1
|
Dong Y, Miao R, Feng R, Wang T, Yan J, Zhao X, Han X, Gan Y, Lin J, Li Y, Gan B, Zhao J. Edible and medicinal fungi breeding techniques, a review: Current status and future prospects. Curr Res Food Sci 2022; 5:2070-2080. [PMID: 36387595 PMCID: PMC9640942 DOI: 10.1016/j.crfs.2022.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022] Open
Abstract
Mushrooms of the edible and medicinal which are highly nutritious and environmentally friendly crops carry numerous medicinal benefits. For the abundant and high diversity of bioactive metabolites they possess, which are considered to be an important pool of bioresources. The efficient breeding technique is always a challenging task in mushrooms for obtaining better character strains, which are essential for developing healthy products and even consumption. This review comprehensively summarizes the breeding techniques applied to the edible and medicinal mushrooms. Including the traditional mutagenesis method, and even modern gene-editing breeding techniques, the effects of each method, and the comparison of each breeding technique are systematic illustrations. Strategies for mushroom breeding techniques in the future are also discussed in this review paper. With the ongoing sequencing of the mushroom genome, knowledge of the gene background of the strains and functions can be available for developing better markers for gene-editing breeding as CRISPR/Cas9 systems. Combine the metabolism engineering and in-silico tools analysis was the rational design of the novel strains. Modern physical mutagenesis techniques such as the ARTP and the combination of the other physical, and chemical breeding mutagens with cross-breeding techniques or the protoplasts fusion will also lead to superior strains for cultivation and pave the way for higher quality and yield.
Collapse
Affiliation(s)
- Yating Dong
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Renyun Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Tao Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Junjie Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Xu Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
- Gansu Academy of Agricultural Engineering Technology, 234 Xinzhen Road, Huangyang Town, Liangzhou District, Wuwei City, Gansu Province, 733006, China
| | - Xing Han
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Ying Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Yujia Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Jin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| |
Collapse
|
2
|
Wason S, Verma T, Subbiah J. Validation of process technologies for enhancing the safety of low-moisture foods: A review. Compr Rev Food Sci Food Saf 2021; 20:4950-4992. [PMID: 34323364 DOI: 10.1111/1541-4337.12800] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
The outbreaks linked to foodborne illnesses in low-moisture foods are frequently reported due to the occurrence of pathogenic microorganisms such as Salmonella Spp. Bacillus cereus, Clostridium spp., Cronobacter sakazakii, Escherichia coli, and Staphylococcus aureus. The ability of the pathogens to withstand the dry conditions and to develop resistance to heat is regarded as the major concern for the food industry dealing with low-moisture foods. In this regard, the present review is aimed to discuss the importance and the use of novel thermal and nonthermal technologies such as radiofrequency, steam pasteurization, plasma, and gaseous technologies for decontamination of foodborne pathogens in low-moisture foods and their microbial inactivation mechanisms. The review also summarizes the various sources of contamination and the factors influencing the survival and thermal resistance of pathogenic microorganisms in low-moisture foods. The literature survey indicated that the nonthermal techniques such as CO2 , high-pressure processing, and so on, may not offer effective microbial inactivation in low-moisture foods due to their insufficient moisture content. On the other hand, gases can penetrate deep inside the commodities and pores due to their higher diffusion properties and are regarded to have an advantage over thermal and other nonthermal processes. Further research is required to evaluate newer intervention strategies and combination treatments to enhance the microbial inactivation in low-moisture foods without significantly altering their organoleptic and nutritional quality.
Collapse
Affiliation(s)
- Surabhi Wason
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Tushar Verma
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jeyamkondan Subbiah
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA.,Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
3
|
Gefen-Treves S, Bartholomäus A, Horn F, Zaborowski AB, Tchernov D, Wagner D, Oren A, Kaplan A. The Microbiome Associated with the Reef Builder Neogoniolithon sp. in the Eastern Mediterranean. Microorganisms 2021; 9:microorganisms9071374. [PMID: 34202696 PMCID: PMC8306765 DOI: 10.3390/microorganisms9071374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
The development of coastal vermetid reefs and rocky shores depends on the activity of several reef builders, including red crustose coralline algae (CCA) such as Neogoniolithon sp. To initiate studies on the interaction between Neogoniolithon sp. and its associated bacteria, and their impact on the algae physiological performance, we characterized the bacterial community by 16S rRNA gene sequencing. These were extracted from the algal tissue and adjacent waters along two sampling campaigns (during winter and spring), in three study regions along a reef in the east Mediterranean Israeli coast and from laboratory-grown algae. The analysis revealed that aquaria and field communities differ substantially, suggesting that future research on Neogoniolithon sp. interaction with its microbiome must rest on aquaria that closely simulate coastal conditions. Some prokaryote classes found associated with the alga tissue were hardly detected or absent from surrounding water. Further, bacterial populations differed between sampling campaigns. One example is the presence of anaerobic bacteria and archaea families in one of the campaigns, correlating with the weaker turbulence in the spring season, probably leading to the development of local anoxic conditions. A better understanding of reef-building activity of CCA and their associated bacteria is necessary for assessment of their resilience to climate change and may support coastal preservation efforts.
