1
|
Hu W, Cai W, Jia Y, Zhang Q, Zhang Z, Wang Y, Sun C, Li D. Fermentation of cigar tobacco leaves with citrus flavonoids: changes in chemical, microbiological, and sensory properties. Front Bioeng Biotechnol 2024; 12:1469532. [PMID: 39717530 PMCID: PMC11663678 DOI: 10.3389/fbioe.2024.1469532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction Fermentation plays a significant role in improving the quality of cigar tobacco leaves. Particularly, fermentation with characteristic additives has been identified as an effective approach to enhance the fermentation process. The objective of this study was to develop new additives and investigate their influence on cigar tobacco leaves. Methods The active ingredients extracted from three citrus species were obtained by ultrasonic-assisted extraction followed by solid phase purification. The effects of these ingredients as fermentation additives on the primary chemical components, microbial communities, and sensory quality of cigar tobacco leaves were subsequently analyzed. Results Results showed that: (1) Flavonoids were the main components of the prepared citrus extracts. (2) The addition of citrus extracts resulted in a reduced content of amino acids, oxalic acid, and unsaturated fatty acids in cigar tobacco leaves, while increasing the content of citric acid. Besides, the total amount of aroma substances in cigar tobacco leaves increased by 38.15% with the addition of citrus extracts, with notable enhancements in the levels of D-limonene, β-dihydroionone, dihydroactiniolactone, and other representative aroma components. (3) The addition of citrus extracts promoted the succession of the microbial community in cigar tobacco leaves and promoted the enrichment of Pseudomonas and Corynebacterium. (4) The addition of citrus extracts effectively reduced the irritation and improved the aroma richness of cigar tobacco leaves. Discussion In this study, the influence of citrus-derived active ingredients on cigar quality was systematically analyzed, providing a reference for the development of characteristic fermentation additives for cigars and the extension of cigar quality enhancement technologies.
Collapse
Affiliation(s)
- Wanrong Hu
- China Tobacco Technology Innovation Center for Cigar, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Cigar Fermentation Technology Key Laboratory of Tobacco Industry, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Wen Cai
- China Tobacco Technology Innovation Center for Cigar, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Cigar Fermentation Technology Key Laboratory of Tobacco Industry, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Yun Jia
- China Tobacco Technology Innovation Center for Cigar, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Cigar Fermentation Technology Key Laboratory of Tobacco Industry, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Qianying Zhang
- China Tobacco Technology Innovation Center for Cigar, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Cigar Fermentation Technology Key Laboratory of Tobacco Industry, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Zhengcheng Zhang
- China Tobacco Technology Innovation Center for Cigar, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Yue Wang
- Digital Intelligence Technology Research Center for Special Crops, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Digital Intelligence Technology Research Center for Special Crops, Zhejiang University, Hangzhou, China
| | - Dongliang Li
- China Tobacco Technology Innovation Center for Cigar, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| |
Collapse
|
2
|
Gong G, Wu B, Liu L, Li J, He M. Engineering oleaginous red yeasts as versatile chassis for the production of oleochemicals and valuable compounds: Current advances and perspectives. Biotechnol Adv 2024; 76:108432. [PMID: 39163921 DOI: 10.1016/j.biotechadv.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Enabling the transition towards a future circular bioeconomy based on industrial biomanufacturing necessitates the development of efficient and versatile microbial platforms for sustainable chemical and fuel production. Recently, there has been growing interest in engineering non-model microbes as superior biomanufacturing platforms due to their broad substrate range and high resistance to stress conditions. Among these non-conventional microbes, red yeasts belonging to the genus Rhodotorula have emerged as promising industrial chassis for the production of specialty chemicals such as oleochemicals, organic acids, fatty acid derivatives, terpenoids, and other valuable compounds. Advancements in genetic and metabolic engineering techniques, coupled with systems biology analysis, have significantly enhanced the production capacity of red yeasts. These developments have also expanded the range of substrates and products that can be utilized or synthesized by these yeast species. This review comprehensively examines the current efforts and recent progress made in red yeast research. It encompasses the exploration of available substrates, systems analysis using multi-omics data, establishment of genome-scale models, development of efficient molecular tools, identification of genetic elements, and engineering approaches for the production of various industrially relevant bioproducts. Furthermore, strategies to improve substrate conversion and product formation both with systematic and synthetic biology approaches are discussed, along with future directions and perspectives in improving red yeasts as more versatile biotechnological chassis in contributing to a circular bioeconomy. The review aims to provide insights and directions for further research in this rapidly evolving field. Ultimately, harnessing the capabilities of red yeasts will play a crucial role in paving the way towards next-generation sustainable bioeconomy.
