1
|
Aliyu GO, Ezugworie FN, Onwosi CO, Nnamchi CI, Ekwealor CC, Igbokwe VC, Sani RK. Multi-stress adaptive lifestyle of acidophiles enhances their robustness for biotechnological and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176190. [PMID: 39265677 DOI: 10.1016/j.scitotenv.2024.176190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Acidophiles are a group of organisms typically found in highly acidic environments such as acid mine drainage. These organisms have several physiological features that enable them to thrive in highly acidic environments (pH ≤3). Considering that both acid mine drainage and solfatara fields exhibit extreme and dynamic ecological conditions for acidophiles, it is crucial to gain deeper insights into the adaptive mechanisms employed by these unique organisms. The existing literature reveals a notable gap in understanding the multi-stress conditions confronting acidophiles and their corresponding coping mechanisms. Therefore, the current review aims to illuminate the intricacies of the metabolic lifestyles of acidophiles within these demanding habitats, exploring how their energy demands contribute to habitat acidification. In addition, the unique adaptive mechanisms employed by acidophiles were emphasized, especially the pivotal role of monolayer membrane-spanning lipids, and how these organisms effectively respond to a myriad of stresses. Beyond mere survival, understanding the adaptive mechanisms of these unique organisms could further enhance their use in some biotechnological and environmental applications. Lastly, this review explores the strategies used to engineer these organisms to promote their use in industrial applications.
Collapse
Affiliation(s)
- Godwin O Aliyu
- Department of Microbiology, Faculty of Natural Sciences, Prince Abubakar Audu University, Anyigba, Kogi State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Flora N Ezugworie
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Applied Sciences, Federal College of Dental Technology and Therapy, Enugu, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.
| | - Chukwudi I Nnamchi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chito C Ekwealor
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Victor C Igbokwe
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; INSERM UMR-S 1121 Biomaterial and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France
| | - Rajesh K Sani
- Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, 57701, SD, United States; Data-Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States; Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States; BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States
| |
Collapse
|
2
|
Wang G, Li Q, Zhang Z, Yin X, Wang B, Yang X. Recent progress in adaptive laboratory evolution of industrial microorganisms. J Ind Microbiol Biotechnol 2023; 50:kuac023. [PMID: 36323428 PMCID: PMC9936214 DOI: 10.1093/jimb/kuac023] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/24/2022] [Indexed: 01/12/2023]
Abstract
Adaptive laboratory evolution (ALE) is a technique for the selection of strains with better phenotypes by long-term culture under a specific selection pressure or growth environment. Because ALE does not require detailed knowledge of a variety of complex and interactive metabolic networks, and only needs to simulate natural environmental conditions in the laboratory to design a selection pressure, it has the advantages of broad adaptability, strong practicability, and more convenient transformation of strains. In addition, ALE provides a powerful method for studying the evolutionary forces that change the phenotype, performance, and stability of strains, resulting in more productive industrial strains with beneficial mutations. In recent years, ALE has been widely used in the activation of specific microbial metabolic pathways and phenotypic optimization, the efficient utilization of specific substrates, the optimization of tolerance to toxic substance, and the biosynthesis of target products, which is more conducive to the production of industrial strains with excellent phenotypic characteristics. In this paper, typical examples of ALE applications in the development of industrial strains and the research progress of this technology are reviewed, followed by a discussion of its development prospects.
Collapse
Affiliation(s)
- Guanglu Wang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Qian Li
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou, Henan 450000, People's Republic of China
| | - Xianzhong Yin
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou, Henan 450000, People's Republic of China
| | - Bingyang Wang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Xuepeng Yang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
3
|
Minireview: Engineering evolution to reconfigure phenotypic traits in microbes for biotechnological applications. Comput Struct Biotechnol J 2022; 21:563-573. [PMID: 36659921 PMCID: PMC9816911 DOI: 10.1016/j.csbj.2022.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
Adaptive laboratory evolution (ALE) has long been used as the tool of choice for microbial engineering applications, ranging from the production of commodity chemicals to the innovation of complex phenotypes. With the advent of systems and synthetic biology, the ALE experimental design has become increasingly sophisticated. For instance, implementation of in silico metabolic model reconstruction and advanced synthetic biology tools have facilitated the effective coupling of desired traits to adaptive phenotypes. Furthermore, various multi-omic tools now enable in-depth analysis of cellular states, providing a comprehensive understanding of the biology of even the most genomically perturbed systems. Emerging machine learning approaches would assist in streamlining the interpretation of massive and multiplexed datasets and promoting our understanding of complexity in biology. This review covers some of the representative case studies among the 700 independent ALE studies reported to date, outlining key ideas, principles, and important mechanisms underlying ALE designs in bioproduction and synthetic cell engineering, with evidence from literatures to aid comprehension.