Collapse
Affiliation(s)
- Shany Gefen-Treves
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel; (S.G.-T.); (A.O.)
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; (A.B.); (F.H.); (D.W.)
| | - Alexander Bartholomäus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; (A.B.); (F.H.); (D.W.)
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; (A.B.); (F.H.); (D.W.)
| | - Adam Boleslaw Zaborowski
- Bioinformatics Group, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| | - Dan Tchernov
- Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; (A.B.); (F.H.); (D.W.)
- Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
| | - Aharon Oren
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel; (S.G.-T.); (A.O.)
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel; (S.G.-T.); (A.O.)
- Correspondence: ; Tel.: +972-2-658-5234
| |
Collapse
|
4
|
Schramm S, Hiller KA, Cantzler S, Weilemann H, Cantzler M, Zimmermann JL, Cieplik F, Maisch T. The Latest Time Point of Retreatment (LTPR) as a Novel Method to Determine Antibacterial Effects for Binary Use of Cold Atmospheric Plasma and Conventional Agents. Front Microbiol 2020; 11:576500. [PMID: 33193191 PMCID: PMC7658100 DOI: 10.3389/fmicb.2020.576500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/07/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sandra Schramm
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Tim Maisch
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Tim Maisch,
| |
Collapse
|
5
|
Influence of Plasma Characteristics on the Inactivation Mechanism of Cold Atmospheric Plasma (CAP) for Listeria monocytogenes and Salmonella Typhimurium Biofilms. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This research aimed to take a next step towards unravelling the CAP inactivation mechanism for mature (Listeria monocytogenes (Gram positive) and Salmonella Typhimurium (Gram negative)) model biofilms, which will support the further optimization this novel technology. More specifically, we examined how the inactivation mechanism was influenced by the applied processing conditions, i.e., by the electrode configuration, the composition of the gas flow, and the power of the discharge. For each combination of plasma characteristics, we examined if the applied CAP treatment had an effect on (i) the cell membrane, (ii) the intracellular DNA, and (iii) the EPS matrix. In addition, we assessed which (reactive) CAP species were responsible for this lethal/damaging effect and whether these species were able to diffuse into the deeper layers of the biofilms. The results indicated that the inactivation mechanism was indeed influenced by the applied processing conditions. Nevertheless, the bactericidal effect of CAP was always a combination of both damage to the membrane and the DNA, caused by (i) the generation of (intracellular) ROS and RNS, (ii) a drop in pH, and/or (iii) the potential generation of a small amount of UV photons. Moreover, the plasma species were able to penetrate into the deeper layers of the model biofilms and some treatment conditions resulted in an increased biofilm porosity.
Collapse
|
6
|
Zheng S, Jiang B, Zhang T, Chen J. Combined mutagenesis and metabolic regulation to enhance D-arabitol production from Candida parapsilosis. J Ind Microbiol Biotechnol 2020; 47:425-435. [PMID: 32361796 DOI: 10.1007/s10295-020-02278-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/23/2020] [Indexed: 12/28/2022]
Abstract
D-Arabitol is an important pentitol that is widely used in the food, pharmaceutical and chemical industries. It is mainly produced by yeasts during the biotransformation of glucose. To obtain strains with high D-arabitol production, Candida parapsilosis was mutated using atmospheric and room temperature plasma (ARTP). Among the screened mutants, mutant A6 had the highest yield at 32.92 g/L, a 53.98% increase compared with the original strain (21.38 g/L). Furthermore, metabolic regulators were added to the medium to improve D-arabitol production. Pyrithioxin dihydrochloride increased D-arabitol production by 34.4% by regulating glucose-6-phosphate dehydrogenase, and 4-methylpyrazole increased D-arabitol production by 77.4% compared with the control group by inhibiting alcohol dehydrogenase activity. Amphotericin B and Triton X-100 increased D-arabitol production by 23.8% and 42.2% by improving the membrane permeability and dissolved oxygen content, respectively. This study may provide important implications for obtaining high-yield D-arabitol strains.