Collapse
Affiliation(s)
- Guiping Gong
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Linpei Liu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
3
|
Mano J, Sushida H, Tanaka T, Naito K, Ono H, Ike M, Tokuyasu K, Kitaoka M. Extracellular oil production by Rhodotorula paludigena BS15 for biorefinery without complex downstream processes. Appl Microbiol Biotechnol 2023; 107:6799-6809. [PMID: 37725141 DOI: 10.1007/s00253-023-12762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
To realize biomass refinery without complex downstream processes, we extensively screened for microbial strains that efficiently produce extracellular oil from sugars. Rhodotorula paludigena (formerly Rhodosporidium paludigenum) BS15 was found to efficiently produce polyol esters of fatty acids (PEFAs), which mainly comprised of 3-acetoxypalmitic acid and partially acetylated mannitol/arabinitol. To evaluate the performance of this strain, fed-batch fermentation was demonstrated on a flask scale, and 110 g/L PEFA and 103 g/L dry cells were produced in 12 days. To the best of our knowledge, the strain BS15 exhibited the highest PEFA titer (g/L) ever to be reported so far. Because the PEFA precipitated at the bottom of the culture broth, it could be easily recovered by simply discarding the upper phase. Various carbon sources can be utilized for cell growth and/or PEFA production, which signifies the potential for converting diverse biomass sources. Two different types of next-generation sequencers, Illumina HiSeq and Oxford Nanopore PromethION, were used to analyze the whole-genome sequence of the strain BS15. The integrative data analysis generated a high-quality and reliable reference genome for PEFA-producing R. paludigena. The 22.5-M base genome sequence and the estimated genes were registered in Genbank (accession numbers BQKY01000001-BQKY01000019). KEY POINTS: • R. paludigena BS15 was isolated after an extensive screening of extracellular oil producers from natural sources. • Fed-batch fermentation of R. paludigena BS15 yielded 110 g/L of PEFA, which is the highest titer ever reported to date. • Combined analysis using Illumina and Oxford Nanopore sequencers produced the near-complete genome sequence.
Collapse
Affiliation(s)
- Junichi Mano
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan.
