1
|
Yu J, Li C, Cheng Y, Guo S, Lu H, Xie X, Ji H, Qiao Y. Mechanism and improvement of yeast tolerance to biomass-derived inhibitors: A review. Biotechnol Adv 2025; 81:108562. [PMID: 40107432 DOI: 10.1016/j.biotechadv.2025.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Lignocellulosic biomass is regarded as a potentially valuable second-generation biorefinery feedstock. Yeast has the ability to metabolize this substrate and convert it into fuel ethanol and an array of other chemical products. Nevertheless, during the pretreatment of lignocellulosic biomass, inhibitors (furanaldehydes, carboxylic acids, phenolic compounds, etc.) are generated, which impede the growth and metabolic activities of yeast cells. Consequently, developing yeast strains with enhanced tolerance to these inhibitors is a crucial technological objective, as it can significantly enhance the efficiency of lignocellulosic biorefineries. This review provides a concise overview of the process of inhibitor generation and the detrimental effects of these inhibitors on yeast. It also summarizes the current state of research on the mechanisms of yeast tolerance to these inhibitors, focusing specifically on recent advances in enhancing yeast tolerance to these inhibitors by rational and non-rational strategies. Finally, it discusses the current challenges and future research directions.
Collapse
Affiliation(s)
- Jinling Yu
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Cuili Li
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Yajie Cheng
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Shaobo Guo
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Hongzhao Lu
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, China
| | - Xiuchao Xie
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China.
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Yanming Qiao
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, China.
| |
Collapse
|
2
|
Lenitz I, Börlin C, Torello Pianale L, Balachandran D, Nielsen J, David F, Siewers V, Nygård Y. ChIP-exo and CRISPRi/a illuminate the role of Pdr1 and Yap1 in acetic acid tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 2025; 91:e0182424. [PMID: 40035556 PMCID: PMC12016514 DOI: 10.1128/aem.01824-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Budding yeast Saccharomyces cerevisiae has great potential as a host organism for various biorefinery applications. Nevertheless, the utilization of renewable plant biomass as feedstock for yeast in industrial applications remains a bottleneck, largely due to the presence of inhibitory substances such as acetic acid that are released in the biomass pretreatment processes. Exposure to acetic acid leads to different cellular stress mechanisms, several of which are directed by transcription factors. In this work, the role of the transcription factors Pdr1 and Yap1 in acetic acid tolerance was investigated using ChIP-exo and CRISPR interference/activation (CRISPRi/a). Pdr1 is the main regulator of the pleiotropic drug response, whereas Yap1 governs the oxidative stress response. CRISPRa targeting YAP1 for overexpression conferred a higher specific growth rate of S. cerevisiae, whereas CRISPRi-based downregulation of PDR1 proved to be beneficial for growth in medium containing acetic acid. ChIP-exo experiments showed increased binding of Pdr1 or Yap1 to their target promoters in the presence of acetic acid, and a large number of promoters were bound by either transcription factor. Promoters of genes involved in amino acid synthesis or encoding ABC transporters had the highest level of binding enrichment in the presence of acetic acid. The results highlight the potential for developing more acetic acid-tolerant yeast by altering the expression of transcription factor-encoding genes and demonstrate how expression can be fine-tuned by CRISPRi/a.IMPORTANCEBiotechnological conversion of plant biomass into a variety of commodity chemicals and specialty molecules is an important step towards a bioeconomy. This study highlights the importance of two transcription factors, Pdr1 and Yap1, in the tolerance of Saccharomyces cerevisiae to acetic acid, a common inhibitor in bioprocesses using lignocellulosic biomass. CRISPR interference/activation and ChIP-exo were used to manipulate the expression and binding of these transcription factors in response to acetic acid stress. The study provides new insights into adaptation to acetic acid and suggests ways to improve yeast performance in industrial applications.
