1
|
Kraußer F, Rabe K, Topham CM, Voland J, Lilienthal L, Kundoch JO, Ohde D, Liese A, Walther T. Cell-Free Reaction System for ATP Regeneration from d-Fructose. ACS Synth Biol 2025; 14:1250-1263. [PMID: 40143462 PMCID: PMC12012885 DOI: 10.1021/acssynbio.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Adenosine triphosphate (ATP)-dependent in vitro bioprocesses, such as cell-free protein synthesis and the production of phosphorylated fine chemicals, are of considerable industrial significance. However, their implementation is mainly hindered by the high cost of ATP. We propose and demonstrate the feasibility of a cell-free ATP regeneration system based on the in situ generation of the high-energy compound acetyl phosphate from low-cost d-fructose and inorganic phosphate substrates. The enzyme cascade chains d-fructose phosphoketolase, d-erythrose isomerase, d-erythrulose phosphoketolase, and glycolaldehyde phosphoketolase activities theoretically enabling production of 3 mol ATP per mol of d-fructose. Through a semirational engineering approach and the screening of nine single-mutation libraries, we optimized the phosphoketolase (PKT) from Bifidobacterium adolescentis, identifying the improved variant Bad.F6Pkt H548N. This mutant exhibited a 5.6-fold increase in d-fructose activity, a 2.2-fold increase in d-erythrulose activity, and a 1.3-fold increase in glycolaldehyde activity compared to the wild-type enzyme. The Bad.F6Pkt H548N mutant was initially implemented in a cell-free reaction system together with an acetate kinase from Geobacillus stearothermophilus and a glycerol kinase from Cellulomonas sp. for the production of glycerol-3 phosphate from ADP and glycerol. We demonstrated the feasibility of ATP regeneration from 25 mM d-fructose with a stoichiometry of 1 mol of ATP per mol of C6 ketose. Subsequently, the reaction system was enhanced by incorporating d-erythrose isomerase activity provided by a l-rhamnose isomerase from Pseudomonas stutzeri. In the complete system, the ATP yield increased to 2.53 mol molfructose-1 with a maximum productivity of 7.2 mM h-1.
Collapse
Affiliation(s)
- Franziska Kraußer
- Chair
of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01062 Dresden, Germany
| | - Kenny Rabe
- Chair
of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01062 Dresden, Germany
| | | | - Julian Voland
- Chair
of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01062 Dresden, Germany
| | - Laura Lilienthal
- Chair
of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01062 Dresden, Germany
| | - Jan-Ole Kundoch
- Institute
of Technical Biocatalysis, Hamburg University
of Technology, Denickestr.
15, 21073 Hamburg, Germany
| | - Daniel Ohde
- Institute
of Technical Biocatalysis, Hamburg University
of Technology, Denickestr.
15, 21073 Hamburg, Germany
| | - Andreas Liese
- Institute
of Technical Biocatalysis, Hamburg University
of Technology, Denickestr.
15, 21073 Hamburg, Germany
| | - Thomas Walther
- Chair
of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01062 Dresden, Germany
| |
Collapse
|
2
|
Amorim J, Liao K, Mandal A, Costa AFDS, Roumeli E, Sarubbo LA. Impact of Carbon Source on Bacterial Cellulose Network Architecture and Prolonged Lidocaine Release. Polymers (Basel) 2024; 16:3021. [PMID: 39518230 PMCID: PMC11548197 DOI: 10.3390/polym16213021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The biosynthesis of bacterial cellulose (BC) is significantly influenced by the type of carbon source available in the growth medium, which in turn dictates the material's final properties. This study systematically investigates the effects of five carbon sources-raffinose (C18H32O16), sucrose (C12H22O11), glucose (C6H12O6), arabinose (C5H10O5), and glycerol (C3H8O3)-on BC production by Komagataeibacter hansenii. The varying molecular weights and structural characteristics of these carbon sources provide a framework for examining their influence on BC yield, fiber morphology, and network properties. BC production was monitored through daily measurements of optical density and pH levels in the fermentation media from day 1 to day 14, providing valuable insights into bacterial growth kinetics and cellulose synthesis rates. Scanning electron microscopy (SEM) was used to elucidate fibril diameter and pore size distribution. Wide-angle X-ray scattering (WAXS) provided a detailed assessment of crystallinity. Selected BC pellicles were further processed via freeze-drying to produce a foam-like material that maximally preserves the natural three-dimensional structure of BC, facilitating the incorporation and release of lidocaine hydrochloride (5%), a widely used local anesthetic. The lidocaine-loaded BC foams exhibited a sustained and controlled release profile over 14 days in simulated body fluid, highlighting the importance of the role of carbon source selection in shaping the BC network architecture and its impact on drug release profile. These results highlight the versatility and sustainability of BC as a platform for wound healing and drug delivery applications. The tunable properties of BC networks provide opportunities for optimizing therapeutic delivery and improving wound care outcomes, positioning BC as an effective material for enhanced wound management strategies.