| | - Hirotoshi Sushida
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Tsuyoshi Tanaka
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Ken Naito
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hiroshi Ono
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Masakazu Ike
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Ken Tokuyasu
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Motomitsu Kitaoka
- Institute of Food Research, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
- Faculty of Agriculture, Niigata University, Niigata, 950-2181, Japan
| |
Collapse
|
4
|
Liu GL, Bu XY, Chen C, Fu C, Chi Z, Kosugi A, Cui Q, Chi ZM, Liu YJ. Bioconversion of non-food corn biomass to polyol esters of fatty acid and single-cell oils. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:9. [PMID: 36650607 PMCID: PMC9844004 DOI: 10.1186/s13068-023-02260-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND Lignocellulose is a valuable carbon source for the production of biofuels and biochemicals, thus having the potential to substitute fossil resources. Consolidated bio-saccharification (CBS) is a whole-cell-based catalytic technology previously developed to produce fermentable sugars from lignocellulosic agricultural wastes. The deep-sea yeast strain Rhodotorula paludigena P4R5 can produce extracellular polyol esters of fatty acids (PEFA) and intracellular single-cell oils (SCO) simultaneously. Therefore, the integration of CBS and P4R5 fermentation processes would achieve high-value-added conversion of lignocellulosic biomass. RESULTS The strain P4R5 could co-utilize glucose and xylose, the main monosaccharides from lignocellulose, and also use fructose and arabinose for PEFA and SCO production at high levels. By regulating the sugar metabolism pathways for different monosaccharides, the strain could produce PEFA with a single type of polyol head. The potential use of PEFA as functional micelles was also determined. Most importantly, when sugar-rich CBS hydrolysates derived from corn stover or corncob residues were used to replace grain-derived pure sugars for P4R5 fermentation, similar PEFA and SCO productions were obtained, indicating the robust conversion of non-food corn plant wastes to high-value-added glycolipids and lipids. Since the produced PEFA could be easily collected from the culture via short-time standing, we further developed a semi-continuous process for PEFA production from corncob residue-derived CBS hydrolysate, and the PEFA titer and productivity were enhanced up to 41.1 g/L and 8.22 g/L/day, respectively. CONCLUSIONS Here, we integrated the CBS process and the P4R5 fermentation for the robust production of high-value-added PEFA and SCO from non-food corn plant wastes. Therefore, this study suggests a feasible way for lignocellulosic agro-waste utilization and the potential application of P4R5 in industrial PEFA production.
Collapse
Grants
- 2021YFC2103200, 2021YFC2103600 National Key Research and Development Program of China
- 2021YFC2103200, 2021YFC2103600 National Key Research and Development Program of China
- 31970069, 32070028, 32170051 National Natural Science Foundation of China
- 31970069, 32070028, 32170051 National Natural Science Foundation of China
- 31970069, 32070028, 32170051 National Natural Science Foundation of China
- SEI S202106, SEI I202142 Shandong Energy Institute Research Foundation
- SEI S202106, SEI I202142 Shandong Energy Institute Research Foundation
- SEI S202106, SEI I202142 Shandong Energy Institute Research Foundation
- XDA 21060201 Strategic Priority Research Program of the Chinese Academy of Sciences
- QIBEBT ZZBS 201801 QIBEBT Research Foundation
- 21-1-2-23-hz Qingdao Innovation Major Project
- M2021-03 State Key Laboratory of Microbial Technology Open Projects Fund
Collapse
Affiliation(s)
- Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266101, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266101, China
| | - Xian-Ying Bu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266101, People's Republic of China
| | - Chaoyang Chen
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Dalian National Laboratory for Clean Energy, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunxiang Fu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Dalian National Laboratory for Clean Energy, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266101, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266101, China
| | - Akihiko Kosugi
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, Japan
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Dalian National Laboratory for Clean Energy, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266101, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266101, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Energy Institute, Qingdao, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, China.
- Dalian National Laboratory for Clean Energy, Qingdao, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Sánchez C. A review of the role of biosurfactants in the biodegradation of hydrophobic organopollutants: production, mode of action, biosynthesis and applications. World J Microbiol Biotechnol 2022; 38:216. [PMID: 36056983 DOI: 10.1007/s11274-022-03401-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
The increasing influence of human activity and industrialization has adversely impacted the environment via pollution with organic contaminants, which are minimally soluble in water. These hydrophobic organopollutants may be present in sediment, water or biota and have created concern due to their toxic effects in mammals. The ability of microorganisms to degrade pollutants makes their use the most effective, inexpensive and ecofriendly method for environmental remediation. Microorganisms have the ability to produce natural surfactants (biosurfactants) that increase the bioavailability of hydrophobic organopollutants, which enables their use as carbon and energy sources. Due to microbial diversity in production, and the biodegradability, nontoxicity, stability and specific activity of the surfactants, the use of microbial surfactants has the potential to overcome problems associated with contamination by hydrophobic organopollutants.This review provides an overview of the current state of knowledge regarding microbial surfactant production, mode of action in the biodegradation of hydrophobic organopollutants and biosynthetic pathways as well as their applications using emergent strategy tools to remove organopollutants from the environment. It is also specified for the first time that biosurfactants are produced either as growth-associated products or secondary metabolites, and are produced in different amounts by a wide range of microorganisms.