Collapse
Affiliation(s)
- Ibai Lenitz
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Christoph Börlin
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Luca Torello Pianale
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Darshan Balachandran
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- BioInnovation Institute, Copenhagen, Denmark
| | - Florian David
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Yvonne Nygård
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
3
|
Cámara E, Mormino M, Siewers V, Nygård Y. Saccharomyces cerevisiae strains performing similarly during fermentation of lignocellulosic hydrolysates show pronounced differences in transcriptional stress responses. Appl Environ Microbiol 2024; 90:e0233023. [PMID: 38587374 PMCID: PMC11107148 DOI: 10.1128/aem.02330-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Improving our understanding of the transcriptional changes of Saccharomyces cerevisiae during fermentation of lignocellulosic hydrolysates is crucial for the creation of more efficient strains to be used in biorefineries. We performed RNA sequencing of a CEN.PK laboratory strain, two industrial strains (KE6-12 and Ethanol Red), and two wild-type isolates of the LBCM collection when cultivated anaerobically in wheat straw hydrolysate. Many of the differently expressed genes identified among the strains have previously been reported to be important for tolerance to lignocellulosic hydrolysates or inhibitors therein. Our study demonstrates that stress responses typically identified during aerobic conditions such as glutathione metabolism, osmotolerance, and detoxification processes also are important for anaerobic processes. Overall, the transcriptomic responses were largely strain dependent, and we focused our study on similarities and differences in the transcriptomes of the LBCM strains. The expression of sugar transporter-encoding genes was higher in LBCM31 compared with LBCM109 that showed high expression of genes involved in iron metabolism and genes promoting the accumulation of sphingolipids, phospholipids, and ergosterol. These results highlight different evolutionary adaptations enabling S. cerevisiae to strive in lignocellulosic hydrolysates and suggest novel gene targets for improving fermentation performance and robustness. IMPORTANCE The need for sustainable alternatives to oil-based production of biochemicals and biofuels is undisputable. Saccharomyces cerevisiae is the most commonly used industrial fermentation workhorse. The fermentation of lignocellulosic hydrolysates, second-generation biomass unsuited for food and feed, is still hampered by lowered productivities as the raw material is inhibitory for the cells. In order to map the genetic responses of different S. cerevisiae strains, we performed RNA sequencing of a CEN.PK laboratory strain, two industrial strains (KE6-12 and Ethanol Red), and two wild-type isolates of the LBCM collection when cultivated anaerobically in wheat straw hydrolysate. While the response to inhibitors of S. cerevisiae has been studied earlier, this has in previous studies been done in aerobic conditions. The transcriptomic analysis highlights different evolutionary adaptations among the different S. cerevisiae strains and suggests novel gene targets for improving fermentation performance and robustness.
Collapse
Affiliation(s)
- Elena Cámara
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Maurizio Mormino
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Yvonne Nygård
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
4
|
Jiang L, Shen Y, Jiang Y, Mei W, Wei L, Feng J, Wei C, Liao X, Mo Y, Pan L, Wei M, Gu Y, Zheng J. Amino acid metabolism and MAP kinase signaling pathway play opposite roles in the regulation of ethanol production during fermentation of sugarcane molasses in budding yeast. Genomics 2024; 116:110811. [PMID: 38387766 DOI: 10.1016/j.ygeno.2024.110811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Sugarcane molasses is one of the main raw materials for bioethanol production, and Saccharomyces cerevisiae is the major biofuel-producing organism. In this study, a batch fermentation model has been used to examine ethanol titers of deletion mutants for all yeast nonessential genes in this yeast genome. A total of 42 genes are identified to be involved in ethanol production during fermentation of sugarcane molasses. Deletion mutants of seventeen genes show increased ethanol titers, while deletion mutants for twenty-five genes exhibit reduced ethanol titers. Two MAP kinases Hog1 and Kss1 controlling the high osmolarity and glycerol (HOG) signaling and the filamentous growth, respectively, are negatively involved in the regulation of ethanol production. In addition, twelve genes involved in amino acid metabolism are crucial for ethanol production during fermentation. Our findings provide novel targets and strategies for genetically engineering industrial yeast strains to improve ethanol titer during fermentation of sugarcane molasses.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China.
