1
|
Jiang Z, Guan J, Liu T, Shangguan C, Xu M, Rao Z. The flavohaemoprotein hmp maintains redox homeostasis in response to reactive oxygen and nitrogen species in Corynebacterium glutamicum. Microb Cell Fact 2023; 22:158. [PMID: 37596674 PMCID: PMC10436651 DOI: 10.1186/s12934-023-02160-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND During the production of L-arginine through high dissolved oxygen and nitrogen supply fermentation, the industrial workhorse Corynebacterium glutamicum is exposed to oxidative stress. This generates reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are harmful to the bacteria. To address the issue and to maintain redox homeostasis during fermentation, the flavohaemoprotein (Hmp) was employed. RESULTS The results showed that the overexpression of Hmp led to a decrease in ROS and RNS content by 9.4% and 22.7%, respectively, and improved the survivability of strains. When the strains were treated with H2O2 and NaNO2, the RT-qPCR analysis indicated an up-regulation of ammonium absorption and transporter genes amtB and glnD. Conversely, the deletion of hmp gives rise to the up-regulation of eight oxidative stress-related genes. These findings suggested that hmp is associated with oxidative stress and intracellular nitrogen metabolism genes. Finally, we released the inhibitory effect of ArnR on hmp. The Cc-ΔarnR-hmp strain produced 48.4 g/L L-arginine during batch-feeding fermentation, 34.3% higher than the original strain. CONCLUSIONS This report revealed the influence of dissolved oxygen and nitrogen concentration on reactive species of Corynebacterium glutamicum and the role of the Hmp in coping with oxidative stress. The Hmp first demonstrates related to redox homeostasis and nitrite metabolism, providing a feasible strategy for improving the robustness of strains.
Collapse
Affiliation(s)
- Ziqin Jiang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingyi Guan
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Tingting Liu
- Yantai Shinho Enterprise Foods Co., Ltd, Yantai, 265503, China
| | - Chunyu Shangguan
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
2
|
Wang HD, Xu JZ, Zhang WG. Reduction of acetate synthesis, enhanced arginine export, and supply of precursors, cofactors, and energy for improved synthesis of L-arginine by Escherichia coli. Appl Microbiol Biotechnol 2023; 107:3593-3603. [PMID: 37097502 DOI: 10.1007/s00253-023-12532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
L-arginine (L-Arg) is a semi-essential amino acid with many important physiological functions. However, achieving efficient manufacture of L-Arg on an industrial scale using Escherichia coli (E. coli) remains a major challenge. In previous studies, we constructed a strain of E. coli A7, which had good L-Arg production capacity. In this study, E. coli A7 was further modified, and E. coli A21 with more efficient L-Arg production capacity was obtained. Firstly, we reduced the acetate accumulation of strain A7 by weakening the poxB gene and overexpressing acs gene. Secondly, we improved the L-Arg transport efficiency of strains by overexpressing the lysE gene from Corynebacterium glutamicum (C. glutamicum). Finally, we enhanced the supplies of precursors for the synthesis of L-Arg and optimized the supplies of cofactor NADPH and energy ATP in strain. After fermentation in a 5-L bioreactor, the L-Arg titer of strain A21 was found to be 89.7 g/L. The productivity was 1.495 g/(L·h) and the glucose yield was 0.377 g/g. Our study further narrowed the titer gap between E. coli and C. glutamicum in the synthesis of L-Arg. In all recent studies on the L-Arg production by E. coli, this was the highest titer recorded. In conclusion, our study further promotes the efficient mass synthesis of L-Arg by E. coli. KEY POINTS: • The acetate accumulation of starting strain A7 was decreased. • Overexpression of gene lysE of C. glutamicum enhanced L-Arg transport in strain A10. • Enhance the supplies of precursors for the synthesis of L-Arg and optimize the supplies of cofactor NADPH and energy ATP. Finally, Strain A21 was detected to have an L-Arg titer of 89.7 g/L in a 5-L bioreactor.
Collapse
Affiliation(s)
- Hai-De Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China.