Collapse
Affiliation(s)
- Carmen Sánchez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, C.P. 90120, Ixtacuixtla, Tlaxcala, Mexico.
| |
Collapse
|
6
|
Sałek K, Euston SR, Janek T. Phase Behaviour, Functionality, and Physicochemical Characteristics of Glycolipid Surfactants of Microbial Origin. Front Bioeng Biotechnol 2022; 10:816613. [PMID: 35155390 PMCID: PMC8830654 DOI: 10.3389/fbioe.2022.816613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 01/14/2023] Open
Abstract
Growing demand for biosurfactants as environmentally friendly counterparts of chemically derived surfactants enhances the extensive search for surface-active compounds of biological (microbial) origin. The understanding of the physicochemical properties of biosurfactants such as surface tension reduction, dispersion, emulsifying, foaming or micelle formation is essential for the successful application of biosurfactants in many branches of industry. Glycolipids, which belong to the class of low molecular weight surfactants are currently gaining a lot of interest for industrial applications. For this reason, we focus mainly on this class of biosurfactants with particular emphasis on rhamnolipids and sophorolipids, the most studied of the glycolipids.
Collapse
Affiliation(s)
- Karina Sałek
- Institute for Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, United Kingdom
- *Correspondence: Karina Sałek,
| | - Stephen R. Euston
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
7
|
Abeln F, Chuck CJ. The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 2021; 20:221. [PMID: 34876155 PMCID: PMC8650507 DOI: 10.1186/s12934-021-01712-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid-based biofuels, such as biodiesel and hydroprocessed esters, are a central part of the global initiative to reduce the environmental impact of the transport sector. The vast majority of production is currently from first-generation feedstocks, such as rapeseed oil, and waste cooking oils. However, the increased exploitation of soybean oil and palm oil has led to vast deforestation, smog emissions and heavily impacted on biodiversity in tropical regions. One promising alternative, potentially capable of meeting future demand sustainably, are oleaginous yeasts. Despite being known about for 143 years, there has been an increasing effort in the last decade to develop a viable industrial system, with currently around 100 research papers published annually. In the academic literature, approximately 160 native yeasts have been reported to produce over 20% of their dry weight in a glyceride-rich oil. The most intensively studied oleaginous yeast have been Cutaneotrichosporon oleaginosus (20% of publications), Rhodotorula toruloides (19%) and Yarrowia lipolytica (19%). Oleaginous yeasts have been primarily grown on single saccharides (60%), hydrolysates (26%) or glycerol (19%), and mainly on the mL scale (66%). Process development and genetic modification (7%) have been applied to alter yeast performance and the lipids, towards the production of biofuels (77%), food/supplements (24%), oleochemicals (19%) or animal feed (3%). Despite over a century of research and the recent application of advanced genetic engineering techniques, the industrial production of an economically viable commodity oil substitute remains elusive. This is mainly due to the estimated high production cost, however, over the course of the twenty-first century where climate change will drastically change global food supply networks and direct governmental action will likely be levied at more destructive crops, yeast lipids offer a flexible platform for localised, sustainable lipid production. Based on data from the large majority of oleaginous yeast academic publications, this review is a guide through the history of oleaginous yeast research, an assessment of the best growth and lipid production achieved to date, the various strategies employed towards industrial production and importantly, a critical discussion about what needs to be built on this huge body of work to make producing a yeast-derived, more sustainable, glyceride oil a commercial reality.
Collapse
Affiliation(s)
- Felix Abeln
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK.