Collapse
|
4
|
Hofmann M, Norris PR, Malik L, Schippers A, Schmidt G, Wolf J, Neumann-Schaal M, Hedrich S. Metallosphaera javensis sp. nov., a novel species of thermoacidophilic archaea, isolated from a volcanic area. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
A novel thermoacidophilic archeaon, strain J1T (=DSM 112778T,=JCM 34702T), was isolated from a hot pool in a volcanic area of Java, Indonesia. Cells of the strain were irregular, motile cocci of 1.0–1.2 µm diameter. Aerobic, organoheterotrophic growth with casamino acids was observed at an optimum temperature of 70 °C in a range of 55–78 °C and at an optimum pH of 3 in a range of 1.5 to 5. Various organic compounds were utilized, including a greater variety of sugars than has been reported for growth of other species of the genus. Chemolithoautotrophic growth was observed with reduced sulphur compounds, including mineral sulphides. Ferric iron was reduced during anaerobic growth with elemental sulphur. Cellular lipids were calditoglycerocaldarchaeol and caldarchaeol with some derivates. The organism contained the respiratory quinone caldariellaquinone. On the basis of phylogenetic and chemotaxonomic comparison with its closest relatives, it was concluded that strain J1T represents a novel species, for which the name Metallosphaera javensis is proposed. Low DNA–DNA relatedness values (16S rRNA gene <98.4%, average nucleotide identity (ANI) <80.1%) distinguished J1T from other species of the genus
Metallosphaera
and the DNA G+C content of 47.3% is the highest among the known species of the genus.
Collapse
Affiliation(s)
- Marika Hofmann
- Biohydrometallurgy & Microbiology, Institute of Bioscience, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Paul R. Norris
- Grinding Solutions, Tresillian Business Park, Tresillian, Truro, Cornwall TR2 4HF, UK
| | - Luise Malik
- Biohydrometallurgy & Microbiology, Institute of Bioscience, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources, 30655 Hannover, Germany
| | - Gert Schmidt
- Keramik, Feuerfest und Verbundstoffe, TU Bergakademie Freiberg, 09599 Freiberg
| | - Jacqueline Wolf
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Sabrina Hedrich
- Biohydrometallurgy & Microbiology, Institute of Bioscience, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| |
Collapse
|
5
|
Gautam J, Xu H, Hu J, Pennacchio C, Lipzen A, Martin J, Xu Z. Adapted laboratory evolution of Thermotoga sp. strain RQ7 under carbon starvation. BMC Res Notes 2022; 15:99. [PMID: 35272671 PMCID: PMC8908640 DOI: 10.1186/s13104-022-05982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Adaptive laboratory evolution (ALE) is an effective approach to study the evolution behavior of bacterial cultures and to select for strains with desired metabolic features. In this study, we explored the possibility of evolving Thermotoga sp. strain RQ7 for cellulose-degrading abilities. RESULTS Wild type RQ7 strain was subject to a series of transfers over six and half years with cellulose filter paper as the main and eventually the sole carbon source. Each transfer was accompanied with the addition of 50 μg of Caldicellulosiruptor saccharolyticus DSM 8903 genomic DNA. A total of 331 transfers were completed. No cellulose degradation was observed with the RQ7 cultures. Thirty three (33) isolates from six time points were sampled and sequenced. Nineteen (19) of the 33 isolates were unique, and the rest were duplicated clones. None of the isolates acquired C. saccharolyticus DNA, but all accumulated small-scale mutations throughout their genomes. Sequence analyses revealed 35 mutations that were preserved throughout the generations and another 15 mutations emerged near the end of the study. Many of the affected genes participate in phosphate metabolism, substrate transport, stress response, sensory transduction, and gene regulation.
Collapse
Affiliation(s)
- Jyotshana Gautam
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Hui Xu
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Junxi Hu
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.,School of Life Sciences, Minnan Normal University, 36 Xianqianzhi Street, Zhangzhou, 363000, Fujian, China
| | - Christa Pennacchio
- Department of Energy-Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- Department of Energy-Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Joel Martin
- Department of Energy-Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Zhaohui Xu
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| |
Collapse
|
6
|
Liu R, Zhou H. Growth in ever-increasing acidity condition enhanced the adaptation and bioleaching ability of Leptospirillum ferriphilum. Int Microbiol 2022; 25:541-550. [PMID: 35175436 DOI: 10.1007/s10123-021-00227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/26/2022]
Abstract
Low pH eliminated the jarosite accumulation and improved the interfacial reaction rate during the bioleaching process. However, high acidity tends to make environments less hospitable, even for organisms that live in extreme places, so a great challenge existed for bioleaching at low pH conditions. This study demonstrated that the adaption and bioleaching ability of Leptospirillum ferriphilum could be improved after the long-term adaptive evolution of the community under acidity conditions. It was found that the acidity-adapted strain showed robust ferrous iron oxidation activity in wider pH, high concentration of ferrous iron, and lower temperature. Although the enhancement for heavy metal tolerance was limited, the resistance for MgSO4, Na2SO4, and organic matter was stimulative. More importantly, both pyrite and printed circuit board bioleaching revealed the higher bioleaching ability of the acid-resistant strain. These adaptation and bioleaching details provided an available approach for the improvement of bioleaching techniques.