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
3
|
Zhao Z, Cai M, Liu Y, Hu M, Yang F, Zhu R, Xu M, Rao Z. Genomics and transcriptomics-guided metabolic engineering Corynebacterium glutamicum for l-arginine production. BIORESOURCE TECHNOLOGY 2022; 364:128054. [PMID: 36184013 DOI: 10.1016/j.biortech.2022.128054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
l-arginine is a semi-essential amino acid that is broadly used as food additives and pharmaceutical intermediates. The synthesis of l-arginine is restricted by complex metabolic mechanisms and suboptimal fermentation conditions. Initially, a mutant strain that accumulated 19.4 g/L l-arginine was generated by random mutagenesis. Subsequently, a mutation of the repressor protein (argRG159D) in the l-arginine operon and glutamate synthase (gltD) with 532-fold upregulation were identified to be vital for l-arginine production by multi-omic analysis. Systematic metabolic engineering was used to modify the strain, which included interfering with α-ketoglutarate dehydrogenase complex (ODHC) activity by knocking out serine/threonine-protein kinase (pknG), enhancing the expression of multiple key enzymes in the l-arginine synthesis pathway, and increasing the availability of intracellular cofactor (NADPH) and energy (ATP). Finally, C. glutamicum ARG12 produced 71.3 g/L l-arginine, with a yield of 0.43 g/g glucose by fermentation optimization. This study provides new ideas to boost l-arginine production.
Collapse
Affiliation(s)
- Zhenqiang Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengmeng Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yunran Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengkai Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fengyu Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Rongshuai Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Schulz-Mirbach H, Müller A, Wu T, Pfister P, Aslan S, Schada von Borzyskowski L, Erb TJ, Bar-Even A, Lindner SN. On the flexibility of the cellular amination network in E coli. eLife 2022; 11:e77492. [PMID: 35876664 PMCID: PMC9436414 DOI: 10.7554/elife.77492] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
Ammonium (NH4+) is essential to generate the nitrogenous building blocks of life. It gets assimilated via the canonical biosynthetic routes to glutamate and is further distributed throughout metabolism via a network of transaminases. To study the flexibility of this network, we constructed an Escherichia coli glutamate auxotrophic strain. This strain allowed us to systematically study which amino acids serve as amine sources. We found that several amino acids complemented the auxotrophy either by producing glutamate via transamination reactions or by their conversion to glutamate. In this network, we identified aspartate transaminase AspC as a major connector between many amino acids and glutamate. Additionally, we extended the transaminase network by the amino acids β-alanine, alanine, glycine, and serine as new amine sources and identified d-amino acid dehydrogenase (DadA) as an intracellular amino acid sink removing substrates from transaminase reactions. Finally, ammonium assimilation routes producing aspartate or leucine were introduced. Our study reveals the high flexibility of the cellular amination network, both in terms of transaminase promiscuity and adaptability to new connections and ammonium entry points.
Collapse
Affiliation(s)
| | - Alexandra Müller
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Tong Wu
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Pascal Pfister
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Selçuk Aslan
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Lennart Schada von Borzyskowski
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Institute of Biology Leiden, Leiden UniversityLeidenNetherlands
| | - Tobias J Erb
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Department of Biochemistry, Charité – Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
5
|
Huang M, Zhu L, Feng L, Zhan L, Zhao Y, Chen X. Reforming Nitrate Metabolism for Enhancing L-Arginine Production in Corynebacterium crenatum Under Oxygen Limitation. Front Microbiol 2022; 13:834311. [PMID: 35356524 PMCID: PMC8959459 DOI: 10.3389/fmicb.2022.834311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Various amino acids are widely manufactured using engineered bacteria. It is crucial to keep the dissolved oxygen at a certain level during fermentation, but accompanied by many disadvantages, such as high energy consumption, reactive oxygen species, and risk of phage infections. Thus, anaerobic production of amino acids is worth attempting. Nitrate respiration systems use nitrate as an electron acceptor under anoxic conditions, which is different from the metabolism of fermentation and can produce energy efficiently. Herein, we engineered Corynebacterium crenatum to enhance L-arginine production under anaerobic conditions through strengthening nitrate respiration and reforming nitrogen flux. The construction of mutant strain produced up to 3.84 g/L L-arginine under oxygen limitation with nitrate, and this value was 131.33% higher than that produced by the control strain under limited concentrations of oxygen without nitrate. Results could provide fundamental information for improving L-arginine production by metabolic engineering of C. crenatum under oxygen limitation.