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | | |
Collapse
|
8
|
Vieira IMM, Santos BLP, Ruzene DS, Silva DP. An overview of current research and developments in biosurfactants. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
From bumblebee to bioeconomy: Recent developments and perspectives for sophorolipid biosynthesis. Biotechnol Adv 2021; 54:107788. [PMID: 34166752 DOI: 10.1016/j.biotechadv.2021.107788] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Sophorolipids are biobased compounds produced by the genera Starmerella and Pseudohyphozyma that gain exponential interest from academic and industrial stakeholders due to their mild and environmental friendly characteristics. Currently, industrially relevant sophorolipid volumetric productivities are reached up to 3.7 g∙L-1∙h-1 and sophorolipids are used in the personal care and cleaning industry at small scale. Moreover, applications in crop protection, food, biohydrometallurgy and medical fields are being extensively researched. The research and development of sophorolipids is at a crucial stage. Therefore, this work presents an overview of the state-of-the-art on sophorolipid research and their applications, while providing a critical assessment of scientific techniques and standardisation in reporting. In this review, the genuine sophorolipid producing organisms and the natural role of sophorolipids are discussed. Subsequently, an evaluation is made of innovations in production processes and the relevance of in-situ product recovery for process performance is discussed. Furthermore, a critical assessment of application research and its future perspectives are portrayed with a focus on the self-assembly of sophorolipid molecules. Following, genetic engineering strategies that affect the sophorolipid physiochemical properties are summarised. Finally, the impact of sophorolipids on the bioeconomy are uncovered, along with relevant future perspectives.
Collapse
|
10
|
da Silva AF, Banat IM, Giachini AJ, Robl D. Fungal biosurfactants, from nature to biotechnological product: bioprospection, production and potential applications. Bioprocess Biosyst Eng 2021; 44:2003-2034. [PMID: 34131819 PMCID: PMC8205652 DOI: 10.1007/s00449-021-02597-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022]
Abstract
Biosurfactants are in demand by the global market as natural commodities that can be added to commercial products or use in environmental applications. These biomolecules reduce the surface/interfacial tension between fluid phases and exhibit superior stability to chemical surfactants under different physico-chemical conditions. Biotechnological production of biosurfactants is still emerging. Fungi are promising producers of these molecules with unique chemical structures, such as sophorolipids, mannosylerythritol lipids, cellobiose lipids, xylolipids, polyol lipids and hydrophobins. In this review, we aimed to contextualize concepts related to fungal biosurfactant production and its application in industry and the environment. Concepts related to the thermodynamic and physico-chemical properties of biosurfactants are presented, which allows detailed analysis of their structural and application. Promising niches for isolating biosurfactant-producing fungi are presented, as well as screening methodologies are discussed. Finally, strategies related to process parameters and variables, simultaneous production, process optimization through statistical and genetic tools, downstream processing and some aspects of commercial products formulations are presented.
Collapse
Affiliation(s)
- André Felipe da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.,Bioprocess and Biotechnology Engineering Undergraduate Program, Federal University of Tocantins (UFT), Gurupi, TO, Brazil
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, UK
| | - Admir José Giachini
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Diogo Robl
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
11
|
Byrtusová D, Szotkowski M, Kurowska K, Shapaval V, Márová I. Rhodotorula kratochvilovae CCY 20-2-26-The Source of Multifunctional Metabolites. Microorganisms 2021; 9:1280. [PMID: 34208382 PMCID: PMC8231246 DOI: 10.3390/microorganisms9061280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Multifunctional biomass is able to provide more than one valuable product, and thus, it is attractive in the field of microbial biotechnology due to its economic feasibility. Carotenogenic yeasts are effective microbial factories for the biosynthesis of a broad spectrum of biomolecules that can be used in the food and feed industry and the pharmaceutical industry, as well as a source of biofuels. In the study, we examined the effect of different nitrogen sources, carbon sources and CN ratios on the co-production of intracellular lipids, carotenoids, β-glucans and extracellular glycolipids. Yeast strain R. kratochvilovae CCY 20-2-26 was identified as the best co-producer of lipids (66.7 ± 1.5% of DCW), exoglycolipids (2.42 ± 0.08 g/L), β-glucan (11.33 ± 1.34% of DCW) and carotenoids (1.35 ± 0.11 mg/g), with a biomass content of 15.2 ± 0.8 g/L, by using the synthetic medium with potassium nitrate and mannose as a carbon source. It was shown that an increased C/N ratio positively affected the biomass yield and production of lipids and β-glucans.