Collapse
Affiliation(s)
- Ronghui Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- School of Microelectronic, Southern University of Science and Technology, Shenzhen, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.
| |
Collapse
|
7
|
Banerjee R, Chaudhari NM, Lahiri A, Gautam A, Bhowmik D, Dutta C, Chattopadhyay S, Huson DH, Paul S. Interplay of Various Evolutionary Modes in Genome Diversification and Adaptive Evolution of the Family Sulfolobaceae. Front Microbiol 2021; 12:639995. [PMID: 34248865 PMCID: PMC8267890 DOI: 10.3389/fmicb.2021.639995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
Sulfolobaceae family, comprising diverse thermoacidophilic and aerobic sulfur-metabolizing Archaea from various geographical locations, offers an ideal opportunity to infer the evolutionary dynamics across the members of this family. Comparative pan-genomics coupled with evolutionary analyses has revealed asymmetric genome evolution within the Sulfolobaceae family. The trend of genome streamlining followed by periods of differential gene gains resulted in an overall genome expansion in some species of this family, whereas there was reduction in others. Among the core genes, both Sulfolobus islandicus and Saccharolobus solfataricus showed a considerable fraction of positively selected genes and also higher frequencies of gene acquisition. In contrast, Sulfolobus acidocaldarius genomes experienced substantial amount of gene loss and strong purifying selection as manifested by relatively lower genome size and higher genome conservation. Central carbohydrate metabolism and sulfur metabolism coevolved with the genome diversification pattern of this archaeal family. The autotrophic CO2 fixation with three significant positively selected enzymes from S. islandicus and S. solfataricus was found to be more imperative than heterotrophic CO2 fixation for Sulfolobaceae. Overall, our analysis provides an insight into the interplay of various genomic adaptation strategies including gene gain-loss, mutation, and selection influencing genome diversification of Sulfolobaceae at various taxonomic levels and geographical locations.
Collapse
Affiliation(s)
- Rachana Banerjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Narendrakumar M. Chaudhari
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Abhishake Lahiri
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Anupam Gautam
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Debaleena Bhowmik
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Chitra Dutta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sujay Chattopadhyay
- JIS Institute of Advanced Studies and Research, JIS University, Kolkata, India
| | - Daniel H. Huson
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Cluster of Excellence: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Sandip Paul
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
8
|
Wu Y, Jameel A, Xing XH, Zhang C. Advanced strategies and tools to facilitate and streamline microbial adaptive laboratory evolution. Trends Biotechnol 2021; 40:38-59. [PMID: 33958227 DOI: 10.1016/j.tibtech.2021.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
Adaptive laboratory evolution (ALE) has served as a historic microbial engineering method that mimics natural selection to obtain desired microbes. The past decade has witnessed improvements in all aspects of ALE workflow, in terms of growth coupling, genotypic diversification, phenotypic selection, and genotype-phenotype mapping. The developing growth-coupling strategies facilitate ALE to a wider range of appealing traits. In vivo mutagenesis methods and multiplexed automated culture platforms open new gates to streamline its execution. Meanwhile, the application of multi-omics analyses and multiplexed genetic engineering promote efficient knowledge mining. This article provides a comprehensive and updated review of these advances, highlights newest significant applications, and discusses future improvements, aiming to provide a practical guide for implementation of novel, effective, and efficient ALE experiments.
Collapse
Affiliation(s)
- Yinan Wu
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Aysha Jameel
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Wang P, Li LZ, Qin YL, Liang ZL, Li XT, Yin HQ, Liu LJ, Liu SJ, Jiang CY. Comparative Genomic Analysis Reveals the Metabolism and Evolution of the Thermophilic Archaeal Genus Metallosphaera. Front Microbiol 2020; 11:1192. [PMID: 32655516 PMCID: PMC7325606 DOI: 10.3389/fmicb.2020.01192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/11/2020] [Indexed: 01/15/2023] Open
Abstract
Members of the genus Metallosphaera are widely found in sulfur-rich and metal-laden environments, but their physiological and ecological roles remain poorly understood. Here, we sequenced Metallosphaera tengchongensis Ric-A, a strain isolated from the Tengchong hot spring in Yunnan Province, China, and performed a comparative genome analysis with other Metallosphaera genomes. The genome of M. tengchongensis had an average nucleotide identity (ANI) of approximately 70% to that of Metallosphaera cuprina. Genes sqr, tth, sir, tqo, hdr, tst, soe, and sdo associated with sulfur oxidation, and gene clusters fox and cbs involved in iron oxidation existed in all Metallosphaera genomes. However, the adenosine-5'-phosphosulfate (APS) pathway was only detected in Metallosphaera sedula and Metallosphaera yellowstonensis, and several subunits of fox cluster were lost in M. cuprina. The complete 3-hydroxypropionate/4-hydroxybutyrate cycle and dicarboxylate/4-hydroxybutyrate cycle involved in carbon fixation were found in all Metallosphaera genomes. A large number of gene family gain events occurred in M. yellowstonensis and M. sedula, whereas gene family loss events occurred frequently in M. cuprina. Pervasive strong purifying selection was found acting on the gene families of Metallosphaera, of which transcription-related genes underwent the strongest purifying selection. In contrast, genes related to prophages, transposons, and defense mechanisms were under weaker purifying pressure. Taken together, this study expands knowledge of the genomic traits of Metallosphaera species and sheds light on their evolution.