Collapse
Affiliation(s)
- Julia Amorim
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n—Dois Irmãos, Recife 52171-900, PE, Brazil;
- Department of Materials and Science and Engineering, University of Washington (UW), 2110 Mason Road, Roberts Hall 302, Seattle, WA 98195, USA; (K.L.); (A.M.)
| | - Kuotian Liao
- Department of Materials and Science and Engineering, University of Washington (UW), 2110 Mason Road, Roberts Hall 302, Seattle, WA 98195, USA; (K.L.); (A.M.)
| | - Aban Mandal
- Department of Materials and Science and Engineering, University of Washington (UW), 2110 Mason Road, Roberts Hall 302, Seattle, WA 98195, USA; (K.L.); (A.M.)
| | - Andréa Fernanda de Santana Costa
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, PE, Brazil;
- Centro de Design Comunicação, Campus Acadêmico da Região Agreste, Universidade Federal de Pernambuco (UFPE), Av Marielle Franco, s/n—Nova Caruaru, Caruaru 50670-900, PE, Brazil
| | - Eleftheria Roumeli
- Department of Materials and Science and Engineering, University of Washington (UW), 2110 Mason Road, Roberts Hall 302, Seattle, WA 98195, USA; (K.L.); (A.M.)
| | - Leonie Asfora Sarubbo
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, PE, Brazil;
- Escola de Tecnologia e Comunicação, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, PE, Brazil
| |
Collapse
|
3
|
Delarouzée A, Lopes Ferreira N, Wasels F. Alleviation of Carbon Catabolite Repression through araR and xylR Inactivation in Clostridium acetobutylicum DSM 792. Appl Environ Microbiol 2023; 89:e0213522. [PMID: 36779716 PMCID: PMC10057040 DOI: 10.1128/aem.02135-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/15/2023] [Indexed: 02/14/2023] Open
Abstract
Efficient bioconversion processes of lignocellulose-derived carbohydrates into chemicals have received increasing interest in the last decades since they represent a promising alternative to petro-based processes. Despite efforts to adapt microorganisms to the use of such substrates, one of their major limitations remains their inability to consume multiple sugars simultaneously. In particular, the solventogenic model organism Clostridium acetobutylicum struggles to efficiently use second generation (2G) substrates because of carbon catabolite repression mechanisms that prevent the assimilation of xylose and arabinose in the presence of glucose. In this study, we addressed this issue by inactivating genes encoding transcriptional repressors involved in such mechanisms in the C. acetobutylicum strain DSM 792. Our results showed that the deletion of the two putative copies of xylR (CA_C2613 and CA_C3673) had little or no effect on the ability of the strain to consume xylose. Unlikely, the deletion of araR (CA_C1340) led to a 2.5-fold growth rate increase on xylose. The deletion of both araR and xylR genes resulted in the coassimilation of arabinose together with glucose, while xylose consumption remained inefficient. Transcriptional analyses of the wild-type strain and mutants grown on glucose, arabinose, xylose, and combinations of them provided a crucial, global overview of regulations triggered by the products of both araR and xylR in C. acetobutylicum. As suggested by these data, overexpression of xylA and xylB led to further improvement of pentose assimilation. Those results represent a step forward in the development of genetically modified strains of C. acetobutylicum able to coassimilate lignocellulosic-derived sugars. IMPORTANCE C. acetobutylicum is a strong candidate to produce chemicals of interest such as C3 and C4 alcohols. Used for more than a century for its capacity to produce a mixture of acetone, butanol, and ethanol from first generation (1G) substrates, its natural ability to assimilate a wide variety of monoosides also predisposes it as an auspicious organism for the valorization of lignocellulose-derived sugar mixtures. To achieve this purpose, a better understanding of carbon catabolite repression mechanisms is essential. The work done here provides critical knowledge on how these mechanisms occur during growth on glucose, arabinose, and xylose mixtures, as well as strategies to tackle them.