Collapse
Affiliation(s)
- Dana Byrtusová
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (D.B.); (V.S.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Martin Szotkowski
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Klára Kurowska
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (D.B.); (V.S.)
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| |
Collapse
|
12
|
Genomics- and Metabolomics-Based Investigation of the Deep-Sea Sediment-Derived Yeast, Rhodotorula mucilaginosa 50-3-19/20B. Mar Drugs 2020; 19:md19010014. [PMID: 33396687 PMCID: PMC7823890 DOI: 10.3390/md19010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 01/10/2023] Open
Abstract
Red yeasts of the genus Rhodotorula are of great interest to the biotechnological industry due to their ability to produce valuable natural products, such as lipids and carotenoids with potential applications as surfactants, food additives, and pharmaceuticals. Herein, we explored the biosynthetic potential of R. mucilaginosa 50-3-19/20B collected from the Mid-Atlantic Ridge using modern genomics and untargeted metabolomics tools. R. mucilaginosa 50-3-19/20B exhibited anticancer activity when grown on PDA medium, while antimicrobial activity was observed when cultured on WSP-30 medium. Applying the bioactive molecular networking approach, the anticancer activity was linked to glycolipids, namely polyol esters of fatty acid (PEFA) derivatives. We purified four PEFAs (1–4) and the known methyl-2-hydroxy-3-(1H-indol-2-yl)propanoate (5). Their structures were deduced from NMR and HR-MS/MS spectra, but 1–5 showed no anticancer activity in their pure form. Illumina-based genome sequencing, de novo assembly and standard biosynthetic gene cluster (BGC) analyses were used to illustrate key components of the PEFA biosynthetic pathway. The fatty acid producing BGC3 was identified to be capable of producing precursors of PEFAs. Some Rhodotorula strains are able to convert inulin into high-yielding PEFA and cell lipid using a native exo-inulinase enzyme. The genomic locus for an exo-inulinase enzyme (g1629.t1), which plays an instrumental role in the PEFA production via the mannitol biosynthesis pathway, was identified. This is the first untargeted metabolomics study on R. mucilaginosa providing new genomic insights into PEFA biosynthesis.
Collapse
|
13
|
Wang M, Mao W, Wang X, Li F, Wang J, Chi Z, Chi Z, Liu G. Efficient simultaneous production of extracellular polyol esters of fatty acids and intracellular lipids from inulin by a deep-sea yeast Rhodotorula paludigena P4R5. Microb Cell Fact 2019; 18:149. [PMID: 31481079 PMCID: PMC6720868 DOI: 10.1186/s12934-019-1200-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/27/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Polyol esters of fatty acids (PEFA) are a kind of promising biosurfactants and mainly secreted by Rhodotorula strains. In addition, some strains of Rhodotorula are reliable producers of microbial lipid. Therefore, it is feasible to establish a one step fermentation process for efficient simultaneous production of PEFA and microbial lipids by a suitable Rhodotorula strain. RESULTS A newly isolated deep-sea yeast, Rhodotorula paludigena P4R5, was shown to simultaneously produce high level of intracellular lipid and extracellular PEFA. Under the optimized conditions, it could yield 48.5 g/L of PEFA and 16.9 g/L of intracellular lipid within 156 h from inulin during 10-L batch fermentation. The PEFA consisting of a mixture of mannitol esters of 3-hydroxy C14, C16 and C18 fatty acids with variable acetylation showed outstanding surface activity and emulsifying activity, while the fatty acids of the intracellular lipid were mainly C16 and C18 and could be high-quality feedstock for biodiesel production. CONCLUSION The deep-sea yeast strain R. paludigena P4R5 was an excellent candidate for efficient simultaneous of biosurfactants and biodiesel from inulin. Our results also suggested that the establishment of fermentation systems with multiple metabolites production was an effective approach to improve the profitability.