Collapse
Affiliation(s)
- Pei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Zhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Ya Ling Qin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zong Lin Liang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiu Tong Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Hua Qun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Li Jun Liu
- Department of Pathogen Biology, School of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Effective Treatment of Acid Mine Drainage with Microbial Fuel Cells: An Emphasis on Typical Energy Substrates. MINERALS 2020. [DOI: 10.3390/min10050443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acid mine drainage (AMD), characterized by a high concentration of heavy metals, poses a threat to the ecosystem and human health. Bioelectrochemical system (BES) is a promising technology for the simultaneous treatment of organic wastewater and recovery of metal ions from AMD. Different kinds of organic wastewater usually contain different predominant organic chemicals. However, the effect of different energy substrates on AMD treatment and microbial communities of BES remains largely unknown. Here, results showed that different energy substrates (such as glucose, acetate, ethanol, or lactate) affected the startup, maximum voltage output, power density, coulombic efficiency, and microbial communities of the microbial fuel cell (MFC). Compared with the maximum voltage output (55 mV) obtained by glucose-fed-MFC, much higher maximum voltage output (187 to 212 mV) was achieved by MFCs fed individually with other energy substrates. Acetate-fed-MFC showed the highest power density (195.07 mW/m2), followed by lactate (98.63 mW/m2), ethanol (52.02 mW/m2), and glucose (3.23 mW/m2). Microbial community analysis indicated that the microbial communities of anodic electroactive biofilms changed with different energy substrates. The unclassified_f_Enterobacteriaceae (87.48%) was predominant in glucose-fed-MFC, while Geobacter species only accounted for 0.63%. The genera of Methanobrevibacter (23.70%), Burkholderia-Paraburkholderia (23.47%), and Geobacter (11.90%) were the major genera enriched in the ethanol-fed-MFC. Geobacter was most predominant in MFC enriched by lactate (45.28%) or acetate (49.72%). Results showed that the abundance of exoelectrogens Geobacter species correlated to electricity-generation capacities of electroactive biofilms. Electroactive biofilms enriched with acetate, lactate, or ethanol effectively recovered all Cu2+ ion (349 mg/L) of simulated AMD in a cathodic chamber within 53 h by reduction as Cu0 on the cathode. However, only 34.65% of the total Cu2+ ion was removed in glucose-fed-MFC by precipitation with anions and cations rather than Cu0 on the cathode.
Collapse
|
11
|
Kunka KS, Griffith JM, Holdener C, Bischof KM, Li H, DasSarma P, DasSarma S, Slonczewski JL. Acid Experimental Evolution of the Haloarchaeon Halobacterium sp. NRC-1 Selects Mutations Affecting Arginine Transport and Catabolism. Front Microbiol 2020; 11:535. [PMID: 32390952 PMCID: PMC7193027 DOI: 10.3389/fmicb.2020.00535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/12/2020] [Indexed: 11/13/2022] Open
Abstract
Halobacterium sp. NRC-1 (NRC-1) is an extremely halophilic archaeon that is adapted to multiple stressors such as UV, ionizing radiation and arsenic exposure; it is considered a model organism for the feasibility of microbial life in iron-rich brine on Mars. We conducted experimental evolution of NRC-1 under acid and iron stress. NRC-1 was serially cultured in CM+ medium modified by four conditions: optimal pH (pH 7.5), acid stress (pH 6.3), iron amendment (600 μM ferrous sulfate, pH 7.5), and acid plus iron (pH 6.3, with 600 μM ferrous sulfate). For each condition, four independent lineages of evolving populations were propagated. After 500 generations, 16 clones were isolated for phenotypic characterization and genomic sequencing. Genome sequences of all 16 clones revealed 378 mutations, of which 90% were haloarchaeal insertion sequences (ISH) and ISH-mediated large deletions. This proportion of ISH events in NRC-1 was five-fold greater than that reported for comparable evolution of Escherichia coli. One acid-evolved clone had increased fitness compared to the ancestral strain when cultured at low pH. Seven of eight acid-evolved clones had a mutation within or upstream of arcD, which encodes an arginine-ornithine antiporter; no non-acid adapted strains had arcD mutations. Mutations also affected the arcR regulator of arginine catabolism, which protects bacteria from acid stress by release of ammonia. Two acid-adapted strains shared a common mutation in bop, which encodes bacterio-opsin, apoprotein for the bacteriorhodopsin light-driven proton pump. Thus, in the haloarchaeon NRC-1, as in bacteria, pH adaptation was associated with genes involved in arginine catabolism and proton transport. Our study is among the first to report experimental evolution with multiple resequenced genomes of an archaeon. Haloarchaea are polyextremophiles capable of growth under environmental conditions such as concentrated NaCl and desiccation, but little is known about pH stress. Interesting parallels appear between the molecular basis of pH adaptation in NRC-1 and in bacteria, particularly the acid-responsive arginine-ornithine system found in oral streptococci.