| | - Yuzhi Shen
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Yongqiang Jiang
- Institute of Biology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Weiping Mei
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Liudan Wei
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Jinrong Feng
- Pathogen Biology Department, Nantong University, Nantong, Jiangsu 226001, China
| | - Chunyu Wei
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Xiufan Liao
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Yiping Mo
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Lingxin Pan
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Min Wei
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Yiying Gu
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Jiashi Zheng
- Laboratory of Yeast Biology and Fermentation Technology, National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| |
Collapse
|
5
|
Li C, Lu J, Yan XJ, Li CW, Lin LC, Xiao DG, Zhang CY. The eisosomes contribute to acid tolerance of yeast by maintaining cell membrane integrity. Food Microbiol 2023; 110:104157. [DOI: 10.1016/j.fm.2022.104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
6
|
The NPR/Hal family of protein kinases in yeasts: biological role, phylogeny and regulation under environmental challenges. Comput Struct Biotechnol J 2022; 20:5698-5712. [PMID: 36320937 PMCID: PMC9596735 DOI: 10.1016/j.csbj.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Protein phosphorylation is the most common and versatile post-translational modification occurring in eukaryotes. In yeast, protein phosphorylation is fundamental for maintaining cell growth and adapting to sudden changes in environmental conditions by regulating cellular processes and activating signal transduction pathways. Protein kinases catalyze the reversible addition of phosphate groups to target proteins, thereby regulating their activity. In Saccharomyces cerevisiae, kinases are classified into six major groups based on structural and functional similarities. The NPR/Hal family of kinases comprises nine fungal-specific kinases that, due to lack of similarity with the remaining kinases, were classified to the “Other” group. These kinases are primarily implicated in regulating fundamental cellular processes such as maintaining ion homeostasis and controlling nutrient transporters’ concentration at the plasma membrane. Despite their biological relevance, these kinases remain poorly characterized and explored. This review provides an overview of the information available regarding each of the kinases from the NPR/Hal family, including their known biological functions, mechanisms of regulation, and integration in signaling pathways in S. cerevisiae. Information gathered for non-Saccharomyces species of biotechnological or clinical relevance is also included.
Collapse
|
7
|
Baptista M, Domingues L. Kluyveromyces marxianus as a microbial cell factory for lignocellulosic biomass valorisation. Biotechnol Adv 2022; 60:108027. [PMID: 35952960 DOI: 10.1016/j.biotechadv.2022.108027] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
The non-conventional yeast Kluyveromyces marxianus is widely used for several biotechnological applications, mainly due to its thermotolerance, high growth rate, and ability to metabolise a wide range of sugars. These cell traits are strategic for lignocellulosic biomass valorisation and strain diversity prompts the development of robust chassis, either with improved tolerance to lignocellulosic inhibitors or ethanol. This review summarises bioethanol and value-added chemicals production by K. marxianus from different lignocellulosic biomasses. Moreover, metabolic engineering and process optimization strategies developed to expand K. marxianus potential are also compiled, as well as studies reporting cell mechanisms to cope with lignocellulosic-derived inhibitors. The main lignocellulosic-based products are bioethanol, representing 71% of the reports, and xylitol, representing 17% of the reports. K. marxianus also proved to be a good chassis for lactic acid and volatile compounds production from lignocellulosic biomass, although the literature on this matter is still scarce. The increasing advances in genome editing tools and process optimization strategies will widen the K. marxianus-based portfolio products.
Collapse
Affiliation(s)
- Marlene Baptista
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
8
|
Vanacloig-Pedros E, Fisher KJ, Liu L, Debrauske DJ, Young MKM, Place M, Hittinger CT, Sato TK, Gasch AP. Comparative chemical genomic profiling across plant-based hydrolysate toxins reveals widespread antagonism in fitness contributions. FEMS Yeast Res 2022; 21:6650360. [PMID: 35883225 PMCID: PMC9508847 DOI: 10.1093/femsyr/foac036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been used extensively in fermentative industrial processes, including biofuel production from sustainable plant-based hydrolysates. Myriad toxins and stressors found in hydrolysates inhibit microbial metabolism and product formation. Overcoming these stresses requires mitigation strategies that include strain engineering. To identify shared and divergent mechanisms of toxicity and to implicate gene targets for genetic engineering, we used a chemical genomic approach to study fitness effects across a library of S. cerevisiae deletion mutants cultured anaerobically in dozens of individual compounds found in different types of hydrolysates. Relationships in chemical genomic profiles identified classes of toxins that provoked similar cellular responses, spanning inhibitor relationships that were not expected from chemical classification. Our results also revealed widespread antagonistic effects across inhibitors, such that the same gene deletions were beneficial for surviving some toxins but detrimental for others. This work presents a rich dataset relating gene function to chemical compounds, which both expands our understanding of plant-based hydrolysates and provides a useful resource to identify engineering targets.
