1
|
Bhardwaj S, Badiyal A, Dhiman S, Bala J, Walia A. Exploring Halophiles for Reclamation of Saline Soils: Biotechnological Interventions for Sustainable Agriculture. J Basic Microbiol 2025:e70048. [PMID: 40357706 DOI: 10.1002/jobm.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Soil salinization is a major constraint on agricultural productivity, particularly in arid and semi-arid regions where limited rainfall cannot wash salts from plant root zones. This leads to disruptions in water uptake, ion balance, photosynthesis, respiration, nutrient absorption, hormone regulation and rhizosphere microbiome disturbances in plants. Chemical and biological methods can help mitigate soil salinity, but biological approaches, like using halophytes and salt-tolerant microorganisms, are preferred for environmental sustainability. Halophytes, however, represent only about 1% of flora and are habitat specific, so halophilic plant growth-promoting (PGP) microbes have emerged as a key eco-friendly solution. Halophilic PGP bacteria have shown promise in remediating saline soils, enhancing fertility and boosting crop resilience by inducing salinity tolerance (IST) and promoting plant growth traits. In the era of modern agriculture where chemical inputs are at their peak of application rendering the soil infertile, halophilic PGP bacteria represent a promising, sustainable approach to support food security, aligning with Sustainable Development Goals for zero hunger.
Collapse
Affiliation(s)
- Shiwani Bhardwaj
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Anila Badiyal
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Shailja Dhiman
- Department of Plant Breeding and Genetics, College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Jyoti Bala
- Department of Organic Agriculture and Natural Farming, College of Agriculture, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Abhishek Walia
- Department of Microbiology, College of Basic Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| |
Collapse
|
2
|
Kalia VC, Patel SKS, Krishnamurthi P, Singh RV, Lee JK. Exploiting latent microbial potentials for producing polyhydroxyalkanoates: A holistic approach. ENVIRONMENTAL RESEARCH 2025; 269:120895. [PMID: 39832546 DOI: 10.1016/j.envres.2025.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Plastics are versatile, however, nonbiodegradable polymers that are primarily derived from fossil fuels and pose notable environmental challenges. However, biopolymers, such as polyhydroxyalkanoates (PHAs), poly(lactic acid), starch, and cellulose have emerged as sustainable alternatives to conventional plastics. Among these, PHAs stand out as strong contenders as they are completely bio-based and biodegradable and are synthesized by microbes as an energy reserve under stress conditions. Despite their limitations, including low mechanical strength, susceptibility to degradation, a restricted scope of application, and high production costs, biopolymers have promising potential. This review explores strategies for enhancing PHA production to address these challenges, emphasizing the need for sustainable PHA production. These strategies include selecting robust microbial strains and feedstock combinations, optimizing cell biomass and biopolymer yields, genetically engineering biosynthetic pathways, and improving downstream processing techniques. Additives such as plasticizers, thermal stabilizers, and antioxidants are crucial for modifying PHA characteristics, and its processing for achieving the desired balance between processability and end-use performance. By overcoming these complications, biopolymers have become more viable, versatile, and eco-friendly alternatives to conventional plastics, offering hope for a more sustainable future.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, 246174, Uttarakhand, India
| | | | - Rahul Vikram Singh
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
3
|
Daga-Quisbert J, Mendieta D, Rajarao GK, van Maris AJA, Quillaguamán J. Production of ectoine by Vreelandella boliviensis using non-aseptic repeated-batch and continuous cultivations in an air-lift bioreactor. Int Microbiol 2024:10.1007/s10123-024-00626-3. [PMID: 39722111 DOI: 10.1007/s10123-024-00626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/17/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Ectoine, an osmolyte produced by various microorganisms, has numerous commercial applications. Vreelandella boliviensis (formerly called Halomonas boliviensis) generates high ectoine concentrations, i.e., 78.6 g/L. This study investigated three cultivation strategies for ectoine production in a non-aseptic air-lift bioreactor. The first strategy was performed in a repeated-batch mode with 5% (w/v) NaCl to induce cell growth, followed by the addition of solid NaCl to a final concentration of 12.5% (w/v) to prompt ectoine production. A maximum dry cell weight of 13.8 g/L at 46.5 h, a maximum ectoine concentration of 1.37 g/L at 37.5 h, and a maximum volumetric productivity of 0.93 g/L/d at 34.5 h were reached. The second strategy employed a three-step repeated-batch cultivation method. In the first step, cells were grown at the optimum salt concentration, harvested by centrifugation, and cultivated in a replenished medium for the second step. In the third step, the cells were harvested again and grown in a fresh medium containing 12.5% (w/v) NaCl. This strategy improved dry cell weight to 32 g/L, ectoine concentration to 4.37 g/L, and productivity to 1.76 g/L/day at 60 h of cultivation. The third strategy consisted of continuous cultivations that were investigated using different NaCl concentrations. The highest ectoine concentration of 2.83 g/L and productivity of 3.49 g/L/d were obtained with 8.5% (w/v) NaCl at a dilution rate of 0.05 (1/h). This study is the first to report ectoine production by V. boliviensis in continuous air-lift bioreactors under non-aseptic conditions.
