted extraction (UAE) has attracted more attention owing to its advantages in reducing working time, increasing yield, and improving the quality of the extract. This review summarizes the use of UAE value-added products from microorganisms, with the main extracted substances are pigments, lipids, polysaccharides, and proteins. In addition, this work also summarizes the mechanism of UAE and highlights the factors that affect UAE operation, such as ultrasonic power intensity or power density, operation mode, and energy consumption, which need to be considered. All extraction products from microorganisms showed that UAE can effectively improve the extraction yields of value-added products. It also highlights the existing problems of the technology and possible future prospects. In general, the UAE of value-added substances from microorganisms is feasible and has the potential for development.
Collapse
Affiliation(s)
- Sijia Zheng
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Guangming Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - HongJie Wang
- Institute of Ecology and Environmental Governance, Hebei University, Baoding, 071002, China.
| | - Zeqing Long
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Ting Wei
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Qiangang Li
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
41
|
Chang C, Liu B, Bao Y, Tao Y, Liu W. Efficient bioconversion of raspberry ketone in Escherichia coli using fatty acids feedstocks. Microb Cell Fact 2021; 20:68. [PMID: 33706766 PMCID: PMC7953670 DOI: 10.1186/s12934-021-01551-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/21/2021] [Indexed: 02/02/2023] Open
Abstract
Background Phenylpropanoid including raspberry ketone, is a kind of important natural plant product and widely used in pharmaceuticals, chemicals, cosmetics, and healthcare products. Bioproduction of phenylpropanoid in Escherichia coli and other microbial cell factories is an attractive approach considering the low phenylpropanoid contents in plants. However, it is usually difficult to produce high titer phenylpropanoid production when fermentation using glucose as carbon source. Developing novel bioprocess using alternative sources might provide a solution to this problem. In this study, typical phenylpropanoid raspberry ketone was used as the target product to develop a biosynthesis pathway for phenylpropanoid production from fatty acids, a promising alternative low-cost feedstock. Results A raspberry ketone biosynthesis module was developed and optimized by introducing 4-coumarate-CoA ligase (4CL), benzalacetone synthase (BAS), and raspberry ketone reductase (RZS) in Escherichia coli strains CR1–CR4. Then strain CR5 was developed by introducing raspberry ketone biosynthesis module into a fatty acids-utilization chassis FA09 to achieve production of raspberry ketone from fatty acids feedstock. However, the production of raspberry ketone was still limited by the low biomass and unable to substantiate whole-cell bioconversion process. Thus, a process by coordinately using fatty-acids and glycerol was developed. In addition, we systematically screened and optimized fatty acids-response promoters. The optimized promoter Pfrd3 was then successfully used for the efficient expression of key enzymes of raspberry ketone biosynthesis module during bioconversion from fatty acids. The final engineered strain CR8 could efficiently produce raspberry ketone repeatedly using bioconversion from fatty acids feedstock strategy, and was able to produce raspberry ketone to a concentration of 180.94 mg/L from soybean oil in a 1-L fermentation process. Conclusion Metabolically engineered Escherichia coli strains were successfully developed for raspberry ketone production from fatty acids using several strategies, including optimization of bioconversion process and fine-tuning key enzyme expression. This study provides an essential reference to establish the low-cost biological manufacture of phenylpropanoids compounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01551-0.
Collapse
Affiliation(s)
- Chen Chang
- College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin, Heilongjiang Province, 150040, PR China.,CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, NO. 1 Beichen West Road, Chaoyang District, Beijing, 100101, PR China
| | - Bo Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, NO. 1 Beichen West Road, Chaoyang District, Beijing, 100101, PR China
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin, Heilongjiang Province, 150040, PR China. .,Heilongjiang Key Laboratory of Forest Food Resources Utilization, No. 26 Hexing Road, Harbin, Heilongjiang Province, 150040, PR China.