Collapse
Affiliation(s)
- Elena Vanacloig-Pedros
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Kaitlin J Fisher
- Laboratory of Genetics, University of Wisconsin-Madison, 53706, Madison, WI, United States
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 53706, Madison, WI, United States
- J.F. Crow Institute for the Study of Evolution, 53706, Madison, WI, United States
| | - Lisa Liu
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Derek J Debrauske
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Megan K M Young
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Michael Place
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 53726, Madison, WI, United States
- Laboratory of Genetics, University of Wisconsin-Madison, 53706, Madison, WI, United States
- Center for Genomic Science Innovation, University of Wisconsin-Madison, 53706, Madison, WI, United States
- J.F. Crow Institute for the Study of Evolution, 53706, Madison, WI, United States
| | - Trey K Sato
- Corresponding author: Trey K. Sato, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 4117 Wisconsin Energy Institute, 1552 University Ave, Madison, WI 53726. Tel: (608) 890-2546; E-mail:
| | - Audrey P Gasch
- Corresponding author: Audrey P. Gasch, Center for Genomic Science Innovation, University of Wisconsin-Madison, 3422 Genetics-Biotechnology Center, 425 Henry Mall, Madison, WI 53704, United States. Tel: (608)265-0859; E-mail:
| |
Collapse
|
9
|
Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2022; 57:107947. [DOI: 10.1016/j.biotechadv.2022.107947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
|
10
|
A CRISPR Interference Screen of Essential Genes Reveals that Proteasome Regulation Dictates Acetic Acid Tolerance in Saccharomyces cerevisiae. mSystems 2021; 6:e0041821. [PMID: 34313457 PMCID: PMC8407339 DOI: 10.1128/msystems.00418-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CRISPR interference (CRISPRi) is a powerful tool to study cellular physiology under different growth conditions, and this technology provides a means for screening changed expression of essential genes. In this study, a Saccharomyces cerevisiae CRISPRi library was screened for growth in medium supplemented with acetic acid. Acetic acid is a growth inhibitor challenging the use of yeast for the industrial conversion of lignocellulosic biomasses. Tolerance to acetic acid that is released during biomass hydrolysis is crucial for cell factories to be used in biorefineries. The CRISPRi library screened consists of >9,000 strains, where >98% of all essential and respiratory growth-essential genes were targeted with multiple guide RNAs (gRNAs). The screen was performed using the high-throughput, high-resolution Scan-o-matic platform, where each strain is analyzed separately. Our study identified that CRISPRi targeting of genes involved in vesicle formation or organelle transport processes led to severe growth inhibition during acetic acid stress, emphasizing the importance of these intracellular membrane structures in maintaining cell vitality. In contrast, strains in which genes encoding subunits of the 19S regulatory particle of the 26S proteasome were downregulated had increased tolerance to acetic acid, which we hypothesize is due to ATP salvage through an increased abundance of the 20S core particle that performs ATP-independent protein degradation. This is the first study where high-resolution CRISPRi library screening paves the way to understanding and bioengineering the robustness of yeast against acetic acid stress. IMPORTANCE Acetic acid is inhibitory to the growth of the yeast Saccharomyces cerevisiae, causing ATP starvation and oxidative stress, which leads to the suboptimal production of fuels and chemicals from lignocellulosic biomass. In this study, where each strain of a CRISPRi library was characterized individually, many essential and respiratory growth-essential genes that regulate tolerance to acetic acid were identified, providing a new understanding of the stress response of yeast and new targets for the bioengineering of industrial yeast. Our findings on the fine-tuning of the expression of proteasomal genes leading to increased tolerance to acetic acid suggest that this could be a novel strategy for increasing stress tolerance, leading to improved strains for the production of biobased chemicals.
