1
|
Cardiff RAL, Carothers JM, Zalatan JG, Sauro HM. Systems-Level Modeling for CRISPR-Based Metabolic Engineering. ACS Synth Biol 2024; 13:2643-2652. [PMID: 39119666 DOI: 10.1021/acssynbio.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The CRISPR-Cas system has enabled the development of sophisticated, multigene metabolic engineering programs through the use of guide RNA-directed activation or repression of target genes. To optimize biosynthetic pathways in microbial systems, we need improved models to inform design and implementation of transcriptional programs. Recent progress has resulted in new modeling approaches for identifying gene targets and predicting the efficacy of guide RNA targeting. Genome-scale and flux balance models have successfully been applied to identify targets for improving biosynthetic production yields using combinatorial CRISPR-interference (CRISPRi) programs. The advent of new approaches for tunable and dynamic CRISPR activation (CRISPRa) promises to further advance these engineering capabilities. Once appropriate targets are identified, guide RNA prediction models can lead to increased efficacy in gene targeting. Developing improved models and incorporating approaches from machine learning may be able to overcome current limitations and greatly expand the capabilities of CRISPR-Cas9 tools for metabolic engineering.
Collapse
Affiliation(s)
- Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jesse G Zalatan
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Herbert M Sauro
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Cardiff RL, Faulkner I, Beall J, Carothers JM, Zalatan J. CRISPR-Cas tools for simultaneous transcription & translation control in bacteria. Nucleic Acids Res 2024; 52:5406-5419. [PMID: 38613390 PMCID: PMC11109947 DOI: 10.1093/nar/gkae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Robust control over gene translation at arbitrary mRNA targets is an outstanding challenge in microbial synthetic biology. The development of tools that can regulate translation will greatly expand our ability to precisely control genes across the genome. In Escherichia coli, most genes are contained in multi-gene operons, which are subject to polar effects where targeting one gene for repression leads to silencing of other genes in the same operon. These effects pose a challenge for independently regulating individual genes in multi-gene operons. Here, we use CRISPR-dCas13 to address this challenge. We find dCas13-mediated repression exhibits up to 6-fold lower polar effects compared to dCas9. We then show that we can selectively activate single genes in a synthetic multi-gene operon by coupling dCas9 transcriptional activation of an operon with dCas13 translational repression of individual genes within the operon. We also show that dCas13 and dCas9 can be multiplexed for improved biosynthesis of a medically-relevant human milk oligosaccharide. Taken together, our findings suggest that combining transcriptional and translational control can access effects that are difficult to achieve with either mode independently. These combined tools for gene regulation will expand our abilities to precisely engineer bacteria for biotechnology and perform systematic genetic screens.
Collapse
Affiliation(s)
- Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology University of Washington Seattle, WA 98195 USA
| | - Ian D Faulkner
- Department of Chemical Engineering University of Washington Seattle, WA 98195 USA
| | - Juliana G Beall
- Department of Chemistry University of Washington Seattle, WA 98195 USA
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology University of Washington Seattle, WA 98195 USA
- Department of Chemical Engineering University of Washington Seattle, WA 98195 USA
| | - Jesse G Zalatan
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology University of Washington Seattle, WA 98195 USA
- Department of Chemical Engineering University of Washington Seattle, WA 98195 USA
- Department of Chemistry University of Washington Seattle, WA 98195 USA
| |
Collapse
|
3
|
Van Hove B, De Wannemaeker L, Missiaen I, Maertens J, De Mey M. Taming CRISPRi: Dynamic range tuning through guide RNA diversion. N Biotechnol 2023; 77:50-57. [PMID: 37422184 DOI: 10.1016/j.nbt.2023.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
CRISPRi is a powerful technique to repress gene expression in a targeted and highly efficient manner. However, this potency is a double-edged sword in inducible systems, as even leaky expression of guide RNA results in a repression phenotype, complicating applications such as dynamic metabolic engineering. We evaluated three methods to enhance the controllability of CRISPRi by modulating the level of free and DNA-bound guide RNA complexes. Overall repression can be attenuated through rationally designed mismatches in the reversibility determining region of the guide RNA sequence; decoy target sites can selectively modulate repression at low levels of induction; and the implementation of feedback control not only enhances the linearity of induction, but broadens the dynamic range of the output as well. Furthermore, feedback control significantly enhances the recovery rate after induction is removed. Used in combination, these techniques enable the fine-tuning of CRISPRi to meet restrictions imposed by the target and match the input signal required for induction.