Collapse
Affiliation(s)
- Simeng Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
7
|
Antibacterial efficacy of cold atmospheric plasma against Enterococcus faecalis planktonic cultures and biofilms in vitro. PLoS One 2019; 14:e0223925. [PMID: 31770390 PMCID: PMC6879142 DOI: 10.1371/journal.pone.0223925] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Nosocomial infections have become a serious threat in our times and are getting more difficult to handle due to increasing development of resistances in bacteria. In this light, cold atmospheric plasma (CAP), which is known to effectively inactivate microorganisms, may be a promising alternative for application in the fields of dentistry and dermatology. CAPs are partly ionised gases, which operate at low temperature and are composed of electrons, ions, excited atoms and molecules, reactive oxygen and nitrogen species. In this study, the effect of CAP generated from ambient air was investigated against Enterococcus faecalis, grown on agar plates or as biofilms cultured for up to 72 h. CAP reduced the colony forming units (CFU) on agar plates by > 7 log10 steps. Treatment of 24 h old biofilms of E. faecalis resulted in CFU-reductions by ≥ 3 log10 steps after CAP treatment for 5 min and by ≥ 5 log10 steps after CAP treatment for 10 min. In biofilm experiments, chlorhexidine (CHX) and UVC radiation served as positive controls and were only slightly more effective than CAP. There was no damage of cytoplasmic membranes upon CAP treatment as shown by spectrometric measurements for release of nucleic acids. Thus, membrane damage seems not to be the primary mechanism of action for CAP towards E. faecalis. Overall, CAP showed pronounced antimicrobial efficacy against E. faecalis on agar plates as well as in biofilms similar to positive controls CHX or UVC.
Collapse
|
8
|
Jin M, Xiao A, Zhu L, Zhang Z, Huang H, Jiang L. The diversity and commonalities of the radiation-resistance mechanisms of Deinococcus and its up-to-date applications. AMB Express 2019; 9:138. [PMID: 31482336 PMCID: PMC6722170 DOI: 10.1186/s13568-019-0862-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023] Open
Abstract
Deinococcus is an extremophilic microorganism found in a wide range of habitats, including hot springs, radiation-contaminated areas, Antarctic soils, deserts, etc., and shows some of the highest levels of resistance to ionizing radiation known in nature. The highly efficient radiation-protection mechanisms of Deinococcus depend on a combination of passive and active defense mechanisms, including self-repair of DNA damage (homologous recombination, MMR, ER and ESDSA), efficient cellular damage clearance mechanisms (hydrolysis of damaged proteins, overexpression of repair proteins, etc.), and effective clearance of reactive oxygen species (ROS). Due to these mechanisms, Deinococcus cells are highly resistant to oxidation, radiation and desiccation, which makes them potential chassis cells for wide applications in many fields. This article summarizes the latest research on the radiation-resistance mechanisms of Deinococcus and prospects its biotechnological application potentials.
Collapse
|
9
|
Comparing two different plasma devices kINPen and Adtec SteriPlas regarding their molecular and cellular effects on wound healing. CLINICAL PLASMA MEDICINE 2018. [DOI: 10.1016/j.cpme.2018.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Karrer S, Arndt S. [Plasma medicine in dermatology: Mechanisms of action and clinical applications]. DER HAUTARZT 2016; 66:819-28. [PMID: 26391324 DOI: 10.1007/s00105-015-3686-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plasma medicine has developed into an innovative field of research showing high potential. Since the establishment of cold atmospheric plasma, new, multifaceted medical treatment opportunities have become available. Within a short time a multidisciplinary special interest group of medical scientists, physicists, and biologists was created, aiming to understand plasma medicine and answer clinical as well as scientific questions. In dermatology, new horizons are being opened for wound healing, tissue regeneration, treatment of skin infections, and tumor therapy. A major task will be the introduction of plasma into clinical medicine and, simultaneously, the further investigation of the mechanisms of action of plasma at the cellular level. Only then can the safety of plasma treatment in patients be assured.
Collapse
Affiliation(s)
- S Karrer
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93042, Regensburg, Deutschland.
| | - S Arndt
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93042, Regensburg, Deutschland
| |
Collapse
|
11
|
Uchiyama H, Zhao QL, Hassan MA, Andocs G, Nojima N, Takeda K, Ishikawa K, Hori M, Kondo T. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu. PLoS One 2015; 10:e0136956. [PMID: 26318000 PMCID: PMC4552761 DOI: 10.1371/journal.pone.0136956] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 08/12/2015] [Indexed: 01/10/2023] Open
Abstract
Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an intracellular milieu is discussed.