Collapse
|
4
|
Wagner N, Bade F, Straube E, Rabe K, Frazão CJR, Walther T. In vivo implementation of a synthetic metabolic pathway for the carbon-conserving conversion of glycolaldehyde to acetyl-CoA. Front Bioeng Biotechnol 2023; 11:1125544. [PMID: 36845174 PMCID: PMC9947464 DOI: 10.3389/fbioe.2023.1125544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Ethylene glycol (EG) derived from plastic waste or CO2 can serve as a substrate for microbial production of value-added chemicals. Assimilation of EG proceeds though the characteristic intermediate glycolaldehyde (GA). However, natural metabolic pathways for GA assimilation have low carbon efficiency when producing the metabolic precursor acetyl-CoA. In alternative, the reaction sequence catalyzed by EG dehydrogenase, d-arabinose 5-phosphate aldolase, d-arabinose 5-phosphate isomerase, d-ribulose 5-phosphate 3-epimerase (Rpe), d-xylulose 5-phosphate phosphoketolase, and phosphate acetyltransferase may enable the conversion of EG into acetyl-CoA without carbon loss. We investigated the metabolic requirements for in vivo function of this pathway in Escherichia coli by (over)expressing constituting enzymes in different combinations. Using 13C-tracer experiments, we first examined the conversion of EG to acetate via the synthetic reaction sequence and showed that, in addition to heterologous phosphoketolase, overexpression of all native enzymes except Rpe was required for the pathway to function. Since acetyl-CoA could not be reliably quantified by our LC/MS-method, the distribution of isotopologues in mevalonate, a stable metabolite that is exclusively derived from this intermediate, was used to probe the contribution of the synthetic pathway to biosynthesis of acetyl-CoA. We detected strong incorporation of 13C carbon derived from labeled GA in all intermediates of the synthetic pathway. In presence of unlabeled co-substrate glycerol, 12.4% of the mevalonate (and therefore acetyl-CoA) was derived from GA. The contribution of the synthetic pathway to acetyl-CoA production was further increased to 16.1% by the additional expression of the native phosphate acyltransferase enzyme. Finally, we demonstrated that conversion of EG to mevalonate was feasible albeit at currently extremely small yields.
Collapse
Affiliation(s)
- Nils Wagner
- TU Dresden, Institute of Natural Materials Technology, Dresden, Germany
| | - Frederik Bade
- TU Dresden, Institute of Natural Materials Technology, Dresden, Germany
| | - Elly Straube
- TU Dresden, Institute of Natural Materials Technology, Dresden, Germany
| | - Kenny Rabe
- TU Dresden, Institute of Natural Materials Technology, Dresden, Germany
| | | | | |
Collapse
|
5
|
Wang Z, Ji X, Wang S, Wu Q, Xu Y. Sugar profile regulates the microbial metabolic diversity in Chinese Baijiu fermentation. Int J Food Microbiol 2021; 359:109426. [PMID: 34627066 DOI: 10.1016/j.ijfoodmicro.2021.109426] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Cereals are widely used as raw material for food fermentation, and they can provide a variety of sugars in the fermentation via saccharification. However, the effect of sugar profile on microbial metabolism in spontaneous food fermentation is still unclear. Here, this work studied the regulation of sugar profile on the diversity of microbiota and their metabolism in Chinese Baijiu fermentation using sorghum as raw material. Six sugars were detected during Baijiu fermentation with 6 different cultivars of sorghum. The diversity of microbiota (ANOSIM: bacteria: P = 0.001, R = 0.77; fungi: P = 0.009, R = 0.33) and metabolites (ANOSIM: P = 0.001, R = 0.50) had different profiles during Baijiu fermentation. Among these sugars, glucose, fructose, and arabinose were identified as key sugars driving both the microbial and the metabolic diversity during Chinese Baijiu fermentation, and the metabolic diversity was positively correlated with the microbial diversity (P < 0.05). Hence, response surface methodology was used to establish a predictive model for regulating the metabolic diversity with the combination of three key sugars. The metabolic diversity significantly increased to 0.42 with the optimized levels of glucose (31.82 g/L), fructose (4.81 g/L), and arabinose (0.20 g/L), compared with unoptimized low-level average metabolic diversity (0.29). This work would provide a strategy to control microbial metabolism in spontaneous food fermentation, hence to improve the quality of fermented foods.
Collapse
Affiliation(s)
- Zheng Wang
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xueao Ji
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shilei Wang
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
6
|
Wen Z, Lu M, Ledesma-Amaro R, Li Q, Jin M, Yang S. TargeTron Technology Applicable in Solventogenic Clostridia: Revisiting 12 Years' Advances. Biotechnol J 2019; 15:e1900284. [PMID: 31475782 DOI: 10.1002/biot.201900284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/20/2019] [Indexed: 12/11/2022]
Abstract
Clostridium has great potential in industrial application and medical research. But low DNA repair capacity and plasmids transformation efficiency severely delay development and application of genetic tools based on homologous recombination (HR). TargeTron is a gene editing technique dependent on the mobility of group II introns, rather than homologous recombination, which makes it very suitable for gene disruption of Clostridium. The application of TargeTron technology in solventogenic Clostridium is academically reported in 2007 and this tool has been introduced in various clostridia as it is easy to operate, time saving, and reliable. TargeTron has made great progress in solventogenic Clostridium in the aspects of acetone-butanol-ethanol (ABE) fermentation pathway modification, important functional genes identification, and xylose metabolic pathway analysis and reconstruction. In the review, 12 years' advances of TargeTron technology applicable in solventogenic Clostridium, including its principle, technical characteristics, application, and efforts to expand its capabilities, or to avoid potential drawbacks, are revisisted. Some other technologies as putative competitors or collaborators are also discussed. It is believed that TargeTron combined with CRISPR/Cas-assisted gene/base editing and gene-expression regulation system will make a better future for clostridial genetic modification.