Collapse
|
11
|
Abstract
In order to exploit a fast-growing Paulownia hardwood as an energy crop, a xylose-enriched hydrolysate was obtained in this work to increase the ethanol concentration using the hemicellulosic fraction, besides the already widely studied cellulosic fraction. For that, Paulownia elongata x fortunei was submitted to autohydrolysis treatment (210 °C or S0 of 4.08) for the xylan solubilization, mainly as xylooligosaccharides. Afterwards, sequential stages of acid hydrolysis, concentration, and detoxification were evaluated to obtain fermentable sugars. Thus, detoxified and non-detoxified hydrolysates (diluted or not) were fermented for ethanol production using a natural xylose-consuming yeast, Scheffersomyces stipitis CECT 1922, and an industrial Saccharomyces cerevisiae MEC1133 strain, metabolic engineered strain with the xylose reductase/xylitol dehydrogenase pathway. Results from fermentation assays showed that the engineered S. cerevisiae strain produced up to 14.2 g/L of ethanol (corresponding to 0.33 g/g of ethanol yield) using the non-detoxified hydrolysate. Nevertheless, the yeast S. stipitis reached similar values of ethanol, but only in the detoxified hydrolysate. Hence, the fermentation data prove the suitability and robustness of the engineered strain to ferment non-detoxified liquor, and the appropriateness of detoxification of liquor for the use of less robust yeast. In addition, the success of hemicellulose-to-ethanol production obtained in this work shows the Paulownia biomass as a suitable renewable source for ethanol production following a suitable fractionation process within a biorefinery approach.
Collapse
|
12
|
Fletcher E, Baetz K. Multi-Faceted Systems Biology Approaches Present a Cellular Landscape of Phenolic Compound Inhibition in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2020; 8:539902. [PMID: 33154962 PMCID: PMC7591714 DOI: 10.3389/fbioe.2020.539902] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/02/2020] [Indexed: 01/18/2023] Open
Abstract
Synthetic biology has played a major role in engineering microbial cell factories to convert plant biomass (lignocellulose) to fuels and bioproducts by fermentation. However, the final product yield is limited by inhibition of microbial growth and fermentation by toxic phenolic compounds generated during lignocellulosic pre-treatment and hydrolysis. Advances in the development of systems biology technologies (genomics, transcriptomics, proteomics, metabolomics) have rapidly resulted in large datasets which are necessary to obtain a holistic understanding of complex biological processes underlying phenolic compound toxicity. Here, we review and compare different systems biology tools that have been utilized to identify molecular mechanisms that modulate phenolic compound toxicity in Saccharomyces cerevisiae. By focusing on and comparing functional genomics and transcriptomics approaches we identify common mechanisms potentially underlying phenolic toxicity. Additionally, we discuss possible ways by which integration of data obtained across multiple unbiased approaches can result in new avenues to develop yeast strains with a significant improvement in tolerance to phenolic fermentation inhibitors.
Collapse
Affiliation(s)
- Eugene Fletcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kristin Baetz
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Deng N, Du H, Xu Y. Cooperative Response of Pichia kudriavzevii and Saccharomyces cerevisiae to Lactic Acid Stress in Baijiu Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4903-4911. [PMID: 32180399 DOI: 10.1021/acs.jafc.9b08052] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lactic acid is a universal metabolite, as well as a growth inhibitor of ethanol producers in Baijiu fermentation. Revealing the mechanism of lactic acid tolerance is essential for the yield of fermented foods. Here, we employed reverse transcription-quantitative polymerase chain reaction to explore the degradation mechanism of lactic acid, based on the coculture of Pichia kudriavzevii and Saccharomyces cerevisiae. Under high lactic acid stress, P. kudriavzevii decreased lactic acid from 40.00 to 35.46 g L-1 within 24 h. Then, S. cerevisiae restored its capacity to degrade lactic acid. Finally, lactic acid decreased to 26.29 g L-1. Coculture significantly enhanced lactic acid consumption compared to the monoculture of P. kudriavzevii (90% higher) or S. cerevisiae (209% higher). We found that lactate catabolism, H+ extrusion, and glycerol transport were the lactic acid tolerance pathways in yeasts. This study reveals the novel acid tolerance mechanisms of microbiota and would provide new strategies for ethanol production under acid stress.