Collapse
Affiliation(s)
- Jeanett Daga-Quisbert
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Daniela Mendieta
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Gunaratna Kuttuva Rajarao
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Albanova University Centre, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm, Sweden
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Albanova University Centre, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm, Sweden
| | - Jorge Quillaguamán
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia.
| |
Collapse
|
4
|
Deantas-Jahn C, Mendoza SN, Licona-Cassani C, Orellana C, Saa PA. Metabolic modeling of Halomonas campaniensis improves polyhydroxybutyrate production under nitrogen limitation. Appl Microbiol Biotechnol 2024; 108:310. [PMID: 38662130 PMCID: PMC11045607 DOI: 10.1007/s00253-024-13111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Poly-hydroxybutyrate (PHB) is an environmentally friendly alternative for conventional fossil fuel-based plastics that is produced by various microorganisms. Large-scale PHB production is challenging due to the comparatively higher biomanufacturing costs. A PHB overproducer is the haloalkaliphilic bacterium Halomonas campaniensis, which has low nutritional requirements and can grow in cultures with high salt concentrations, rendering it resistant to contamination. Despite its virtues, the metabolic capabilities of H. campaniensis as well as the limitations hindering higher PHB production remain poorly studied. To address this limitation, we present HaloGEM, the first high-quality genome-scale metabolic network reconstruction, which encompasses 888 genes, 1528 reactions (1257 gene-associated), and 1274 metabolites. HaloGEM not only displays excellent agreement with previous growth data and experiments from this study, but it also revealed nitrogen as a limiting nutrient when growing aerobically under high salt concentrations using glucose as carbon source. Among different nitrogen source mixtures for optimal growth, HaloGEM predicted glutamate and arginine as a promising mixture producing increases of 54.2% and 153.4% in the biomass yield and PHB titer, respectively. Furthermore, the model was used to predict genetic interventions for increasing PHB yield, which were consistent with the rationale of previously reported strategies. Overall, the presented reconstruction advances our understanding of the metabolic capabilities of H. campaniensis for rationally engineering this next-generation industrial biotechnology platform. KEY POINTS: A comprehensive genome-scale metabolic reconstruction of H. campaniensis was developed. Experiments and simulations predict N limitation in minimal media under aerobiosis. In silico media design increased experimental biomass yield and PHB titer.