Collapse
Affiliation(s)
- Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | | | - Qi Li
- College of Life Sciences, Sichuan Normal University, Longquan, Chengdu, 610101, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Zhejiang, 313000, China
| |
Collapse
|
7
|
Growth-coupled evolution of phosphoketolase to improve l-glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 2019; 103:8413-8425. [DOI: 10.1007/s00253-019-10043-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023]
|
8
|
Birgen C, Dürre P, Preisig HA, Wentzel A. Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:167. [PMID: 31297155 PMCID: PMC6598312 DOI: 10.1186/s13068-019-1508-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/19/2019] [Indexed: 05/09/2023]
Abstract
After just more than 100 years of history of industrial acetone-butanol-ethanol (ABE) fermentation, patented by Weizmann in the UK in 1915, butanol is again today considered a promising biofuel alternative based on several advantages compared to the more established biofuels ethanol and methanol. Large-scale fermentative production of butanol, however, still suffers from high substrate cost and low product titers and selectivity. There have been great advances the last decades to tackle these problems. However, understanding the fermentation process variables and their interconnectedness with a holistic view of the current scientific state-of-the-art is lacking to a great extent. To illustrate the benefits of such a comprehensive approach, we have developed a dataset by collecting data from 175 fermentations of lignocellulosic biomass and mixed sugars to produce butanol that reported during the past three decades of scientific literature and performed an exploratory data analysis to map current trends and bottlenecks. This review presents the results of this exploratory data analysis as well as main features of fermentative butanol production from lignocellulosic biomass with a focus on performance indicators as a useful tool to guide further research and development in the field towards more profitable butanol manufacturing for biofuel applications in the future.
Collapse
Affiliation(s)
- Cansu Birgen
- Department of Chemical Engineering, NTNU, 7491 Trondheim, Norway
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, Ulm University, 89069 Ulm, Germany
| | - Heinz A. Preisig
- Department of Chemical Engineering, NTNU, 7491 Trondheim, Norway
| | | |
Collapse
|
9
|
Kim CC, Healey GR, Kelly WJ, Patchett ML, Jordens Z, Tannock GW, Sims IM, Bell TJ, Hedderley D, Henrissat B, Rosendale DI. Genomic insights from Monoglobus pectinilyticus: a pectin-degrading specialist bacterium in the human colon. ISME JOURNAL 2019; 13:1437-1456. [PMID: 30728469 PMCID: PMC6776006 DOI: 10.1038/s41396-019-0363-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/07/2019] [Accepted: 01/19/2019] [Indexed: 12/16/2022]
Abstract
Pectin is abundant in modern day diets, as it comprises the middle lamellae and one-third of the dry carbohydrate weight of fruit and vegetable cell walls. Currently there is no specialized model organism for studying pectin fermentation in the human colon, as our collective understanding is informed by versatile glycan-degrading bacteria rather than by specialist pectin degraders. Here we show that the genome of Monoglobus pectinilyticus possesses a highly specialized glycobiome for pectin degradation, unique amongst Firmicutes known to be in the human gut. Its genome encodes a simple set of metabolic pathways relevant to pectin sugar utilization, and its predicted glycobiome comprises an unusual distribution of carbohydrate-active enzymes (CAZymes) with numerous extracellular methyl/acetyl esterases and pectate lyases. We predict the M. pectinilyticus degradative process is facilitated by cell-surface S-layer homology (SLH) domain-containing proteins, which proteomics analysis shows are differentially expressed in response to pectin. Some of these abundant cell surface proteins of M. pectinilyticus share unique modular organizations rarely observed in human gut bacteria, featuring pectin-specific CAZyme domains and the cell wall-anchoring SLH motifs. We observed M. pectinilyticus degrades various pectins, RG-I, and galactan to produce polysaccharide degradation products (PDPs) which are presumably shared with other inhabitants of the human gut microbiome (HGM). This strain occupies a new ecological niche for a primary degrader specialized in foraging a habitually consumed plant glycan, thereby enriching our understanding of the diverse community profile of the HGM.
Collapse
Affiliation(s)
- Caroline C Kim
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand. .,Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand.
| | - Genelle R Healey
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand.,Massey Institute of Food Science and Technology, School of Food and Nutrition, Massey University, Palmerston North, New Zealand
| | | | - Mark L Patchett
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Zoe Jordens
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Gerald W Tannock
- Department of Microbiology and Immunology, Microbiome Otago, University of Otago, Dunedin, 9016, New Zealand
| | - Ian M Sims
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, 5040, New Zealand
| | - Tracey J Bell
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, 5040, New Zealand
| | - Duncan Hedderley
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, F-13288, France.,Institut National de la Recherche Agronomique, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, F-13288, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Douglas I Rosendale
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand.