Collapse
Affiliation(s)
- Bob Van Hove
- Centre for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lien De Wannemaeker
- Centre for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Isolde Missiaen
- Centre for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| |
Collapse
|
4
|
Sugianto W, Altin-Yavuzarslan G, Tickman BI, Kiattisewee C, Yuan SF, Brooks SM, Wong J, Alper HS, Nelson A, Carothers JM. Gene expression dynamics in input-responsive engineered living materials programmed for bioproduction. Mater Today Bio 2023; 20:100677. [PMID: 37273790 PMCID: PMC10239009 DOI: 10.1016/j.mtbio.2023.100677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/14/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Engineered living materials (ELMs) fabricated by encapsulating microbes in hydrogels have great potential as bioreactors for sustained bioproduction. While long-term metabolic activity has been demonstrated in these systems, the capacity and dynamics of gene expression over time is not well understood. Thus, we investigate the long-term gene expression dynamics in microbial ELMs constructed using different microbes and hydrogel matrices. Through direct gene expression measurements of engineered E. coli in F127-bisurethane methacrylate (F127-BUM) hydrogels, we show that inducible, input-responsive genetic programs in ELMs can be activated multiple times and maintained for multiple weeks. Interestingly, the encapsulated bacteria sustain inducible gene expression almost 10 times longer than free-floating, planktonic cells. These ELMs exhibit dynamic responsiveness to repeated induction cycles, with up to 97% of the initial gene expression capacity retained following a subsequent induction event. We demonstrate multi-week bioproduction cycling by implementing inducible CRISPR transcriptional activation (CRISPRa) programs that regulate the expression of enzymes in a pteridine biosynthesis pathway. ELMs fabricated from engineered S. cerevisiae in bovine serum albumin (BSA) - polyethylene glycol diacrylate (PEGDA) hydrogels were programmed to express two different proteins, each under the control of a different chemical inducer. We observed scheduled bioproduction switching between betaxanthin pigment molecules and proteinase A in S. cerevisiae ELMs over the course of 27 days under continuous cultivation. Overall, these results suggest that the capacity for long-term genetic expression may be a general property of microbial ELMs. This work establishes approaches for implementing dynamic, input-responsive genetic programs to tailor ELM functions for a wide range of advanced applications.
Collapse
Affiliation(s)
- Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States
| | - Gokce Altin-Yavuzarslan
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - Benjamin I. Tickman
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States
| | - Cholpisit Kiattisewee
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States
| | - Shuo-Fu Yuan
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, United States
| | - Sierra M. Brooks
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, United States
| | - Jitkanya Wong
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - Hal S. Alper
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, United States
| | - Alshakim Nelson
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - James M. Carothers
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States
- Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States
| |
Collapse
|
5
|
Woodcraft C, Chooi YH, Roux I. The expanding CRISPR toolbox for natural product discovery and engineering in filamentous fungi. Nat Prod Rep 2023; 40:158-173. [PMID: 36205232 DOI: 10.1039/d2np00055e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Covering: up to May 2022Fungal genetics has transformed natural product research by enabling the elucidation of cryptic metabolites and biosynthetic steps. The enhanced capability to add, subtract, modulate, and rewrite genes via CRISPR/Cas technologies has opened up avenues for the manipulation of biosynthetic gene clusters across diverse filamentous fungi. This review discusses the innovative and diverse strategies for fungal natural product discovery and engineering made possible by CRISPR/Cas-based tools. We also provide a guide into multiple angles of CRISPR/Cas experiment design, and discuss current gaps in genetic tool development for filamentous fungi and the promising opportunities for natural product research.