Collapse
Affiliation(s)
- Carolina Deantas-Jahn
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián N Mendoza
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
- Systems Biology Lab, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Cuauhtemoc Licona-Cassani
- Núcleo de Innovación de Sistemas Biológicos (NISB), FEMSA Biotechnology Center, Tecnológico de Monterrey, Monterrey, Mexico
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
| | - Camila Orellana
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro A Saa
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Instituto de Ingeniería Matemática y Computacional, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Meinzer M, Ahmad N, Nielsen BL. Halophilic Plant-Associated Bacteria with Plant-Growth-Promoting Potential. Microorganisms 2023; 11:2910. [PMID: 38138054 PMCID: PMC10745547 DOI: 10.3390/microorganisms11122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The salinization of soils is a growing agricultural concern worldwide. Irrigation practices, drought, and climate change are leading to elevated salinity levels in many regions, resulting in reduced crop yields. However, there is potential for a solution in the microbiome of halophytes, which are naturally salt-tolerant plants. These plants harbor a salt-tolerant microbiome in their rhizosphere (around roots) and endosphere (within plant tissue). These bacteria may play a significant role in conferring salt tolerance to the host plants. This leads to the possibility of transferring these beneficial bacteria, known as salt-tolerant plant-growth-promoting bacteria (ST-PGPB), to salt-sensitive plants, enabling them to grow in salt-affected areas to improve crop productivity. In this review, the background of salt-tolerant microbiomes is discussed and their potential use as ST-PGPB inocula is explored. We focus on two Gram-negative bacterial genera, Halomonas and Kushneria, which are commonly found in highly saline environments. These genera have been found to be associated with some halophytes, suggesting their potential for facilitating ST-PGPB activity. The study of salt-tolerant microbiomes and their use as PGPB holds promise for addressing the challenges posed by soil salinity in the context of efforts to improve crop growth in salt-affected areas.
Collapse
Affiliation(s)
- McKay Meinzer
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan;
| | - Brent L. Nielsen
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan;
| |
Collapse
|
6
|
Wang Y, Qian J, Yan F, Wang Y, Shi T, Zhang Z, Ye C, Huang H. DSEMR: A database for special environment microorganisms resource and associating them with synthetic biological parts. Synth Syst Biotechnol 2023; 8:647-653. [PMID: 37840639 PMCID: PMC10569984 DOI: 10.1016/j.synbio.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Special environmental microorganisms are considered to be of great industrial application value because of their special genotypes, physiological functions and metabolites. The research and development of special environmental microorganisms will certainly bring about some innovations in biotechnology processes and change the face of bioengineering. The Special Environmental Microbial Database (DSEMR) is a comprehensive database that provides information on special environmental microbial resources and correlates them with synthetic biological parts. DSEMR aggregates information on specific environmental microbial genomes, physiological properties, culture media, biological parts, and metabolic pathways, and provides online tool analysis data, including 5268 strains from 620 genera, 31 media, and 42,126 biological parts. In short, DSEMR will become an important resource for the study of microorganisms in special environments and actively promote the development of synthetic biology.
Collapse
Affiliation(s)
- Yuzhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jinyi Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Fang Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Zhidong Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
7
|
Sun F, Dong Y, Ni M, Ping Z, Sun Y, Ouyang Q, Qian L. Mobile and Self-Sustained Data Storage in an Extremophile Genomic DNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206201. [PMID: 36737843 PMCID: PMC10074078 DOI: 10.1002/advs.202206201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
DNA has been pursued as a novel biomaterial for digital data storage. While large-scale data storage and random access have been achieved in DNA oligonucleotide pools, repeated data accessing requires constant data replenishment, and these implementations are confined in professional facilities. Here, a mobile data storage system in the genome of the extremophile Halomonas bluephagenesis, which enables dual-mode storage, dynamic data maintenance, rapid readout, and robust recovery. The system relies on two key components: A versatile genetic toolbox for the integration of 10-100 kb scale synthetic DNA into H. bluephagenesis genome and an efficient error correction coding scheme targeting noisy nanopore sequencing reads. The storage and repeated retrieval of 5 KB data under non-laboratory conditions are demonstrated. The work highlights the potential of DNA data storage in domestic and field scenarios, and expands its application domain from archival data to frequently accessed data.