| |
Collapse
|
10
|
Amiri H, Karimi K. Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: Challenges and perspectives. BIORESOURCE TECHNOLOGY 2018; 270:702-721. [PMID: 30195696 DOI: 10.1016/j.biortech.2018.08.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Butanol is acknowledged as a drop-in biofuel that can be used in the existing transportation infrastructure, addressing the needs for sustainable liquid fuel. However, before becoming a thoughtful alternative for fossil fuel, butanol should be produced efficiently from a widely-available, renewable, and cost-effective source. In this regard, lignocellulosic materials, the main component of organic wastes from agriculture, forestry, municipalities, and even industries seems to be the most promising source. The butanol-producing bacteria, i.e., Clostridia sp., can uptake a wide range of hexoses, pentoses, and oligomers obtained from hydrolysis of cellulose and hemicellulose content of lignocelluloses. The present work is dedicated to reviewing different processes containing pretreatment and hydrolysis of hemicellulose and cellulose developed for preparing fermentable hydrolysates for biobutanol production.
Collapse
Affiliation(s)
- Hamid Amiri
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
11
|
Servinsky MD, Renberg RL, Perisin MA, Gerlach ES, Liu S, Sund CJ. Arabinose-Induced Catabolite Repression as a Mechanism for Pentose Hierarchy Control in Clostridium acetobutylicum ATCC 824. mSystems 2018; 3:e00064-18. [PMID: 30374459 PMCID: PMC6199471 DOI: 10.1128/msystems.00064-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/13/2018] [Indexed: 12/27/2022] Open
Abstract
Bacterial fermentation of carbohydrates from sustainable lignocellulosic biomass into commodity chemicals by the anaerobic bacterium Clostridium acetobutylicum is a promising alternative source to fossil fuel-derived chemicals. Recently, it was demonstrated that xylose is not appreciably fermented in the presence of arabinose, revealing a hierarchy of pentose utilization in this organism (L. Aristilde, I. A. Lewis, J. O. Park, and J. D. Rabinowitz, Appl Environ Microbiol 81:1452-1462, 2015, https://doi.org/10.1128/AEM.03199-14). The goal of the current study is to characterize the transcriptional regulation that occurs and perhaps drives this pentose hierarchy. Carbohydrate consumption rates showed that arabinose, like glucose, actively represses xylose utilization in cultures fermenting xylose. Further, arabinose addition to xylose cultures led to increased acetate-to-butyrate ratios, which indicated a transition of pentose catabolism from the pentose phosphate pathway to the phosphoketolase pathway. Transcriptome sequencing (RNA-Seq) confirmed that arabinose addition to cells actively growing on xylose resulted in increased phosphoketolase (CA_C1343) mRNA levels, providing additional evidence that arabinose induces this metabolic switch. A significant overlap in differentially regulated genes after addition of arabinose or glucose suggested a common regulation mechanism. A putative open reading frame (ORF) encoding a potential catabolite repression phosphocarrier histidine protein (Crh) was identified that likely participates in the observed transcriptional regulation. These results substantiate the claim that arabinose is utilized preferentially over xylose in C. acetobutylicum and suggest that arabinose can activate carbon catabolite repression via Crh. Furthermore, they provide valuable insights into potential mechanisms for altering pentose utilization to modulate fermentation products for chemical production. IMPORTANCE Clostridium acetobutylicum can ferment a wide variety of carbohydrates to the commodity chemicals acetone, butanol, and ethanol. Recent advances in genetic engineering have expanded the chemical production repertoire of C. acetobutylicum using synthetic biology. Due to its natural properties and genetic engineering potential, this organism is a promising candidate for converting biomass-derived feedstocks containing carbohydrate mixtures to commodity chemicals via natural or engineered pathways. Understanding how this organism regulates its metabolism during growth on carbohydrate mixtures is imperative to enable control of synthetic gene circuits in order to optimize chemical production. The work presented here unveils a novel mechanism via transcriptional regulation by a predicted Crh that controls the hierarchy of carbohydrate utilization and is essential for guiding robust genetic engineering strategies for chemical production.
Collapse
Affiliation(s)
| | | | | | | | - Sanchao Liu
- U.S. Army Research Laboratory, RDRL-SEE-B, Adelphi, Maryland, USA
| | | |
Collapse
|
12
|
Methane utilization in Methylomicrobium alcaliphilum 20Z R: a systems approach. Sci Rep 2018; 8:2512. [PMID: 29410419 PMCID: PMC5802761 DOI: 10.1038/s41598-018-20574-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022] Open
Abstract
Biological methane utilization, one of the main sinks of the greenhouse gas in nature, represents an attractive platform for production of fuels and value-added chemicals. Despite the progress made in our understanding of the individual parts of methane utilization, our knowledge of how the whole-cell metabolic network is organized and coordinated is limited. Attractive growth and methane-conversion rates, a complete and expert-annotated genome sequence, as well as large enzymatic, 13C-labeling, and transcriptomic datasets make Methylomicrobium alcaliphilum 20ZR an exceptional model system for investigating methane utilization networks. Here we present a comprehensive metabolic framework of methane and methanol utilization in M. alcaliphilum 20ZR. A set of novel metabolic reactions governing carbon distribution across central pathways in methanotrophic bacteria was predicted by in-silico simulations and confirmed by global non-targeted metabolomics and enzymatic evidences. Our data highlight the importance of substitution of ATP-linked steps with PPi-dependent reactions and support the presence of a carbon shunt from acetyl-CoA to the pentose-phosphate pathway and highly branched TCA cycle. The diverged TCA reactions promote balance between anabolic reactions and redox demands. The computational framework of C1-metabolism in methanotrophic bacteria can represent an efficient tool for metabolic engineering or ecosystem modeling.