Collapse
Affiliation(s)
- Nan Deng
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hai Du
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute for Chinese Jiang-Flavor Baijiu (Liquor), Renhuai, Guizhou 564500, China
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute for Chinese Jiang-Flavor Baijiu (Liquor), Renhuai, Guizhou 564500, China
| |
Collapse
|
14
|
Fletcher E, Gao K, Mercurio K, Ali M, Baetz K. Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde. Metab Eng 2018; 52:98-109. [PMID: 30471359 DOI: 10.1016/j.ymben.2018.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 01/30/2023]
Abstract
The conversion of plant material into biofuels and high value products is a two-step process of hydrolysing plant lignocellulose and next fermenting the sugars produced. However, lignocellulosic hydrolysis not only frees sugars for fermentation it simultaneously generates toxic chemicals, including phenolic compounds which severely inhibit yeast fermentation. To understand the molecular basis of phenolic compound toxicity, we performed genome-wide chemogenomic screens in Saccharomyces cerevisiae to identify deletion mutants that were either hypersensitive or resistant to three common phenolic compounds found in plant hydrolysates: coniferyl aldehyde, ferulic acid and 4-hydroxybenzoic acid. Despite being similar in structure, our screen revealed that yeast utilizes distinct pathways to tolerate phenolic compound exposure. Furthermore, although each phenolic compound induced reactive oxygen species (ROS), ferulic acid and 4-hydroxybenzoic acid-induced a general cytoplasmic ROS distribution while coniferyl aldehyde-induced ROS partially localized to the mitochondria and to a lesser extent, the endoplasmic reticulum. We found that the glucose-6-phosphate dehydrogenase enzyme Zwf1, which catalyzes the rate limiting step of pentose phosphate pathway, is required for reducing the accummulation of coniferyl aldehyde-induced ROS, potentially through the sequestering of Zwf1 to sites of ROS accumulation. Our novel insights into biological impact of three common phenolic inhibitors will inform the engineering of yeast strains with improved efficiency of biofuel and biochemical production in the presence hydrolysate-derived phenolic compounds.
Collapse
Affiliation(s)
- Eugene Fletcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Kai Gao
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Kevin Mercurio
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Mariam Ali
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Kristin Baetz
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5.
| |
Collapse
|
15
|
Cunha JT, Romaní A, Costa CE, Sá-Correia I, Domingues L. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl Microbiol Biotechnol 2018; 103:159-175. [PMID: 30397768 DOI: 10.1007/s00253-018-9478-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/27/2022]
Abstract
Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell-based biorefineries.
Collapse
Affiliation(s)
- Joana T Cunha
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Aloia Romaní
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Carlos E Costa
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lucília Domingues
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
16
|
Cunha JT, Costa CE, Ferraz L, Romaní A, Johansson B, Sá-Correia I, Domingues L. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Appl Microbiol Biotechnol 2018; 102:4589-4600. [PMID: 29607452 DOI: 10.1007/s00253-018-8955-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/12/2018] [Accepted: 03/18/2018] [Indexed: 11/28/2022]
Abstract
Acetic acid tolerance and xylose consumption are desirable traits for yeast strains used in industrial biotechnological processes. In this work, overexpression of a weak acid stress transcriptional activator encoded by the gene HAA1 and a phosphoribosyl pyrophosphate synthetase encoded by PRS3 in a recombinant industrial Saccharomyces cerevisiae strain containing a xylose metabolic pathway was evaluated in the presence of acetic acid in xylose- or glucose-containing media. HAA1 or PRS3 overexpression resulted in superior yeast growth and higher sugar consumption capacities in the presence of 4 g/L acetic acid, and a positive synergistic effect resulted from the simultaneous overexpression of both genes. Overexpressing these genes also improved yeast adaptation to a non-detoxified hardwood hydrolysate with a high acetic acid content. Furthermore, the overexpression of HAA1 and/or PRS3 was found to increase the robustness of yeast cell wall when challenged with acetic acid stress, suggesting the involvement of the modulation of the cell wall integrity pathway. This study clearly shows HAA1 and/or, for the first time, PRS3 overexpression to play an important role in the improvement of industrial yeast tolerance towards acetic acid. The results expand the molecular toolbox and add to the current understanding of the mechanisms involved in higher acetic acid tolerance, paving the way for the further development of more efficient industrial processes.