Collapse
Affiliation(s)
- Mingzhu Huang
- Department of Life Science, Jiangxi Normal University, Nanchang, China.,National R&D Center for Freshwater Fish Processing, Nanchang, China
| | - Lingfeng Zhu
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Lin Feng
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Li Zhan
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Yue Zhao
- Department of Life Science, Jiangxi Normal University, Nanchang, China
| | - Xuelan Chen
- Department of Life Science, Jiangxi Normal University, Nanchang, China.,National R&D Center for Freshwater Fish Processing, Nanchang, China.,Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
6
|
Hai-De W, Shuai L, Bing-Bing W, Jie L, Jian-Zhong X, Wei-Guo Z. Metabolic engineering of Escherichia coli for efficient production of l-arginine. ADVANCES IN APPLIED MICROBIOLOGY 2022; 122:127-150. [PMID: 37085192 DOI: 10.1016/bs.aambs.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a semi-essential amino acid, l-arginine (l-Arg) plays an important role in food, health care, and medical treatment. At present, the main method of producing l-Arg is the use of microbial fermentation. Therefore, the selection and breeding of high-efficiency microbial strains is the top priority. To continuously improve the l-Arg production performance of the strains, a series of metabolic engineering strategies have been tried to transform the strains. The production of l-Arg by metabolically engineered Corynebacterium glutamicum (C. glutamicum) reached a relatively high level. Escherichia coli (E. coli), as a strain with great potential for l-Arg production, also has a large number of research strategies aimed at screening effective E. coli for producing l-Arg. E. coli also has a number of advantages over C. glutamicum in producing l-Arg. Therefore, it is of great significance to screen out excellent and stable E. coli to produce l-Arg. Here, based on recent research results, we review the metabolic pathways of l-Arg production in E. coli, the research progress of l-Arg production in E. coli, and various regulatory strategies implemented in E. coli.
Collapse
|
7
|
Sheng Q, Wu XY, Xu X, Tan X, Li Z, Zhang B. Production of l-glutamate family amino acids in Corynebacterium glutamicum: Physiological mechanism, genetic modulation, and prospects. Synth Syst Biotechnol 2021; 6:302-325. [PMID: 34632124 PMCID: PMC8484045 DOI: 10.1016/j.synbio.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
l-glutamate family amino acids (GFAAs), consisting of l-glutamate, l-arginine, l-citrulline, l-ornithine, l-proline, l-hydroxyproline, γ-aminobutyric acid, and 5-aminolevulinic acid, are widely applied in the food, pharmaceutical, cosmetic, and animal feed industries, accounting for billions of dollars of market activity. These GFAAs have many functions, including being protein constituents, maintaining the urea cycle, and providing precursors for the biosynthesis of pharmaceuticals. Currently, the production of GFAAs mainly depends on microbial fermentation using Corynebacterium glutamicum (including its related subspecies Corynebacterium crenatum), which is substantially engineered through multistep metabolic engineering strategies. This review systematically summarizes recent advances in the metabolic pathways, regulatory mechanisms, and metabolic engineering strategies for GFAA accumulation in C. glutamicum and C. crenatum, which provides insights into the recent progress in l-glutamate-derived chemical production.
Collapse
Affiliation(s)
- Qi Sheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinyi Xu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhimin Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
8
|
Enhanced production of L-arginine by improving carbamoyl phosphate supply in metabolically engineered Corynebacterium crenatum. Appl Microbiol Biotechnol 2021; 105:3265-3276. [PMID: 33837829 DOI: 10.1007/s00253-021-11242-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Carbamoyl phosphate is an important precursor for L-arginine and pyrimidines biosynthesis. In view of this importance, the cell factory should enhance carbamoyl phosphate synthesis to improve related compound production. In this work, we verified that carbamoyl phosphate is essential for L-arginine production in Corynebacterium sp., followed by engineering of carbamoyl phosphate synthesis for further strain improvement. First, carAB encoding carbamoyl phosphate synthetase II was overexpressed to improve the synthesis of carbamoyl phosphate. Second, the regulation of glutamine synthetase increases the supply of L-glutamine, providing an effective substrate for carbamoyl phosphate synthetase II. Third, carbamate kinase, which catalyzes inorganic ammonia synthesis carbamoyl phosphate, was screened and selected to assist in carbamoyl phosphate supply. Finally, we disrupted ldh (encoding lactate dehydrogenase) to decrease by-production formation and save NADH to regenerate ATP through the electron transport chain. Subsequently, the resulting strain allowed a dramatically increased L-arginine production of 68.6 ± 1.2 g∙L-1, with an overall productivity of 0.71 ± 0.01 g∙L-1∙h-1 in 5-L bioreactor. Stepwise rational metabolic engineering based on an increase in the supply of carbamoyl phosphate resulted in a gradual increase in L-arginine production. The strategy described here can also be implemented to improve L-arginine and pyrimidine derivatives. KEY POINTS: • The L-arginine production strongly depended on the supply of carbamoyl phosphate. • The novel carbamoyl phosphate synthesis pathway for C. crenatum based on carbamate kinase was first applied to L-arginine synthesis. • ATP was regenerated followed with the disruption of lactate formation.