Collapse
|
13
|
Wang Y, Ho SH, Yen HW, Nagarajan D, Ren NQ, Li S, Hu Z, Lee DJ, Kondo A, Chang JS. Current advances on fermentative biobutanol production using third generation feedstock. Biotechnol Adv 2017; 35:1049-1059. [DOI: 10.1016/j.biotechadv.2017.06.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/08/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022]
|
14
|
Henard CA, Smith HK, Guarnieri MT. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst. Metab Eng 2017; 41:152-158. [DOI: 10.1016/j.ymben.2017.03.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/17/2017] [Accepted: 03/31/2017] [Indexed: 12/20/2022]
|
15
|
Rubino F, Carberry C, M Waters S, Kenny D, McCabe MS, Creevey CJ. Divergent functional isoforms drive niche specialisation for nutrient acquisition and use in rumen microbiome. ISME JOURNAL 2017; 11:932-944. [PMID: 28085156 PMCID: PMC5364355 DOI: 10.1038/ismej.2016.172] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/28/2016] [Accepted: 09/21/2016] [Indexed: 01/16/2023]
Abstract
Many microbes in complex competitive environments share genes for acquiring and utilising nutrients, questioning whether niche specialisation exists and if so, how it is maintained. We investigated the genomic signatures of niche specialisation in the rumen microbiome, a highly competitive, anaerobic environment, with limited nutrient availability determined by the biomass consumed by the host. We generated individual metagenomic libraries from 14 cows fed an ad libitum diet of grass silage and calculated functional isoform diversity for each microbial gene identified. The animal replicates were used to calculate confidence intervals to test for differences in diversity of functional isoforms between microbes that may drive niche specialisation. We identified 153 genes with significant differences in functional isoform diversity between the two most abundant bacterial genera in the rumen (Prevotella and Clostridium). We found Prevotella possesses a more diverse range of isoforms capable of degrading hemicellulose, whereas Clostridium for cellulose. Furthermore, significant differences were observed in key metabolic processes indicating that isoform diversity plays an important role in maintaining their niche specialisation. The methods presented represent a novel approach for untangling complex interactions between microorganisms in natural environments and have resulted in an expanded catalogue of gene targets central to rumen cellulosic biomass degradation.
Collapse
Affiliation(s)
- Francesco Rubino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK.,Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - Ciara Carberry
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland.,School of Agriculture, University College Dublin, Dublin, Ireland
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - David Kenny
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - Matthew S McCabe
- Animal and Bioscience Research Department, Teagasc, Grange, Dunsany, Co., Meath, Ireland
| | - Christopher J Creevey
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
16
|
Aristilde L. Metabolite labelling reveals hierarchies in Clostridium acetobutylicum that selectively channel carbons from sugar mixtures towards biofuel precursors. Microb Biotechnol 2016; 10:162-174. [PMID: 27878973 PMCID: PMC5270725 DOI: 10.1111/1751-7915.12459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/23/2016] [Indexed: 12/30/2022] Open
Abstract
Clostridial fermentation of cellulose and hemicellulose relies on the cellular physiology controlling the metabolism of the cellulosic hexose sugar (glucose) with respect to the hemicellulosic pentose sugars (xylose and arabinose) and the hemicellulosic hexose sugars (galactose and mannose). Here, liquid chromatography–mass spectrometry and stable isotope tracers in Clostridium acetobutylicum were applied to investigate the metabolic hierarchy of glucose relative to the different hemicellulosic sugars towards two important biofuel precursors, acetyl‐coenzyme A and butyryl‐coenzyme A. The findings revealed constitutive metabolic hierarchies in C. acetobutylicum that facilitate (i) selective investment of hemicellulosic pentoses towards ribonucleotide biosynthesis without substantial investment into biofuel production and (ii) selective contribution of hemicellulosic hexoses through the glycolytic pathway towards biofuel precursors. Long‐term isotopic enrichment demonstrated incorporation of both pentose sugars into pentose‐phosphates and ribonucleotides in the presence of glucose. Kinetic labelling data, however, showed that xylose was not routed towards the biofuel precursors but there was minor contribution from arabinose. Glucose hierarchy over the hemicellulosic hexoses was substrate‐dependent. Kinetic labelling of hexose‐phosphates and triose‐phosphates indicated that mannose was assimilated but not galactose. Labelling of both biofuel precursors confirmed this metabolic preference. These results highlight important metabolic considerations in the accounting of clostridial mixed‐sugar utilization.