Collapse
Affiliation(s)
- Clara Woodcraft
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Indra Roux
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
6
|
Kiattisewee C, Karanjia AV, Legut M, Daniloski Z, Koplik SE, Nelson J, Kleinstiver BP, Sanjana NE, Carothers JM, Zalatan JG. Expanding the Scope of Bacterial CRISPR Activation with PAM-Flexible dCas9 Variants. ACS Synth Biol 2022; 11:4103-4112. [PMID: 36378874 PMCID: PMC10516241 DOI: 10.1021/acssynbio.2c00405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CRISPR-Cas transcriptional tools have been widely applied for programmable regulation of complex biological networks. In comparison to eukaryotic systems, bacterial CRISPR activation (CRISPRa) has stringent target site requirements for effective gene activation. While genes may not always have an NGG protospacer adjacent motif (PAM) at the appropriate position, PAM-flexible dCas9 variants can expand the range of targetable sites. Here we systematically evaluate a panel of PAM-flexible dCas9 variants for their ability to activate bacterial genes. We observe that dxCas9-NG provides a high dynamic range of gene activation for sites with NGN PAMs while dSpRY permits modest activity across almost any PAM. Similar trends were observed for heterologous and endogenous promoters. For all variants tested, improved PAM-flexibility comes with the trade-off that CRISPRi-mediated gene repression becomes less effective. Weaker CRISPR interference (CRISPRi) gene repression can be partially rescued by expressing multiple sgRNAs to target many sites in the gene of interest. Our work provides a framework to choose the most effective dCas9 variant for a given set of gene targets, which will further expand the utility of CRISPRa/i gene regulation in bacterial systems.
Collapse
Affiliation(s)
- Cholpisit Kiattisewee
- Molecular Engineering & Sciences Institute and Center
for Synthetic Biology, University of Washington, Seattle, WA 98195, United
States
| | - Ava V. Karanjia
- Molecular Engineering & Sciences Institute and Center
for Synthetic Biology, University of Washington, Seattle, WA 98195, United
States
- Department of Chemical Engineering, University of
Washington, Seattle, WA 98195, United States
| | - Mateusz Legut
- New York Genome Center, New York, NY 10013, United
States
- Department of Biology, New York University, New York, NY
10013, United States
| | - Zharko Daniloski
- New York Genome Center, New York, NY 10013, United
States
- Department of Biology, New York University, New York, NY
10013, United States
| | - Samantha E. Koplik
- Department of Bioengineering, University of Washington,
Seattle, WA 98195, United States
| | - Joely Nelson
- Molecular Engineering & Sciences Institute and Center
for Synthetic Biology, University of Washington, Seattle, WA 98195, United
States
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General
Hospital, Boston, MA 02114, United States
- Department of Pathology, Massachusetts General Hospital,
Boston, MA 02114, United States
- Department of Pathology, Harvard Medical School, Boston,
MA 02115, United States
| | - Neville E. Sanjana
- New York Genome Center, New York, NY 10013, United
States
- Department of Biology, New York University, New York, NY
10013, United States
| | - James M. Carothers
- Molecular Engineering & Sciences Institute and Center
for Synthetic Biology, University of Washington, Seattle, WA 98195, United
States
- Department of Chemical Engineering, University of
Washington, Seattle, WA 98195, United States
- Department of Bioengineering, University of Washington,
Seattle, WA 98195, United States
| | - Jesse G. Zalatan
- Molecular Engineering & Sciences Institute and Center
for Synthetic Biology, University of Washington, Seattle, WA 98195, United
States
- Department of Chemical Engineering, University of
Washington, Seattle, WA 98195, United States
- Department of Chemistry, University of Washington,
Seattle, WA 98195, United States
| |
Collapse
|
7
|
Wang X, Darbandsari M, Zhang L, Deng Z. Exploiting synthetic regulatory elements for non-dominant microorganisms. Synth Syst Biotechnol 2022; 7:839-840. [PMID: 35570851 PMCID: PMC9065463 DOI: 10.1016/j.synbio.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Xuyuan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mersa Darbandsari
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zixin Deng
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
8
|
Tickman BI, Burbano DA, Chavali VP, Kiattisewee C, Fontana J, Khakimzhan A, Noireaux V, Zalatan JG, Carothers JM. Multi-layer CRISPRa/i circuits for dynamic genetic programs in cell-free and bacterial systems. Cell Syst 2022; 13:215-229.e8. [PMID: 34800362 DOI: 10.1016/j.cels.2021.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/24/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