Collapse
Affiliation(s)
| | - Qing-Li Zhao
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Mariame Ali Hassan
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Gabor Andocs
- Tateyama Machine Co., Ltd., Toyama 930-1305, Japan
| | | | - Keigo Takeda
- Plasma Nanotechnology Research Center Nagoya University, Nagoya 464-8601, Japan
| | - Kenji Ishikawa
- Plasma Nanotechnology Research Center Nagoya University, Nagoya 464-8601, Japan
| | - Masaru Hori
- Plasma Nanotechnology Research Center Nagoya University, Nagoya 464-8601, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
12
|
Arndt S, Landthaler M, Zimmermann JL, Unger P, Wacker E, Shimizu T, Li YF, Morfill GE, Bosserhoff AK, Karrer S. Effects of cold atmospheric plasma (CAP) on ß-defensins, inflammatory cytokines, and apoptosis-related molecules in keratinocytes in vitro and in vivo. PLoS One 2015; 10:e0120041. [PMID: 25768736 PMCID: PMC4359157 DOI: 10.1371/journal.pone.0120041] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Cold atmospheric plasma (CAP) has been gaining increasing interest as a new approach for the treatment of skin diseases or wounds. Although this approach has demonstrated promising antibacterial activity, its exact mechanism of action remains unclear. This study explored in vitro and in vivo whether CAP influences gene expression and molecular mechanisms in keratinocytes. Our results revealed that a 2 min CAP treatment using the MicroPlaSter ß in analogy to the performed clinical studies for wound treatment induces expression of IL-8, TGF-ß1, and TGF-ß2. In vitro and in vivo assays indicated that keratinocyte proliferation, migration, and apoptotic mechanisms were not affected by the CAP treatment under the applied conditions. Further, we observed that antimicrobial peptides of the ß-defensin family are upregulated after CAP treatment. In summary, our results suggest that a 2 min application of CAP induces gene expression of key regulators important for inflammation and wound healing without causing proliferation, migration or cell death in keratinocytes. The induction of ß-defensins in keratinocytes describes an absolutely new plasma strategy. Activation of antimicrobial peptides supports the well-known antibacterial effect of CAP treatment, whereas the mechanism of ß-defensin activation by CAP is not investigated so far.
Collapse
Affiliation(s)
- Stephanie Arndt
- Institute of Pathology, University Regensburg, D-93042 Regensburg, Germany
| | - Michael Landthaler
- Department of Dermatology, University Hospital Regensburg, D-93042 Regensburg, Germany
| | - Julia L. Zimmermann
- Max Planck Institute for Extraterrestrial Physics, D-85748 Garching, Germany
| | - Petra Unger
- Department of Dermatology, University Hospital Regensburg, D-93042 Regensburg, Germany
| | - Eva Wacker
- Institute of Pathology, University Regensburg, D-93042 Regensburg, Germany
| | - Tetsuji Shimizu
- Max Planck Institute for Extraterrestrial Physics, D-85748 Garching, Germany
| | - Yang-Fang Li
- Max Planck Institute for Extraterrestrial Physics, D-85748 Garching, Germany
| | - Gregor E. Morfill
- Max Planck Institute for Extraterrestrial Physics, D-85748 Garching, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry and Molecular Medicine, University Erlangen, D-91054—Erlangen, Germany
| | - Sigrid Karrer
- Department of Dermatology, University Hospital Regensburg, D-93042 Regensburg, Germany
- * E-mail:
| |
Collapse
|
13
|
Gollmer A, Felgenträger A, Bäumler W, Maisch T, Späth A. A novel set of symmetric methylene blue derivatives exhibits effective bacteria photokilling – a structure–response study. Photochem Photobiol Sci 2015; 14:335-51. [DOI: 10.1039/c4pp00309h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study focuses on the structure–response relationship of symmetrically substituted phenothiazinium dyes.