Collapse
Affiliation(s)
- Ludmilla Aristilde
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
17
|
Abstract
Marine diatoms have potential as a biotechnological production platform, especially for lipid-derived products, including biofuels. Here we introduce some features of diatom metabolism, particularly with respect to photosynthesis, photorespiration and lipid synthesis and their differences relative to other photosynthetic eukaryotes. Since structural metabolic modelling of other photosynthetic organisms has been shown to be capable of representing their metabolic capabilities realistically, we briefly review the main approaches to this type of modelling. We then propose that genome-scale modelling of the diatom Phaeodactylum tricornutum, in response to varying light intensity, could uncover the novel aspects of the metabolic potential of this organism.
Collapse
|
18
|
Hierarchy in pentose sugar metabolism in Clostridium acetobutylicum. Appl Environ Microbiol 2016; 81:1452-62. [PMID: 25527534 DOI: 10.1128/aem.03199-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bacterial metabolism of polysaccharides from plant detritus into acids and solvents is an essential component of the terrestrial carbon cycle. Understanding the underlying metabolic pathways can also contribute to improved production of biofuels. Using a metabolomics approach involving liquid chromatography-mass spectrometry, we investigated the metabolism of mixtures of the cellulosic hexose sugar (glucose) and hemicellulosic pentose sugars (xylose and arabinose) in the anaerobic soil bacterium Clostridium acetobutylicum. Simultaneous feeding of stable isotope-labeled glucose and unlabeled xylose or arabinose revealed that,as expected, glucose was preferentially used as the carbon source. Assimilated pentose sugars accumulated in pentose phosphate pathway (PPP) intermediates with minimal flux into glycolysis. Simultaneous feeding of xylose and arabinose revealed an unexpected hierarchy among the pentose sugars, with arabinose utilized preferentially over xylose. The phosphoketolase pathway (PKP) provides an alternative route of pentose catabolism in C. acetobutylicum that directly converts xylulose-5-phosphate into acetyl-phosphate and glyceraldehyde-3-phosphate, bypassing most of the PPP. When feeding the mixture of pentose sugars, the labeling patterns of lower glycolytic intermediates indicated more flux through the PKP than through the PPP and upper glycolysis, and this was confirmed by quantitative flux modeling. Consistent with direct acetyl-phosphate production from the PKP, growth on the pentose mixture resulted in enhanced acetate excretion. Taken collectively, these findings reveal two hierarchies in clostridial pentose metabolism: xylose is subordinate to arabinose, and the PPP is used less than the PKP.
Collapse
|
19
|
Liu D, Xu J, Wang Y, Chen Y, Shen X, Niu H, Guo T, Ying H. Comparative transcriptomic analysis of Clostridium acetobutylicum biofilm and planktonic cells. J Biotechnol 2016; 218:1-12. [DOI: 10.1016/j.jbiotec.2015.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 12/23/2022]
|
20
|
Sund CJ, Liu S, Germane KL, Servinsky MD, Gerlach ES, Hurley MM. Phosphoketolase flux in Clostridium acetobutylicum during growth on l-arabinose. Microbiology (Reading) 2015; 161:430-440. [DOI: 10.1099/mic.0.000008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Christian J. Sund
- US Army Research Laboratory, Sensors and Electron Devices Directorate, 2800 Powder Mill Road, Adelphi, MD 20783, USA
| | - Sanchao Liu
- Federal Staffing Resources, 2200 Somerville Rd, Annapolis, MD 21401, USA
| | - Katherine L. Germane
- Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017, USA
| | - Matthew D. Servinsky
- US Army Research Laboratory, Sensors and Electron Devices Directorate, 2800 Powder Mill Road, Adelphi, MD 20783, USA
| | - Elliot S. Gerlach
- Federal Staffing Resources, 2200 Somerville Rd, Annapolis, MD 21401, USA
| | - Margaret M. Hurley
- US Army Research Laboratory, RDRL-WML-B, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005, USA
| |
Collapse
|
21
|
Boutard M, Cerisy T, Nogue PY, Alberti A, Weissenbach J, Salanoubat M, Tolonen AC. Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass. PLoS Genet 2014; 10:e1004773. [PMID: 25393313 PMCID: PMC4230839 DOI: 10.1371/journal.pgen.1004773] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/24/2014] [Indexed: 12/16/2022] Open
Abstract
Microbial metabolism of plant polysaccharides is an important part of environmental carbon cycling, human nutrition, and industrial processes based on cellulosic bioconversion. Here we demonstrate a broadly applicable method to analyze how microbes catabolize plant polysaccharides that integrates carbohydrate-active enzyme (CAZyme) assays, RNA sequencing (RNA-seq), and anaerobic growth screening. We apply this method to study how the bacterium Clostridium phytofermentans ferments plant biomass components including glucans, mannans, xylans, galactans, pectins, and arabinans. These polysaccharides are fermented with variable efficiencies, and diauxies prioritize metabolism of preferred substrates. Strand-specific RNA-seq reveals how this bacterium responds to polysaccharides by up-regulating specific groups of CAZymes, transporters, and enzymes to metabolize the constituent sugars. Fifty-six up-regulated CAZymes were purified, and their activities show most polysaccharides are degraded by multiple enzymes, often from the same family, but with divergent rates, specificities, and cellular localizations. CAZymes were then tested in combination to identify synergies between enzymes acting on the same substrate with different catalytic mechanisms. We discuss how these results advance our understanding of how microbes degrade and metabolize plant biomass.