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, NO. 1 Beichen West Road, Chaoyang District, Beijing, 100101, PR China. .,University of Chinese Academy of Sciences, Shijingshan District, NO. 19A Yuquan Road, Beijing, 100049, PR China.
| | - Weifeng Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, NO. 1 Beichen West Road, Chaoyang District, Beijing, 100101, PR China. .,University of Chinese Academy of Sciences, Shijingshan District, NO. 19A Yuquan Road, Beijing, 100049, PR China.
| |
Collapse
|
42
|
Saleem H, Mazhar S, Syed Q, Javed MQ, Adnan A. Bio-characterization of food grade pyocyanin bio-pigment extracted from chromogenic Pseudomonas species found in Pakistani native flora. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Schalck T, den Bergh BV, Michiels J. Increasing Solvent Tolerance to Improve Microbial Production of Alcohols, Terpenoids and Aromatics. Microorganisms 2021; 9:249. [PMID: 33530454 PMCID: PMC7912173 DOI: 10.3390/microorganisms9020249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Fuels and polymer precursors are widely used in daily life and in many industrial processes. Although these compounds are mainly derived from petrol, bacteria and yeast can produce them in an environment-friendly way. However, these molecules exhibit toxic solvent properties and reduce cell viability of the microbial producer which inevitably impedes high product titers. Hence, studying how product accumulation affects microbes and understanding how microbial adaptive responses counteract these harmful defects helps to maximize yields. Here, we specifically focus on the mode of toxicity of industry-relevant alcohols, terpenoids and aromatics and the associated stress-response mechanisms, encountered in several relevant bacterial and yeast producers. In practice, integrating heterologous defense mechanisms, overexpressing native stress responses or triggering multiple protection pathways by modifying the transcription machinery or small RNAs (sRNAs) are suitable strategies to improve solvent tolerance. Therefore, tolerance engineering, in combination with metabolic pathway optimization, shows high potential in developing superior microbial producers.
Collapse
Affiliation(s)
- Thomas Schalck
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Bram Van den Bergh
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jan Michiels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
44
|
Cai M, Wu Y, Qi H, He J, Wu Z, Xu H, Qiao M. Improving the Level of the Tyrosine Biosynthesis Pathway in Saccharomyces cerevisiae through HTZ1 Knockout and Atmospheric and Room Temperature Plasma (ARTP) Mutagenesis. ACS Synth Biol 2021; 10:49-62. [PMID: 33395268 DOI: 10.1021/acssynbio.0c00448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, many studies have been conducted on the expression of multiple aromatic compounds by Saccharomyces cerevisiae. The concentration of l-tyrosine, as a precursor of such valuable compounds, is crucial for the biosynthesis of aromatic metabolites. In this study, a novel function of HTZ1 was found to be related to tyrosine biosynthesis, which has not yet been reported. Knockout of this gene could significantly improve the ability of yeast cells to synthesize tyrosine, and its p-coumaric acid (p-CA) titer was approximately 3.9-fold higher than that of the wild-type strain BY4742. Subsequently, this strain was selected for random mutagenesis through an emerging mutagenesis technique, namely, atmospheric and room temperature plasma (ARTP). After two rounds of mutagenesis, five tyrosine high-producing mutants were obtained. The highest production of p-CA was 7.6-fold higher than that of the wild-type strain. Finally, transcriptome data of the htz1Δ strain and the five mutants were analyzed. The genome of mutagenic strains was also resequenced to reveal the mechanism underlying the high titer of tyrosine. This system of target engineering combined with random mutagenesis to screen excellent mutants provides a new basis for synthetic biology.