Collapse
Affiliation(s)
- Anita Gollmer
- Department of Dermatology
- University Medical Center Regensburg
- Germany
| | | | - Wolfgang Bäumler
- Department of Dermatology
- University Medical Center Regensburg
- Germany
| | - Tim Maisch
- Department of Dermatology
- University Medical Center Regensburg
- Germany
| | - Andreas Späth
- Department of Organic Chemistry
- University of Regensburg
- Germany
| |
Collapse
|
14
|
Inactivation of microbes and macromolecules by atmospheric-pressure plasma jets. Appl Microbiol Biotechnol 2014; 98:6205-13. [PMID: 24841116 DOI: 10.1007/s00253-014-5781-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
Plasma is ionized gas, which is found in various forms in nature and can also be generated artificially. A variety of cold atmospheric-pressure plasmas are currently being investigated for their clinical utility, and first studies reporting on the treatment of patients showed that plasma treatment may support the wound healing process. One of the benefits of plasma treatment is the effective inactivation of bacteria including tenacious pathogens such as Pseudomonas aeruginosa or multiresistant Staphylococcus aureus (MRSA). Neither the molecular mechanisms promoting wound healing nor those underlying bacterial inactivation are fully understood yet. The review has a focus on plasma jets, a particular type of cold atmospheric-pressure plasma sources featuring an indirect treatment whereby the treated substrates do not come into contact with the plasma directly but are exposed to the plasma-emitted reactive species and photons. Such plasma jets are being employed as tools in basic research regarding the effects of plasmas on biological samples. This review provides a brief overview on the recent clinical investigations into the benefits of cold atmospheric-pressure plasmas. It then describes our current understanding of the mechanisms leading to bacterial inactivation and inactivation of biomacromolecules gained by employing plasma jets.
Collapse
|
15
|
Heinlin J, Maisch T, Zimmermann JL, Shimizu T, Holzmann T, Simon M, Heider J, Landthaler M, Morfill G, Karrer S. Contact-free inactivation of Trichophyton rubrum and Microsporum canis by cold atmospheric plasma treatment. Future Microbiol 2014; 8:1097-106. [PMID: 24020738 DOI: 10.2217/fmb.13.86] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Cold atmospheric plasma (CAP) has already proven efficient at disinfection of microorganisms including biofilms. The objective of the present study is to assess the efficacy of CAP against the dermatophytes Trichophyton rubrum and Microsporum canis in vitro. MATERIALS & METHODS T. rubrum and M. canis were exposed to CAP for different treatment times and time intervals in vitro. Treatment with ciclopirox olamine or UVC radiation (0.120 J/cm(2)) served as controls. CAP was generated by the surface microdischarge technology. Fungal colony growth was measured upon CAP treatment. RESULTS Repeated daily CAP treatments of 10 min demonstrated an inhibition of growth during the treatment period of 9 days. Single CAP treatment sessions for 5, 8 and 10 min, as well as treatments for 5 or 8 min daily, resulted in less fungal growth inhibition. UVC radiation treatment failed, but not ciclopirox olamine. CONCLUSION CAP shows promising potential for future application in the treatment of dermatophyte infections.
Collapse
Affiliation(s)
- Julia Heinlin
- Department of Dermatology, University Hospital Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Isbary G, Shimizu T, Li YF, Stolz W, Thomas HM, Morfill GE, Zimmermann JL. Cold atmospheric plasma devices for medical issues. Expert Rev Med Devices 2014; 10:367-77. [PMID: 23668708 DOI: 10.1586/erd.13.4] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cold atmospheric plasma science is an innovative upcoming technology for the medical sector. The plasma composition and subsequent effects on cells, tissues and pathogens can vary enormously depending on the plasma source, the plasma settings and the ambient conditions. Cold atmospheric plasmas consist of a highly reactive mix of ions and electrons, reactive molecules, excited species, electric fields and to some extent also UV radiation. In the last year, this partly ionized gas has been demonstrated to have a broad antimicrobial activity, while resistance and resistance development are unlikely. Furthermore, recent research has indicated that plasmas also have a strong influence on various cell lines and cell functions, including anticancer properties. This review summarizes the major plasma designs available and their main benefits, as well as assessing possible risks of this new technology.
Collapse
Affiliation(s)
- Georg Isbary
- Department of Dermatology, Allergology and Environmental Medicine, Hospital Munich Schwabing, Koelner Platz 1, Munich 80804, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Li YF, Taylor D, Zimmermann J, Bunk W, Monetti R, Isbary G, Boxhammer V, Schmidt HU, Shimizu T, Thomas H, Morfill G. In vivo skin treatment using two portable plasma devices: Comparison of a direct and an indirect cold atmospheric plasma treatment. CLINICAL PLASMA MEDICINE 2013. [DOI: 10.1016/j.cpme.2013.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Plimpton SR, Gołkowski M, Mitchell DG, Austin C, Eaton SS, Eaton GR, Gołkowski C, Voskuil M. Remote delivery of hydroxyl radicals via secondary chemistry of a nonthermal plasma effluent. Biotechnol Bioeng 2013; 110:1936-44. [DOI: 10.1002/bit.24853] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/05/2013] [Accepted: 01/14/2013] [Indexed: 11/09/2022]
|