Collapse
Affiliation(s)
- Magali Boutard
- Genoscope, CEA, DSV, IG, Évry, France
- CNRS-UMR8030, Évry, France
- Department of Biology, Université d'Évry Val d'Essonne, Évry, France
| | - Tristan Cerisy
- Genoscope, CEA, DSV, IG, Évry, France
- CNRS-UMR8030, Évry, France
- Department of Biology, Université d'Évry Val d'Essonne, Évry, France
| | - Pierre-Yves Nogue
- Genoscope, CEA, DSV, IG, Évry, France
- CNRS-UMR8030, Évry, France
- Department of Biology, Université d'Évry Val d'Essonne, Évry, France
| | | | | | - Marcel Salanoubat
- Genoscope, CEA, DSV, IG, Évry, France
- CNRS-UMR8030, Évry, France
- Department of Biology, Université d'Évry Val d'Essonne, Évry, France
| | - Andrew C. Tolonen
- Genoscope, CEA, DSV, IG, Évry, France
- CNRS-UMR8030, Évry, France
- Department of Biology, Université d'Évry Val d'Essonne, Évry, France
- * E-mail:
| |
Collapse
|
22
|
Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: pathway dissection, regulation and engineering. Curr Opin Biotechnol 2014; 29:124-31. [DOI: 10.1016/j.copbio.2014.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/21/2014] [Accepted: 04/02/2014] [Indexed: 01/15/2023]
|
23
|
Fermentation of oxidized hexose derivatives by Clostridium acetobutylicum. Microb Cell Fact 2014; 13:139. [PMID: 25231163 PMCID: PMC4179846 DOI: 10.1186/s12934-014-0139-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/07/2014] [Indexed: 01/02/2023] Open
Abstract
Background Clostridium acetobutylicum fermentations are promising for production of commodity chemicals from heterogeneous biomass due to the wide range of substrates the organism can metabolize. Much work has been done to elucidate the pathways for utilization of aldoses, but little is known about metabolism of more oxidized substrates. Two oxidized hexose derivatives, gluconate and galacturonate, are present in low cost feedstocks, and their metabolism will contribute to overall metabolic output of these substrates. Results A complete metabolic network for glucose, gluconate, and galacturonate utilization was generated using online databases, previous studies, genomic context, and experimental data. Gluconate appears to be metabolized via the Entner-Doudoroff pathway, and is likely dehydrated to 2-keto-3-deoxy-gluconate before phosphorylation to 2-keto-3-deoxy-6-P-gluconate. Galacturonate appears to be processed via the Ashwell pathway, converging on a common metabolite for gluconate and galacturonate metabolism, 2-keto-3-deoxygluconate. As expected, increasingly oxidized substrates resulted in increasingly oxidized products with galacturonate fermentations being nearly homoacetic. Calculations of expected ATP and reducing equivalent yields and experimental data suggested galacturonate fermentations were reductant limited. Galacturonate fermentation was incomplete, which was not due solely to product inhibition or the inability to utilize low concentrations of galacturonate. Removal of H2 and CO2 by agitation resulted in faster growth, higher cell densities, formation of relatively more oxidized products, and higher product yields for cultures grown on glucose or gluconate. In contrast, cells grown on galacturonate showed reduced growth rates upon agitation, which was likely due to loss in reductant in the form of H2. The growth advantage seen on agitated glucose or gluconate cultures could not be solely attributed to improved ATP economics, thereby indicating other factors are also important. Conclusions The metabolic network presented in this work should facilitate similar reconstructions in other organisms, and provides a further understanding of the pathways involved in metabolism of oxidized feedstocks and carbohydrate mixtures. The nearly homoacetic fermentation during growth on galacturonate indicates further optimization of this and related organisms could provide a route to an effective biologically derived acetic acid production platform. Furthermore, the pathways could be targeted to decrease production of undesirable products during fermentations of heterogeneous biomass.
Collapse
|
24
|
Lütke-Eversloh T. Application of new metabolic engineering tools for Clostridium acetobutylicum. Appl Microbiol Biotechnol 2014; 98:5823-37. [DOI: 10.1007/s00253-014-5785-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/30/2023]
|