Collapse
|
9
|
Wang Z, Li L, Liu P, Wang C, Lu Q, Liu L, Wang X, Luo Q, Shao H. Role of aspartate ammonia-lyase in Pasteurella multocida. BMC Microbiol 2020; 20:369. [PMID: 33272193 PMCID: PMC7713322 DOI: 10.1186/s12866-020-02049-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pasteurella multocida is responsible for a highly infectious and contagious disease in birds, leading to heavy economic losses in the chicken industry. However, the pathogenesis of this disease is poorly understood. We recently identified an aspartate ammonia-lyase (aspA) in P. multocida that was significantly upregulated under iron-restricted conditions, the protein of which could effectively protect chicken flocks against P. multocida. However, the functions of this gene remain unclear. In the present study, we constructed aspA mutant strain △aspA::kan and complementary strain C△aspA::kan to investigate the function of aspA in detail. RESULT Deletion of the aspA gene in P. multocida resulted in a significant reduction in bacterial growth in LB (Luria-Bertani) and MH (Mueller-Hinton) media, which was rescued by supplementation with 20 mM fumarate. The mutant strain △aspA::kan showed significantly growth defects in anaerobic conditions and acid medium, compared with the wild-type strain. Moreover, growth of △aspA::kan was more seriously impaired than that of the wild-type strain under iron-restricted conditions, and this growth recovered after supplementation with iron ions. AspA transcription was negatively regulated by iron conditions, as demonstrated by quantitative reverse transcription-polymerase chain reaction. Although competitive index assay showed the wild-type strain outcompetes the aspA mutant strain and △aspA::kan was significantly more efficient at producing biofilms than the wild-type strain, there was no significant difference in virulence between the mutant and the wild-type strains. CONCLUSION These results demonstrate that aspA is required for bacterial growth in complex medium, and under anaerobic, acid, and iron-limited conditions.
Collapse
Affiliation(s)
- Zui Wang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Special one, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China
| | - Li Li
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Special one, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China
| | - Peng Liu
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Special one, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China.,Animal Disease Prevention and Control Center of Yichang, Yichang, 443000, China
| | - Chen Wang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Special one, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China.,Animal Disease Prevention and Control Center of Yichang, Yichang, 443000, China
| | - Qin Lu
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Special one, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China
| | - Lina Liu
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Special one, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China
| | - Xiaozhong Wang
- Animal Disease Prevention and Control Center of Yichang, Yichang, 443000, China
| | - Qingping Luo
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Special one, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China. .,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Special 1, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China.
| | - Huabin Shao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Special one, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China. .,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Special 1, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China.
| |
Collapse
|
10
|
Jiang Y, Sheng Q, Wu XY, Ye BC, Zhang B. l-arginine production in Corynebacterium glutamicum: manipulation and optimization of the metabolic process. Crit Rev Biotechnol 2020; 41:172-185. [PMID: 33153325 DOI: 10.1080/07388551.2020.1844625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As an important semi-essential amino acid, l-arginine is extensively used in the food and pharmaceutical fields. At present, l-arginine production depends on cost-effective, green, and sustainable microbial fermentation by using a renewable carbon source. To enhance its fermentative production, various metabolic engineering strategies have been employed, which provide valid paths for reducing the cost of l-arginine production. This review summarizes recent advances in molecular biology strategies for the optimization of l-arginine-producing strains, including manipulating the principal metabolic pathway, modulating the carbon metabolic pathway, improving the intracellular biosynthesis of cofactors and energy usage, manipulating the assimilation of ammonia, improving the transportation and membrane permeability, and performing biosensor-assisted high throughput screening, providing useful insight into the current state of l-arginine production.