Collapse
Affiliation(s)
- Joana T Cunha
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Carlos E Costa
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Luís Ferraz
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Aloia Romaní
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Björn Johansson
- Center of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lucília Domingues
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
17
|
Costa CE, Romaní A, Cunha JT, Johansson B, Domingues L. Integrated approach for selecting efficient Saccharomyces cerevisiae for industrial lignocellulosic fermentations: Importance of yeast chassis linked to process conditions. BIORESOURCE TECHNOLOGY 2017; 227:24-34. [PMID: 28013133 DOI: 10.1016/j.biortech.2016.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 05/22/2023]
Abstract
In this work, four robust yeast chassis isolated from industrial environments were engineered with the same xylose metabolic pathway. The recombinant strains were physiologically characterized in synthetic xylose and xylose-glucose medium, on non-detoxified hemicellulosic hydrolysates of fast-growing hardwoods (Eucalyptus and Paulownia) and agricultural residues (corn cob and wheat straw) and on Eucalyptus hydrolysate at different temperatures. Results show that the co-consumption of xylose-glucose was dependent on the yeast background. Moreover, heterogeneous results were obtained among different hydrolysates and temperatures for each individual strain pointing to the importance of designing from the very beginning a tailor-made yeast considering the specific raw material and process.
Collapse
Affiliation(s)
- Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Aloia Romaní
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Björn Johansson
- CBMA - Center of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| |
Collapse
|
18
|
Hasunuma T, Sakamoto T, Kondo A. Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids. Appl Microbiol Biotechnol 2016; 100:1027-38. [PMID: 26521247 DOI: 10.1007/s00253-015-7094-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/28/2015] [Accepted: 10/11/2015] [Indexed: 02/02/2023]
Abstract
Improving the production of ethanol from xylose is an important goal in metabolic engineering of Saccharomyces cerevisiae. Furthermore, S. cerevisiae must produce ethanol in the presence of weak acids (formate and acetate) generated during pre-treatment of lignocellulosic biomass. In this study, weak acid-containing xylose fermentation was significantly improved using cells that were acclimated to the weak acids during pre-cultivation. Transcriptome analyses showed that levels of transcripts for transcriptional/translational machinery-related genes (RTC3 and ANB1) were enhanced by formate and acetate acclimation. Recombinant yeast strains overexpressing RTC3 and ANB1 demonstrated improved ethanol production from xylose in the presence of the weak acids, along with improved tolerance to the acids. Novel metabolic engineering strategy based on the combination of short-term acclimation and system-wide analysis was developed, which can develop stress-tolerant strains in a short period of time, although conventional evolutionary engineering approach has required long periods of time to isolate inhibitor-adapted strains.
Collapse
Affiliation(s)
- Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takatoshi Sakamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
19
|
Chen Y, Sheng J, Jiang T, Stevens J, Feng X, Wei N. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:9. [PMID: 26766964 PMCID: PMC4710983 DOI: 10.1186/s13068-015-0418-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/15/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignocellulosic biomass is a promising source of renewable biofuels. However, pretreatment of lignocellulosic biomass generates fermentation inhibitors that adversely affect the growth of industrial microorganisms such as Saccharomyces cerevisiae and prevent economic production of lignocellulosic biofuels. A critical challenge on developing S. cerevisiae with improved inhibitor resistance lies in incomplete understanding of molecular basis for inhibitor stress response and limited information on effective genetic targets for increasing yeast resistance to mixed fermentation inhibitors. In this study, we applied comparative transcriptomic analysis to determine the molecular basis for acetic acid and/or furfural resistance in S. cerevisiae. RESULTS We recently developed a yeast strain YC1 with superior resistance to acetic acid, furfural, and their mixture through inverse metabolic engineering. In this study, we first determined transcriptional changes through RNA sequencing in YC1 versus the wild-type strain S-C1 under three different inhibitor conditions, including acetic acid alone, furfural alone, and mixture of acetic acid and furfural. The genes associated with stress responses of S. cerevisiae to single and mixed inhibitors were revealed. Specifically, we identified 184 consensus genes that were differentially regulated in response to the distinct inhibitor resistance between YC1 and S-C1. Bioinformatic analysis next revealed key transcription factors (TFs) that regulate these consensus genes. The top TFs identified, Sfp1p and Ace2p, were experimentally tested as overexpression targets for strain optimization. Overexpression of the SFP1 gene improved specific ethanol productivity by nearly four times, while overexpression of the ACE2 gene enhanced the rate by three times in the presence of acetic acid and furfural. Overexpression of SFP1 gene in the resistant strain YC1 further resulted in 42 % increase in ethanol productivity in the presence of acetic acid and furfural, suggesting the effect of Sfp1p in optimizing the yeast strain for improved tolerance to mixed fermentation inhibitor. CONCLUSIONS Transcriptional regulation underlying yeast resistance to acetic acid and furfural was determined. Two transcription factors, Sfp1p and Ace2p, were uncovered for the first time for their functions in improving yeast resistance to mixed fermentation inhibitors. The study demonstrated an omics-guided metabolic engineering framework, which could be developed as a promising strategy to improve complex microbial phenotypes.