Collapse
Affiliation(s)
- Karina S. Kunka
- Department of Biology, Kenyon College, Gambier, OH, United States
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jessie M. Griffith
- Department of Biology, Kenyon College, Gambier, OH, United States
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Chase Holdener
- Department of Biology, Kenyon College, Gambier, OH, United States
| | | | - Haofan Li
- Department of Biology, Kenyon College, Gambier, OH, United States
| | - Priya DasSarma
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shiladitya DasSarma
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
12
|
Suzuki S, Kurosawa N. Participation of UV-regulated Genes in the Response to Helix-distorting DNA Damage in the Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius. Microbes Environ 2019; 34:363-373. [PMID: 31548441 PMCID: PMC6934391 DOI: 10.1264/jsme2.me19055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/11/2019] [Indexed: 11/15/2022] Open
Abstract
Several species of Sulfolobales have been used as model organisms in the study of response mechanisms to ultraviolet (UV) irradiation in hyperthermophilic crenarchaea. To date, the transcriptional responses of genes involved in the initiation of DNA replication, transcriptional regulation, protein phosphorylation, and hypothetical function have been observed in Sulfolobales species after UV irradiation. However, due to the absence of knockout experiments, the functions of these genes under in situ UV irradiation have not yet been demonstrated. In the present study, we constructed five gene knockout strains (cdc6-2, tfb3, rio1, and two genes encoding the hypothetical proteins, Saci_0951 and Saci_1302) of Sulfolobus acidocaldarius and examined their sensitivities to UV irradiation. The knockout strains exhibited significant sensitivities to UV-B irradiation, indicating that the five UV-regulated genes play an important role in responses to UV irradiation in vivo. Furthermore, Δcdc6-2, Δrio1, ΔSaci_0951, and Δtfb3 were sensitive to a wide variety of helix-distorting DNA lesions, including UV-induced DNA damage, an intra-strand crosslink, and bulky adducts. These results reveal that cdc6-2, tfb3, rio1, and Saci_0951 are play more important roles in broad responses to helix-distorting DNA damage than in specific responses to UV irradiation.
Collapse
Affiliation(s)
- Shoji Suzuki
- Department of Science and Engineering for Sustainable Development, Faculty of Science and Engineering, Soka UniversityTokyoJapan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Development, Faculty of Science and Engineering, Soka UniversityTokyoJapan
| |
Collapse
|
13
|
Recovery of Metals from Acid Mine Drainage by Bioelectrochemical System Inoculated with a Novel Exoelectrogen, Pseudomonas sp. E8. Microorganisms 2019; 8:microorganisms8010041. [PMID: 31878294 PMCID: PMC7023207 DOI: 10.3390/microorganisms8010041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/03/2023] Open
Abstract
Acid mine drainage (AMD) is a typical source of environmental pollution ascribing to its characteristics of high acidity and heavy metal content. Currently, most strategies for AMD treatment merely focus on metal removal rather than metal recovery. However, bioelectrochemical system (BES) is a promising technology to simultaneously remove and recover metal ions from AMD. In this study, both cupric ion and cadmium ion in simulated AMD were effectively recovered by BES inoculated with a novel exoelectrogen, Pseudomonas sp. E8, that was first isolated from the anodic electroactive biofilm of a microbial fuel cell (MFC) in this study. Pseudomonas sp. E8 is a facultative anaerobic bacterium with a rod shape, 0.43–0.47 μm wide, and 1.10–1.30 μm long. Pseudomonas sp. E8 can agglomerate on the anode surface to form a biofilm in the single-chamber MFC using diluted Luria-Bertani (LB) medium as an energy substrate. A single-chamber MFC containing the electroactive Pseudomonas sp. E8 biofilms has a maximum output voltage of 191 mV and a maximum power density of 70.40 mW/m2, which is much higher than those obtained by most other exoelectrogenic strains in the genus of Pseudomonas. Almost all the Cu2+ (99.95% ± 0.09%) and Cd2+ (99.86% ± 0.04%) in simulated AMD were selectively recovered by a microbial fuel cell (MFC) and a microbial electrolysis cell (MEC). After the treatment with BES, the high concentrations of Cu2+(184.78 mg/L), Cd2+(132.25 mg/L), and total iron (49.87 mg/L) in simulated AMD were decreased to 0.02, 0.19, and 0 mg/L, respectively. Scanning electron micrograph (SEM), energy dispersive X-ray spectrometry (EDXS) and X-ray diffraction (XRD) analysis indicate that the Cu2+ and Cd2+ in simulated AMD were selectively recovered by microbial electrochemical reduction as Cu0 (together with trace amounts of Cu2O) or Cd0 on the cathode surface. Collectively, data suggest that Pseudomonas sp. E8 has great potential for AMD treatment and metal recovery.