Collapse
Affiliation(s)
- Yan Jiang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Qi Sheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
11
|
Zhang Y, Zhou H, Tao Y, Lin B. Reconstitution of the Ornithine Cycle with Arginine:Glycine Amidinotransferase to Engineer Escherichia coli into an Efficient Whole-Cell Catalyst of Guanidinoacetate. ACS Synth Biol 2020; 9:2066-2075. [PMID: 32702969 DOI: 10.1021/acssynbio.0c00138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Guanidino compounds can be synthesized by transamidination reactions using arginine as a guanidine group donor. The efficiency of guanidino biosynthesis is often affected by the supply of arginine and the inhibition of the coproduct ornithine. To alleviate this shortcoming, we designed a reconstituted ornithine cycle in Escherichia coli to engineer an efficient whole-cell catalyst for guanidinoacetate (GAA) production by introducing a heterogeneous arginine:glycine amidinotransferase (AGAT). To alleviate the inhibition of ornithine, a citrulline synthetic module was constructed and optimized by introducing a glutamine self-sufficient system. Then, to improve the pathway from citrulline to arginine, an aspartate self-sufficient system was introduced into the arginine synthetic module. By combining these modules (GAA, citrulline, and arginine synthetic modules), a reconstituted ornithine cycle was developed, which significantly improved the biocatalyst efficiency (3.9-fold increase). In the system, arginine was regenerated efficiently through the reconstituted ornithine cycle, which converted arginine from a substrate to a cofactor for the transamidination reaction, thereby relieving the ornithine inhibition. Moreover, the amidino group of GAA in this system was mainly supplied by carbon and nitrogen assimilation. After the engineering process, 8.61 g/L GAA (73.56 mM) with a productivity of 0.39 g/L/h was achieved in a 22 h bioconversion. To the best of our knowledge, this is the first time that GAA has been produced in E. coli. This reconstructed ornithine cycle could be used as a transamidination platform for amidino group supply and has potential applications in the biosynthesis of other guanidino compounds.
Collapse
Affiliation(s)
- Yiwen Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hang Zhou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baixue Lin
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Xu M, Liu P, Chen J, Peng A, Yang T, Zhang X, Xu Z, Rao Z. Development of a Novel Biosensor-Driven Mutation and Selection System via in situ Growth of Corynebacterium crenatum for the Production of L-Arginine. Front Bioeng Biotechnol 2020; 8:175. [PMID: 32232036 PMCID: PMC7082233 DOI: 10.3389/fbioe.2020.00175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/20/2020] [Indexed: 01/06/2023] Open
Abstract
The high yield mutants require a high-throughput screening method to obtain them quickly. Here, we developed an L-arginine biosensor (ARG-Select) to obtain increased L-arginine producers among a large number of mutant strains. This biosensor was constructed by ArgR protein and argC promoter, and could provide the strain with the output of bacterial growth via the reporter gene sacB; strains with high L-arginine production could survive in 10% sucrose screening. To extend the screening limitation of 10% sucrose, the sensitivity of ArgR protein to L-arginine was decreased. Corynebacterium crenatum SYPA5-5 and its systems pathway engineered strain Cc6 were chosen as the original strains. This biosensor was employed, and L-arginine hyperproducing mutants were screened. Finally, the HArg1 and DArg36 mutants of C. crenatum SYPA5-5 and Cc6 could produce 56.7 and 95.5 g L-1 of L-arginine, respectively, which represent increases of 35.0 and 13.5%. These results demonstrate that the transcription factor-based biosensor could be applied in high yield strains selection as an effective high-throughput screening method.
Collapse
Affiliation(s)
- Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, China
| | - Pingping Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jiamin Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Anqi Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhenghong Xu
- Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, China
| | - Zhiming Rao
- Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, China
| |
Collapse
|
13
|
Zhang B, Gao G, Chu XH, Ye BC. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose. BIORESOURCE TECHNOLOGY 2019; 284:204-213. [PMID: 30939382 DOI: 10.1016/j.biortech.2019.03.122] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
l-ornithine, an important amino acid, is widely used in food and medicine industries. l-ornithine production mainly relies on microbial fermentation, which may not meet the industrial requirement owing to the poor fermentation ability of available strains. Herein, mscCG2 deletion, CgS9114_12202 (gdh2) overexpression and rational modulation in tricarboxylic acid cycle was firstly demonstrated to increase l-ornithine production in engineered Corynebacterium glutamicum S9114. By further modulate glucose utility result in strain SO26 that produced 38.5 g/L or 43.6 g/L of l-ornithine in shake flask and fed-batch fermentation, respectively. This was 25% higher than that of the original strain (30.8 g/L) and exhibits highest titer reported in shake-flask. Moreover, the incorporation of xylose pathway in the engineered strain resulted in the highest l-ornithine production titer (18.9 g/L) and yield (0.40 g/g xylose) with xylose substrate. These results illustrate the tremendous potential of the engineered strain C. glutamicum S9114 in l-ornithine production.