Collapse
Affiliation(s)
- Yingying Chen
- />Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 106E Cushing Hall of Engineering, Notre Dame, South Bend, IN 46556 USA
| | - Jiayuan Sheng
- />Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Tao Jiang
- />Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Joseph Stevens
- />Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Xueyang Feng
- />Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Na Wei
- />Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 106E Cushing Hall of Engineering, Notre Dame, South Bend, IN 46556 USA
| |
Collapse
|
20
|
Biofuels and bio-based chemicals from lignocellulose: metabolic engineering strategies in strain development. Biotechnol Lett 2015; 38:213-21. [PMID: 26466596 DOI: 10.1007/s10529-015-1976-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/07/2015] [Indexed: 12/22/2022]
Abstract
Interest in developing a sustainable technology for fuels and chemicals has unleashed tremendous creativity in metabolic engineering for strain development over the last few years. This is driven by the exceptionally recalcitrant substrate, lignocellulose, and the necessity to keep the costs down for commodity products. Traditional methods of gene expression and evolutionary engineering are more effectively used with the help of synthetic biology and -omics techniques. Compared to the last biomass research peak during the 1980s oil crisis, a more diverse range of microorganisms are being engineered for a greater variety of products, reflecting the broad applicability and effectiveness of today's gene technology. We review here several prominent and successful metabolic engineering strategies with emphasis on the following four areas: xylose catabolism, inhibitor tolerance, synthetic microbial consortium, and cellulosic oligomer assimilation.
Collapse
|
21
|
Cunha JT, Aguiar TQ, Romaní A, Oliveira C, Domingues L. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors. BIORESOURCE TECHNOLOGY 2015; 191:7-16. [PMID: 25974617 DOI: 10.1016/j.biortech.2015.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 05/13/2023]
Abstract
PRS3, RPB4 and ZWF1 were previously identified as key genes for yeast tolerance to lignocellulose-derived inhibitors. To better understand their contribution to yeast resistance to the multiple stresses occurring during lignocellulosic hydrolysate fermentations, we overexpressed these genes in two industrial Saccharomyces cerevisiae strains, CCUG53310 and PE-2, and evaluated their impact on the fermentation of Eucalyptus globulus wood and corn cob hydrolysates. PRS3 overexpression improved the fermentation rate (up to 32%) and productivity (up to 48%) in different hydrolysates. ZWF1 and RPB4 overexpression did not improve the fermentation performance, but their increased expression in the presence of acetic acid, furfural and hydroxymethylfurfural was found to contribute to yeast adaptation to these inhibitors. This study expands our understanding about the molecular mechanisms involved in industrial yeast tolerance to the stresses occurring during lignocellulosic bioethanol production and highlights the importance of selecting appropriate strain backgrounds/hydrolysates combinations when addressing further improvement of these processes.
Collapse
Affiliation(s)
- Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Aloia Romaní
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Carla Oliveira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
22
|
Yeast toxicogenomics: lessons from a eukaryotic cell model and cell factory. Curr Opin Biotechnol 2015; 33:183-91. [DOI: 10.1016/j.copbio.2015.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 02/16/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
|