Collapse
|
14
|
Ai C, Yan Z, Zhou H, Hou S, Chai L, Qiu G, Zeng W. Metagenomic Insights into the Effects of Seasonal Temperature Variation on the Activities of Activated Sludge. Microorganisms 2019; 7:E713. [PMID: 31861224 PMCID: PMC6956059 DOI: 10.3390/microorganisms7120713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023] Open
Abstract
It is well acknowledged that the activities of activated sludge (AS) are influenced by seasonal temperature variation. However, the underlying mechanisms remain largely unknown. Here, the activities of activated sludge under three simulated temperature variation trends were compared in lab-scale. The TN, HN3-H, and COD removal activities of activated sludge were improved as temperature elevated from 20 °C to 35 °C. While, the TN, HN3-H, COD and total phosphorus removal activities of activated sludge were inhibited as temperature declined from 20 °C to 5 °C. Both the extracellular polymer substances (EPS) composition (e.g., total amount, PS, PN and DNA) and sludge index of activated sludge were altered by simulated seasonal temperature variation. The variation of microbial community structures and the functional potentials of activated sludge were further explored by metagenomics. Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes were the dominant phyla for each activated sludge sample under different temperatures. However, the predominant genera of activated sludge were significantly modulated by simulated temperature variation. The functional genes encoding enzymes for nitrogen metabolism in microorganisms were analyzed. The enzyme genes related to ammonification had the highest abundance despite the changing temperature, especially for gene encoding glutamine synthetase. With the temperature raising from 20 °C to 35 °C. The abundance of amoCAB genes encoding ammonia monooxygenase (EC:1.14.99.39) increased by 305.8%. Meanwhile, all the enzyme genes associate with denitrification were reduced. As the temperature declined from 20 °C to 5 °C, the abundance of enzyme genes related to nitrogen metabolism were raised except for carbamate kinase (EC:2.7.2.2), glutamate dehydrogenase (EC:1.4.1.3), glutamine synthetase (EC:6.3.1.2). Metagenomic data indicate that succession of the dominant genera in microbial community structure is, to some extent, beneficial to maintain the functional stability of activated sludge under the temperature variation within a certain temperature range. This study provides novel insights into the effects of seasonal temperature variation on the activities of activated sludge.
Collapse
Affiliation(s)
- Chenbing Ai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; (C.A.)
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Zhang Yan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Han Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Shanshan Hou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; (C.A.)
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
15
|
Hackley RK, Schmid AK. Global Transcriptional Programs in Archaea Share Features with the Eukaryotic Environmental Stress Response. J Mol Biol 2019; 431:4147-4166. [PMID: 31437442 PMCID: PMC7419163 DOI: 10.1016/j.jmb.2019.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023]
Abstract
The environmental stress response (ESR), a global transcriptional program originally identified in yeast, is characterized by a rapid and transient transcriptional response composed of large, oppositely regulated gene clusters. Genes induced during the ESR encode core components of stress tolerance, macromolecular repair, and maintenance of homeostasis. In this review, we investigate the possibility for conservation of the ESR across the eukaryotic and archaeal domains of life. We first re-analyze existing transcriptomics data sets to illustrate that a similar transcriptional response is identifiable in Halobacterium salinarum, an archaeal model organism. To substantiate the archaeal ESR, we calculated gene-by-gene correlations, gene function enrichment, and comparison of temporal dynamics. We note reported examples of variation in the ESR across fungi, then synthesize high-level trends present in expression data of other archaeal species. In particular, we emphasize the need for additional high-throughput time series expression data to further characterize stress-responsive transcriptional programs in the Archaea. Together, this review explores an open question regarding features of global transcriptional stress response programs shared across domains of life.