Collapse
Affiliation(s)
- Miao Cai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Yuzhen Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Hang Qi
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Jiaze He
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Zhenzhou Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, PR China
| |
Collapse
|
45
|
Zu TNK, Liu S, Gerlach ES, Mojadedi W, Sund CJ. Co-feeding glucose with either gluconate or galacturonate during clostridial fermentations provides metabolic fine-tuning capabilities. Sci Rep 2021; 11:29. [PMID: 33420096 PMCID: PMC7794554 DOI: 10.1038/s41598-020-76761-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridium acetobutylicum ATCC 824 effectively utilizes a wide range of substrates to produce commodity chemicals. When grown on substrates of different oxidation states, the organism exhibits different recycling needs of reduced intracellular electron carrying co-factors. Ratios of substrates with different oxidation states were used to modulate the need to balance electron carriers and demonstrate fine-tuned control of metabolic output. Three different oxidized substrates were first fed singularly, then in different ratios to three different strains of Clostridium sp. Growth was most robust when fed glucose in exclusive fermentations. However, the use of the other two more oxidized substrates was strain-dependent in exclusive feeds. In glucose-galacturonate mixed fermentation, the main products (acetate and butyrate) were dependant on the ratios of the substrates. Exclusive fermentation on galacturonate was nearly homoacetic. Co-utilization of galacturonate and glucose was observed from the onset of fermentation in growth conditions using both substrates combined, with the proportion of galacturonate present dictating the amount of acetate produced. For all three strains, increasing galacturonate content (%) in a mixture of galacturonate and glucose from 0 to 50, and 100, resulted in a corresponding increase in the amount of acetate produced. For example, C. acetobutylicum increased from ~ 10 mM to ~ 17 mM, and then ~ 23 mM. No co-utilization was observed when galacturonate was replaced with gluconate in the two substrate co-feed.
Collapse
Affiliation(s)
- Theresah N K Zu
- Combat Capabilities Development Command Army Research Laboratory, SEDD, Adelphi, MD, 20783, USA.
| | - Sanchao Liu
- Combat Capabilities Development Command Army Research Laboratory, SEDD, Adelphi, MD, 20783, USA
| | - Elliot S Gerlach
- Combat Capabilities Development Command Army Research Laboratory, SEDD, Adelphi, MD, 20783, USA
| | - Wais Mojadedi
- Oak Ridge Associated Universities, Belcamp, MD, 21017, USA
| | - Christian J Sund
- Combat Capabilities Development Command Army Research Laboratory, SEDD, Adelphi, MD, 20783, USA
| |
Collapse
|
46
|
Adegboye MF, Ojuederie OB, Talia PM, Babalola OO. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:5. [PMID: 33407786 PMCID: PMC7788794 DOI: 10.1186/s13068-020-01853-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/09/2020] [Indexed: 05/17/2023]
Abstract
The issues of global warming, coupled with fossil fuel depletion, have undoubtedly led to renewed interest in other sources of commercial fuels. The search for renewable fuels has motivated research into the biological degradation of lignocellulosic biomass feedstock to produce biofuels such as bioethanol, biodiesel, and biohydrogen. The model strain for biofuel production needs the capability to utilize a high amount of substrate, transportation of sugar through fast and deregulated pathways, ability to tolerate inhibitory compounds and end products, and increased metabolic fluxes to produce an improved fermentation product. Engineering microbes might be a great approach to produce biofuel from lignocellulosic biomass by exploiting metabolic pathways economically. Metabolic engineering is an advanced technology for the construction of highly effective microbial cell factories and a key component for the next-generation bioeconomy. It has been extensively used to redirect the biosynthetic pathway to produce desired products in several native or engineered hosts. A wide range of novel compounds has been manufactured through engineering metabolic pathways or endogenous metabolism optimizations by metabolic engineers. This review is focused on the potential utilization of engineered strains to produce biofuel and gives prospects for improvement in metabolic engineering for new strain development using advanced technologies.
Collapse
Affiliation(s)
- Mobolaji Felicia Adegboye
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
| | - Omena Bernard Ojuederie
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
- Department of Biological Sciences, Faculty of Science, Kings University, Ode-Omu, PMB 555, Osun State, Nigeria
| | - Paola M Talia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA CICVyA, CNIA, INTA Castelar, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, 1686) Hurlingham, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Tecnológicas (CONICET), Buenos Aires, Provincia de Buenos Aires, Argentina
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa.