Collapse
Affiliation(s)
- Mengqi Wang
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China
| | - Weian Mao
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China
| | - Xiaoxiang Wang
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China
| | - Fengyi Li
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China
| | - Jiming Wang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 26601, China
| | - Zhe Chi
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Qingdao, 266237, China
| | - Zhenming Chi
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Qingdao, 266237, China
| | - Guanglei Liu
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
14
|
Guerfali M, Ayadi I, Mohamed N, Ayadi W, Belghith H, Bronze MR, Ribeiro MHL, Gargouri A. Triacylglycerols accumulation and glycolipids secretion by the oleaginous yeast Rhodotorula babjevae Y-SL7: Structural identification and biotechnological applications. BIORESOURCE TECHNOLOGY 2019; 273:326-334. [PMID: 30448685 DOI: 10.1016/j.biortech.2018.11.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
The newly isolated oleaginous yeast, Rhodotorula babjevae Y-SL7, was shown to accumulate high intracellular content of microbial oil (mainly triacylglycerols) and to secret, under the same culture conditions, an atypical glycolipid. This unusual behavior was induced when the strain was subjected to nitrogen limitation and high amount of carbon. A series of analytical methods was adopted in order to structurally characterize the secreted glycolipid. The latter consists of a mixture of 9 molecules formed by a polyol head group, bound through the carboxyl end of an acetylated 3-hydroxy fatty acid with C18 or C16 chain length. In addition of their physicochemical properties such as emulsifying activity on hydrophobic substrates, Y-SL7 glycolipids have shown a therapeutically promising cytotoxic effect against different cancer cell lines. In fact, Y-SL7 strain can be used for the production of triacylglycerols as energetic molecules and for the secretion of a biosurfactant of therapeutic and environmental interest.
Collapse
Affiliation(s)
- Mohamed Guerfali
- Laboratory of Molecular Biotechnology of Eukaryotes, LMBE, Centre of Biotechnology of Sfax, P.O. Box 1177, TN-3038 Sfax, Tunisia.
| | - Ines Ayadi
- Laboratory of Molecular Biotechnology of Eukaryotes, LMBE, Centre of Biotechnology of Sfax, P.O. Box 1177, TN-3038 Sfax, Tunisia
| | - Nadia Mohamed
- Laboratory of Molecular Biotechnology of Eukaryotes, LMBE, Centre of Biotechnology of Sfax, P.O. Box 1177, TN-3038 Sfax, Tunisia
| | - Wajdi Ayadi
- Laboratory of Molecular Biotechnology of Eukaryotes, LMBE, Centre of Biotechnology of Sfax, P.O. Box 1177, TN-3038 Sfax, Tunisia
| | - Hafedh Belghith
- Laboratory of Molecular Biotechnology of Eukaryotes, LMBE, Centre of Biotechnology of Sfax, P.O. Box 1177, TN-3038 Sfax, Tunisia
| | - Maria Rosário Bronze
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Instituto de Tecnologia Química e Biológica (IBET), Apartado 127, 2784-505 Oeiras, Portugal
| | - Maria H L Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ali Gargouri
- Laboratory of Molecular Biotechnology of Eukaryotes, LMBE, Centre of Biotechnology of Sfax, P.O. Box 1177, TN-3038 Sfax, Tunisia
| |
Collapse
|
15
|
Garay LA, Sitepu IR, Cajka T, Xu J, Teh HE, German JB, Pan Z, Dungan SR, Block DE, Boundy-Mills KL. Extracellular fungal polyol lipids: A new class of potential high value lipids. Biotechnol Adv 2018; 36:397-414. [DOI: 10.1016/j.biotechadv.2018.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 12/07/2017] [Accepted: 01/03/2018] [Indexed: 01/30/2023]
|