Collapse
Affiliation(s)
- Rylee K Hackley
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA; Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
16
|
Liu R, Chen Y, Tian Z, Mao Z, Cheng H, Zhou H, Wang W. Enhancing microbial community performance on acid resistance by modified adaptive laboratory evolution. BIORESOURCE TECHNOLOGY 2019; 287:121416. [PMID: 31103940 DOI: 10.1016/j.biortech.2019.121416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 05/09/2023]
Abstract
A new strategy of three-step adaptive laboratory evolution (ALE) was developed to enhance the bioleaching performance of moderately thermophilic consortia. Through consortium construction, directed evolution and chemostat selection, an improved consortium (ALEend) that composed of Leptospirillum ferriphilum (80.32%), Sulfobacillus thermosulfidooxidans (15.82%) and Ferroplasma thermophilum (3.86%) was obtained, showing ferrous iron oxidation rate of 500 mgL-1h-1 and biomass production of 2.0 × 108 cells/mL at pH 0.75. During batch culturing, the ALEend consortium exhibited stable ferrous iron oxidation in wider conditions. PCA indicated that the communities were similar under fluctuating culture conditions, which demonstrated the stable community structure and the reinforced synergistic interactions resulting in the enhanced community performance. Pyrite bioleaching conducted at pH 1.5 and 0.75 revealed that the ALEend consortium extracted 26% and 55% more total iron relative to the original consortium. These findings indicated that the modified ALE may be a promising strategy for microbial community modification to enhance bioleaching.
Collapse
Affiliation(s)
- Ronghui Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yanzhi Chen
- South China Institute of Environmental Sciences, Guangzhou, China
| | - Zhuang Tian
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhenghua Mao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.
| | - Wei Wang
- South China Institute of Environmental Sciences, Guangzhou, China
| |
Collapse
|
17
|
Increased chalcopyrite bioleaching capabilities of extremely thermoacidophilic Metallosphaera sedula inocula by mixotrophic propagation. J Ind Microbiol Biotechnol 2019; 46:1113-1127. [PMID: 31165968 DOI: 10.1007/s10295-019-02193-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
Extremely thermoacidophilic Crenarchaeota belonging to the order Sulfolobales, such as Metallosphaera sedula, are metabolically versatile and of great relevance in bioleaching. However, the impacts of extreme thermoacidophiles propagated with different energy substrates on subsequent bioleaching of refractory chalcopyrite remain unknown. Transcriptional responses underlying their different bioleaching potentials are still elusive. Here, it was first showed that M. sedula inocula propagated with typical energy substrates have different chalcopyrite bioleaching capabilities. Inoculum propagated heterotrophically with yeast extract was deficient in bioleaching; however, inoculum propagated mixotrophically with chalcopyrite, pyrite or sulfur recovered 79%, 78% and 62% copper, respectively, in 12 days. Compared with heterotrophically propagated inoculum, 937, 859 and 683 differentially expressed genes (DEGs) were identified in inoculum cultured with chalcopyrite, pyrite or sulfur, respectively, including upregulation of genes involved in bioleaching-associated metabolism, e.g., Fe2+ and sulfur oxidation, CO2 fixation. Inoculum propagated with pyrite or sulfur, respectively, shared 480 and 411 DEGs with chalcopyrite-cultured inoculum. Discrepancies on repertories of DEGs that involved in Fe2+ and sulfur oxidation in inocula greatly affected subsequent chalcopyrite bioleaching rates. Novel genes (e.g., Msed_1156, Msed_0549) probably involved in sulfur oxidation were first identified. This study highlights that mixotrophically propagated extreme thermoacidophiles especially with chalcopyrite should be inoculated into chalcopyrite heaps at industrial scale.
Collapse
|
18
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
19
|
McCarthy S, Ai C, Blum P. Enhancement of Metallosphaera sedula Bioleaching by Targeted Recombination and Adaptive Laboratory Evolution. ADVANCES IN APPLIED MICROBIOLOGY 2018; 104:135-165. [PMID: 30143251 DOI: 10.1016/bs.aambs.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thermophilic and lithoautotrophic archaea such as Metallosphaera sedula occupy acidic, metal-rich environments and are used in biomining processes. Biotechnological approaches could accelerate these processes and improve metal recovery by biomining organisms, but systems for genetic manipulation in these organisms are currently lacking. To gain a better understanding of the interplay between metal resistance, autotrophy, and lithotrophic metabolism, a genetic system was developed for M. sedula and used to evaluate parameters governing the efficiency of copper bioleaching. Additionally, adaptive laboratory evolution was used to select for naturally evolved M. sedula cell lines with desirable phenotypes for biomining, and these adapted cell lines were shown to have increased bioleaching capacity and efficiency. Genomic methods were used to analyze mutations that led to resistance in the experimentally evolved cell lines, while transcriptomics was used to examine changes in stress-inducible gene expression specific to the environmental conditions.