Collapse
Affiliation(s)
- Bin Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ge Gao
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao-He Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
14
|
Xu M, Li J, Shu Q, Tang M, Zhang X, Yang T, Xu Z, Rao Z. Enhancement of L-arginine production by increasing ammonium uptake in an AmtR-deficient Corynebacterium crenatum mutant. J Ind Microbiol Biotechnol 2019; 46:1155-1166. [PMID: 31203489 DOI: 10.1007/s10295-019-02204-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
L-Arginine is an important amino acid with extensive application in the food and pharmaceutical industries. The efficiency of nitrogen uptake and assimilation by organisms is extremely important for L-arginine production. In this study, a strain engineering strategy focusing on upregulate intracellular nitrogen metabolism in Corynebacterium crenatum for L-arginine production was conducted. Firstly, the nitrogen metabolism global transcriptional regulator AmtR was deleted, which has demonstrated the beneficial effect on L-arginine production. Subsequently, this strain was engineered by overexpressing the ammonium transporter AmtB to increase the uptake of NH4+ and L-arginine production. To overcome the drawbacks of using a plasmid to express amtB, Ptac, a strong promoter with amtB gene fragment, was integrated into the amtR region on the chromosome in the Corynebacterium crenatum/ΔamtR. The final strain results in L-arginine production at a titer of 60.9 g/L, which was 35.14% higher than that produced by C. crenatum SYPA5-5.
Collapse
Affiliation(s)
- Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China. .,Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, 226500, Jiangsu, China.
| | - Jing Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qunfeng Shu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Mi Tang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
15
|
Sun W, Alexander T, Man Z, Xiao F, Cui F, Qi X. Enhancing 2-Ketogluconate Production of Pseudomonas plecoglossicida JUIM01 by Maintaining the Carbon Catabolite Repression of 2-Ketogluconate Metabolism. Molecules 2018; 23:molecules23102629. [PMID: 30322137 PMCID: PMC6222622 DOI: 10.3390/molecules23102629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
2-Ketogluconate (2KGA) is an organic acid that is important for pharmaceutical, cosmetic, and environmental applications. Pseudomonas plecoglossicida JUIM01 strain is an important industrial 2KGA producer in China. In this paper, we found that P. plecoglossicida JUIM01 could convert glucose to 2KGA extracellularly, and the formed 2KGA was subsequently consumed after glucose was exhausted during the fermentation process. Experiments of glucose and 2KGA supplementation during fermentation process revealed that, only when glucose was exhausted, the strain started to consume the product 2KGA. Then, the mechanism of this phenomenon was investigated at transcription and protein levels, and the results indicated that P. plecoglossicida JUIM01 possesses carbon catabolite repression of 2KGA metabolism by glucose. Next, increasing the supply of glucose could attenuate 2KGA consumption and enhance the 2KGA yield from glucose. Finally, fed-batch fermentation of P. plecoglossicida JUIM01 resulted in 205.67 g/L of 2KGA with a productivity of 6.86 g/L/h and yield of 0.953 g/g glucose. These results can provide references for the industrial fermentation production of 2KGA and other fermentation products.
Collapse
Affiliation(s)
- Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
- Parchn Sodium Isovitamin C Co. Ltd., Dexing, 334221, China.
| | - Tjahjasari Alexander
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zaiwei Man
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Fangfang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
- Parchn Sodium Isovitamin C Co. Ltd., Dexing, 334221, China.
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
16
|
The Role of kguT Gene in 2-Ketogluconate-Producing Pseudomonas plecoglossicida JUIM01. Appl Biochem Biotechnol 2018; 187:965-974. [DOI: 10.1007/s12010-018-2843-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023]
|