CRISPR-Cas transcriptional circuits hold great promise as platforms for engineering metabolic networks and information processing circuits. Historically, prokaryotic CRISPR control systems have been limited to CRISPRi. Creating approaches to integrate CRISPRa for transcriptional activation with existing CRISPRi-based systems would greatly expand CRISPR circuit design space. Here, we develop design principles for engineering prokaryotic CRISPRa/i genetic circuits with network topologies specified by guide RNAs. We demonstrate that multi-layer CRISPRa/i cascades and feedforward loops can operate through the regulated expression of guide RNAs in cell-free expression systems and E. coli. We show that CRISPRa/i circuits can program complex functions by designing type 1 incoherent feedforward loops acting as fold-change detectors and tunable pulse-generators. By investigating how component characteristics relate to network properties such as depth, width, and speed, this work establishes a framework for building scalable CRISPRa/i circuits as regulatory programs in cell-free expression systems and bacterial hosts. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Benjamin I Tickman
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA
| | - Diego Alba Burbano
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Venkata P Chavali
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA
| | - Cholpisit Kiattisewee
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA
| | - Jason Fontana
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA
| | - Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jesse G Zalatan
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA; Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
9
|
Villegas Kcam MC, Tsong AJ, Chappell J. Rational engineering of a modular bacterial CRISPR-Cas activation platform with expanded target range. Nucleic Acids Res 2021; 49:4793-4802. [PMID: 33823546 PMCID: PMC8096225 DOI: 10.1093/nar/gkab211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/14/2022] Open
Abstract
CRISPR-Cas activator (CRISPRa) systems that selectively turn on transcription of a target gene are a potentially transformative technology for programming cellular function. While in eukaryotes versatile CRISPRa systems exist, in bacteria these systems suffer from a limited ability to activate different genes due to strict distance-dependent requirements of functional target binding sites, and require greater customization to optimize performance in different genetic and cellular contexts. To address this, we apply a rational protein engineering approach to create a new CRISPRa platform that is highly modular to allow for easy customization and has increased targeting flexibility through harnessing engineered Cas proteins. We first demonstrate that transcription activation domains can be recruited by CRISPR-Cas through noncovalent protein-protein interactions, which allows each component to be encoded on separate and easily interchangeable plasmid elements. We then exploit this modularity to rapidly screen a library of different activation domains, creating new systems with distinct regulatory properties. Furthermore, we demonstrate that by harnessing a library of circularly permuted Cas proteins, we can create CRISPRa systems that have different target binding site requirements, which together, allow for expanded target range.
Collapse
Affiliation(s)
| | - Annette J Tsong
- Department of BioSciences, Rice University, 6100 Main Street, MS 140, Houston, TX 77005, USA
| | - James Chappell
- Department of BioSciences, Rice University, 6100 Main Street, MS 140, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, MS 142, Houston, TX 77005, USA
| |
Collapse
|
10
|
Kruyer NS, Sugianto W, Tickman BI, Alba Burbano D, Noireaux V, Carothers JM, Peralta-Yahya P. Membrane Augmented Cell-Free Systems: A New Frontier in Biotechnology. ACS Synth Biol 2021; 10:670-681. [PMID: 33749249 DOI: 10.1021/acssynbio.0c00625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins are present in a wide array of cellular processes from primary and secondary metabolite synthesis to electron transport and single carbon metabolism. A key barrier to applying membrane proteins industrially is their difficult functional production. Beyond expression, folding, and membrane insertion, membrane protein activity is influenced by the physicochemical properties of the associated membrane, making it difficult to achieve optimal membrane protein performance outside the endogenous host. In this review, we highlight recent work on production of membrane proteins in membrane augmented cell-free systems (CFSs) and applications thereof. CFSs lack membranes and can thus be augmented with user-specified, tunable, mimetic membranes to generate customized environments for production of functional membrane proteins of interest. Membrane augmented CFSs would enable the synthesis of more complex plant secondary metabolites, the growth and division of synthetic cells for drug delivery and cell therapeutic applications, as well as enable green energy applications including methane capture and artificial photosynthesis.