Collapse
Affiliation(s)
- Samuel McCarthy
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Chenbing Ai
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Paul Blum
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States.
| |
Collapse
|
20
|
Gumulya Y, Boxall NJ, Khaleque HN, Santala V, Carlson RP, Kaksonen AH. In a quest for engineering acidophiles for biomining applications: challenges and opportunities. Genes (Basel) 2018; 9:E116. [PMID: 29466321 PMCID: PMC5852612 DOI: 10.3390/genes9020116] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/27/2022] Open
Abstract
Biomining with acidophilic microorganisms has been used at commercial scale for the extraction of metals from various sulfide ores. With metal demand and energy prices on the rise and the concurrent decline in quality and availability of mineral resources, there is an increasing interest in applying biomining technology, in particular for leaching metals from low grade minerals and wastes. However, bioprocessing is often hampered by the presence of inhibitory compounds that originate from complex ores. Synthetic biology could provide tools to improve the tolerance of biomining microbes to various stress factors that are present in biomining environments, which would ultimately increase bioleaching efficiency. This paper reviews the state-of-the-art tools to genetically modify acidophilic biomining microorganisms and the limitations of these tools. The first part of this review discusses resilience pathways that can be engineered in acidophiles to enhance their robustness and tolerance in harsh environments that prevail in bioleaching. The second part of the paper reviews the efforts that have been carried out towards engineering robust microorganisms and developing metabolic modelling tools. Novel synthetic biology tools have the potential to transform the biomining industry and facilitate the extraction of value from ores and wastes that cannot be processed with existing biomining microorganisms.
Collapse
Affiliation(s)
- Yosephine Gumulya
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Naomi J Boxall
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Himel N Khaleque
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
| | - Ville Santala
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology (TUT), Tampere, 33101, Finland.
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Montana State University (MSU), Bozeman, MT 59717, USA.
| | - Anna H Kaksonen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat WA 6014, Australia.
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
21
|
Evolution of copper arsenate resistance for enhanced enargite bioleaching using the extreme thermoacidophile Metallosphaera sedula. J Ind Microbiol Biotechnol 2017; 44:1613-1625. [DOI: 10.1007/s10295-017-1973-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
Abstract
Abstract
Adaptive laboratory evolution (ALE) was employed to isolate arsenate and copper cross-resistant strains, from the copper-resistant M. sedula CuR1. The evolved strains, M. sedula ARS50-1 and M. sedula ARS50-2, contained 12 and 13 additional mutations, respectively, relative to M. sedula CuR1. Bioleaching capacity of a defined consortium (consisting of a naturally occurring strain and a genetically engineered copper sensitive strain) was increased by introduction of M. sedula ARS50-2, with 5.31 and 26.29% more copper recovered from enargite at a pulp density (PD) of 1 and 3% (w/v), respectively. M. sedula ARS50-2 arose as the predominant species and modulated the proportions of the other two strains after it had been introduced. Collectively, the higher Cu2+ resistance trait of M. sedula ARS50-2 resulted in a modulated microbial community structure, and consolidating enargite bioleaching especially at elevated PD.
Collapse
|
22
|
Leavitt JM, Wagner JM, Tu CC, Tong A, Liu Y, Alper HS. Biosensor-Enabled Directed Evolution to Improve Muconic Acid Production in Saccharomyces cerevisiae. Biotechnol J 2017; 12. [PMID: 28296355 DOI: 10.1002/biot.201600687] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/28/2017] [Indexed: 12/12/2022]
Abstract
Muconic acid is a valuable platform chemical with potential applications in the production of polymers such as nylon and polyethylene terephthalate (PET). The conjugate base, muconate, has been previously biosynthesized in the bacterial host Escherichia coli. Likewise, previous significant pathway engineering lead to the first reported instance of rationally engineered production of muconic acid in the yeast Saccharomyces cerevisiae. To further increase muconic acid production in this host, a combined adaptive laboratory evolution (ALE) strategy and rational metabolic engineering is employed. To this end, a biosensor module that responds to the endogenous aromatic amino acid (AAA) as a surrogate for pathway flux is adapted. Following two rounds of ALE coupled with an anti-metabolite feeding strategy, the strains with improved AAA pathway flux is isolated. Next, it is demonstrated that this increased flux can be redirected into the composite muconic acid pathway with a threefold increase in the total titer of the composite pathway compared to our previously engineered strain. Finally, a truncation of the penta-functional ARO1 protein is complemented and overexpress an endogenous aromatic decarboxylase to establish a final strain capable of producing 0.5 g L-1 muconic acid in shake flasks and 2.1 g L-1 in a fed-batch bioreactor with a yield of 12.9 mg muconic acid/g glucose at the rate of 9.0 mg h-1 . This value represents the highest titer of muconic acid reported to date in S. cerevisiae, in addition to the highest reported titer of a shikimate pathway derivative in this host.
Collapse
Affiliation(s)
- John M Leavitt
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA
| | - James M Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Cuong C Tu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Alice Tong
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA
| | - Yanyi Liu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA.,McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| |
Collapse
|