| |
Collapse
|
47
|
A Compressive Review about Taxol ®: History and Future Challenges. Molecules 2020; 25:molecules25245986. [PMID: 33348838 PMCID: PMC7767101 DOI: 10.3390/molecules25245986] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Taxol®, which is also known as paclitaxel, is a chemotherapeutic agent widely used to treat different cancers. Since the discovery of its antitumoral activity, Taxol® has been used to treat over one million patients, making it one of the most widely employed antitumoral drugs. Taxol® was the first microtubule targeting agent described in the literature, with its main mechanism of action consisting of the disruption of microtubule dynamics, thus inducing mitotic arrest and cell death. However, secondary mechanisms for achieving apoptosis have also been demonstrated. Despite its wide use, Taxol® has certain disadvantages. The main challenges facing Taxol® are the need to find an environmentally sustainable production method based on the use of microorganisms, increase its bioavailability without exerting adverse effects on the health of patients and minimize the resistance presented by a high percentage of cells treated with paclitaxel. This review details, in a succinct manner, the main aspects of this important drug, from its discovery to the present day. We highlight the main challenges that must be faced in the coming years, in order to increase the effectiveness of Taxol® as an anticancer agent.
Collapse
|
48
|
|
49
|
Cámara E, Lenitz I, Nygård Y. A CRISPR activation and interference toolkit for industrial Saccharomyces cerevisiae strain KE6-12. Sci Rep 2020; 10:14605. [PMID: 32884066 PMCID: PMC7471924 DOI: 10.1038/s41598-020-71648-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/10/2020] [Indexed: 01/17/2023] Open
Abstract
Recent advances in CRISPR/Cas9 based genome editing have considerably advanced genetic engineering of industrial yeast strains. In this study, we report the construction and characterization of a toolkit for CRISPR activation and interference (CRISPRa/i) for a polyploid industrial yeast strain. In the CRISPRa/i plasmids that are available in high and low copy variants, dCas9 is expressed alone, or as a fusion with an activation or repression domain; VP64, VPR or Mxi1. The sgRNA is introduced to the CRISPRa/i plasmids from a double stranded oligonucleotide by in vivo homology-directed repair, allowing rapid transcriptional modulation of new target genes without cloning. The CRISPRa/i toolkit was characterized by alteration of expression of fluorescent protein-encoding genes under two different promoters allowing expression alterations up to ~ 2.5-fold. Furthermore, we demonstrated the usability of the CRISPRa/i toolkit by improving the tolerance towards wheat straw hydrolysate of our industrial production strain. We anticipate that our CRISPRa/i toolkit can be widely used to assess novel targets for strain improvement and thus accelerate the design-build-test cycle for developing various industrial production strains.
Collapse
Affiliation(s)
- Elena Cámara
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Ibai Lenitz
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Yvonne Nygård
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| |
Collapse
|
50
|
Sánchez-Suárez J, Coy-Barrera E, Villamil L, Díaz L. Streptomyces-Derived Metabolites with Potential Photoprotective Properties-A Systematic Literature Review and Meta-Analysis on the Reported Chemodiversity. Molecules 2020; 25:E3221. [PMID: 32679651 PMCID: PMC7397340 DOI: 10.3390/molecules25143221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Sun overexposure is associated with the development of diseases that primarily affect the skin, which can lead to skin cancer. Among the main measures of photoprotection is the use of sunscreens. However, there is currently concern about the reported harmful effects to both humans and the environment due to several of the sunscreen ingredients available on the market. For this reason, the search for and development of new agents with photoprotective properties is required. In searching for these metabolites, researchers have turned their attention to microbial sources, especially the microbiota in unusual hostile environments. Among the diverse microorganisms available in nature, Actinobacteria and specifically Streptomyces, have been shown to be a source of metabolites with various biological activities of interest, such as antimicrobial, antitumor and immunomodulator activities. Herein, we present the results of a systematic review of the literature in which Streptomyces isolates were studied as a source of compounds with photoprotective properties. A meta-analysis of the structure-property and structure-activity relationships of those metabolites identified in the qualitative analysis phase was also carried out. These findings indicate that Streptomyces are a source of metabolites with potential applications in the development of new, safe and more eco-friendly sunscreens.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Bogotá 110111, Cajicá, Cundinamarca, Colombia;
| | - Luisa Villamil
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
| | - Luis Díaz
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia; (J.S.-S.); (L.V.)
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 140013, Cundinamarca, Colombia
| |
Collapse
|