Collapse
Affiliation(s)
- Nicholas S. Kruyer
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Widianti Sugianto
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin I. Tickman
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
| | - Diego Alba Burbano
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James M. Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Pamela Peralta-Yahya
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Fontana J, Sparkman-Yager D, Zalatan JG, Carothers JM. Challenges and opportunities with CRISPR activation in bacteria for data-driven metabolic engineering. Curr Opin Biotechnol 2020; 64:190-198. [PMID: 32599515 DOI: 10.1016/j.copbio.2020.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022]
Abstract
Creating CRISPR gene activation (CRISPRa) technologies in industrially promising bacteria could be transformative for accelerating data-driven metabolic engineering and strain design. CRISPRa has been widely used in eukaryotes, but applications in bacterial systems have remained limited. Recent work shows that multiple features of bacterial promoters impose stringent requirements on CRISPRa-mediated gene activation. However, by systematically defining rules for effective bacterial CRISPRa sites and developing new approaches for encoding complex functions in engineered guide RNAs, there are now clear routes to generalize synthetic gene regulation in bacteria. When combined with multi-omics data collection and machine learning, the full development of bacterial CRISPRa will dramatically improve the ability to rapidly engineer bacteria for bioproduction through accelerated design-build-test-learn cycles.
Collapse
Affiliation(s)
- Jason Fontana
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington. Seattle, WA 98195, United States
| | - David Sparkman-Yager
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington. Seattle, WA 98195, United States
| | - Jesse G Zalatan
- Department of Chemistry, University of Washington. Seattle, WA 98195, United States.
| | - James M Carothers
- Department of Chemical Engineering, University of Washington. Seattle, WA 98195, United States.
| |
Collapse
|
12
|
Mi Z, Cheng J, Zhao P, Tian P, Tan T. Improved Production of Pyrroloquinoline Quinone by Simultaneous Augmentation of Its Synthesis Gene Expression and Glucose Metabolism in Klebsiella pneumoniae. Curr Microbiol 2020; 77:1174-1183. [PMID: 32080751 DOI: 10.1007/s00284-020-01918-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
Klebsiella pneumoniae can naturally synthesize pyrroloquinoline quinone (PQQ), but current low yield restricts its commercialization. Here, we reported that PQQ production can be improved by simultaneously intensifying PQQ gene expression and glucose metabolism. Firstly, tandem repetitive tac promoters were constructed to overexpress PQQ synthesis genes. Results showed that when three repeats of tac promoter were recruited to overexpress PQQ synthesis genes, the recombinant strain generated 1.5-fold PQQ relative to the strain recruiting only one tac promoter. Quantitative real-time PCR (qRT-PCR) revealed the increased transcription levels of PQQ synthesis genes. Next, fermentation parameters were optimized to augment the glucose direct oxidation pathway (GDOP) mediated by PQQ-dependent glucose dehydrogenase (PQQ-GDH). Results demonstrated that the cultivation conditions of sufficient glucose (≥ 32 g/L), low pH (5.8), and limited potassium (0.7 nmol/L) significantly promoted the biosynthesis of gluconic acid, 2-ketogluconic acid, and PQQ. In optimum shake flask fermentation conditions, the K. pneumoniae strain overexpressing PQQ synthesis genes under three repeats of tac promoter generated 363.3 nmol/L of PQQ, which was 2.6-fold of that in original culture conditions. In bioreactor cultivation, this strain produced 2371.7 nmol/L of PQQ. To our knowledge, this is the highest PQQ titer reported so far using K. pneumoniae as a host strain. Overall, simultaneous intensification of pqq gene expression and glucose metabolism is effective to improve PQQ production.
Collapse
Affiliation(s)
- Zhiwei Mi
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jingchao Cheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Peng Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
13
|
Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 2018; 3:135-149. [PMID: 30345399 PMCID: PMC6190536 DOI: 10.1016/j.synbio.2018.09.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas technologies have greatly reshaped the biology field. In this review, we discuss the CRISPR-Cas with a particular focus on the associated technologies and applications of CRISPR-Cas9 and CRISPR-Cas12a, which have been most widely studied and used. We discuss the biological mechanisms of CRISPR-Cas as immune defense systems, recently-discovered anti-CRISPR-Cas systems, and the emerging Cas variants (such as xCas9 and Cas13) with unique characteristics. Then, we highlight various CRISPR-Cas biotechnologies, including nuclease-dependent genome editing, CRISPR gene regulation (including CRISPR interference/activation), DNA/RNA base editing, and nucleic acid detection. Last, we summarize up-to-date applications of the biotechnologies for synthetic biology and metabolic engineering in various bacterial species.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Liu
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Xiao Jia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|