Collapse
Affiliation(s)
- Fajia Sun
- Center for Quantitative BiologyPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
| | - Yiming Dong
- Center for Quantitative BiologyPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
| | - Ming Ni
- Academician Workstation of BGI Synthetic GenomicsBGI‐ShenzhenHuada Comprehensive ParkYantian DistrictShenzhen518083P. R. China
| | - Zhi Ping
- Academician Workstation of BGI Synthetic GenomicsBGI‐ShenzhenHuada Comprehensive ParkYantian DistrictShenzhen518083P. R. China
| | - Yuhui Sun
- Academician Workstation of BGI Synthetic GenomicsBGI‐ShenzhenHuada Comprehensive ParkYantian DistrictShenzhen518083P. R. China
| | - Qi Ouyang
- Center for Quantitative BiologyPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic PhysicsPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
| | - Long Qian
- Center for Quantitative BiologyPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
| |
Collapse
|
8
|
Thu NTT, Hoang LH, Cuong PK, Viet-Linh N, Nga TTH, Kim DD, Leong YK, Nhi-Cong LT. Evaluation of polyhydroxyalkanoate (PHA) synthesis by Pichia sp. TSLS24 yeast isolated in Vietnam. Sci Rep 2023; 13:3137. [PMID: 36823427 PMCID: PMC9950484 DOI: 10.1038/s41598-023-28220-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
Following the rising concern on environmental issues caused by conventional fossil-based plastics and depleting crude oil resources, polyhydroxyalkanoates (PHAs) are of great interest by scientists and biodegradable polymer market due to their outstanding properties which include high biodegradability in various conditions and processing flexibility. Many polyhydroxyalkanoate-synthesizing microorganisms, including normal and halophilic bacteria, as well as algae, have been investigated for their performance in polyhydroxyalkanoate production. However, to the best of our knowledge, there is still limited studies on PHAs-producing marine yeast. In the present study, a halophilic yeast strain isolated from Spratly Island in Vietnam were investigated for its potential in polyhydroxyalkanoate biosynthesis by growing the yeast in Zobell marine agar medium (ZMA) containing Nile red dye. The strain was identified by 26S rDNA analysis as Pichia kudriavzevii TSLS24 and registered at Genbank database under code OL757724. The amount of polyhydroxyalkanoates synthesized was quantified by measuring the intracellular materials (predicted as poly(3-hydroxybutyrate) -PHB) by gravimetric method and subsequently confirmed by Fourier transform infrared (FTIR) spectroscopic and nuclear magnetic resonance (NMR) spectroscopic analyses. Under optimal growth conditions of 35 °C and pH 7 with supplementation of glucose and yeast extract at 20 and 10 gL-1, the isolated strain achieved poly(3-hydroxybutyrate) content and concentration of 43.4% and 1.8 gL-1 after 7 days of cultivation. The poly(3-hydroxybutyrate) produced demonstrated excellent biodegradability with degradation rate of 28% after 28 days of incubation in sea water.
Collapse
Affiliation(s)
- Nguyen Thi Tam Thu
- Institute of New Technology, Academy of Military Science and Technology, Hanoi, 10072 Vietnam
| | - Le Huy Hoang
- Institute of New Technology, Academy of Military Science and Technology, Hanoi, 10072 Vietnam
| | - Pham Kien Cuong
- Institute of New Technology, Academy of Military Science and Technology, Hanoi, 10072 Vietnam
| | - Nguyen Viet-Linh
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 10072, Vietnam. .,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 10072, Vietnam.
| | - Tran Thi Huyen Nga
- grid.267852.c0000 0004 0637 2083University of Science, Vietnam National University-Hanoi, Hanoi, 11400 Vietnam
| | - Dang Dinh Kim
- grid.267849.60000 0001 2105 6888Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
| | - Yoong Kit Leong
- grid.265231.10000 0004 0532 1428Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407224 Taiwan
| | - Le Thi Nhi-Cong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 10072, Vietnam. .,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 10072, Vietnam.
| |
Collapse
|
9
|
Efficient acetoin production from pyruvate by engineered Halomonas bluephagenesis whole-cell biocatalysis. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Liu W, Cong B, Lin J, Zhao L, Liu S. Complete genome sequencing and comparison of two nitrogen-metabolizing bacteria isolated from Antarctic deep-sea sediment. BMC Genomics 2022; 23:713. [PMID: 36261793 PMCID: PMC9580203 DOI: 10.1186/s12864-022-08942-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacteria are an essential component of the earth`s biota and affect circulation of matters through their metabolic activity. They also play an important role in the carbon and nitrogen cycle in the deep-sea environment. In this paper, two strains from deep-sea sediments were investigated in order to understand nitrogen cycling involved in the deep-sea environment. RESULTS In this paper, the basic genomic information of two strains was obtained by whole genome sequencing. The Cobetia amphilecti N-80 and Halomonas profundus 13 genome sizes are 4,160,095 bp with a GC content of 62.5% and 5,251,450 bp with a GC content of 54.84%. Through a comparison of functional analyses, we predicted the possible C and N metabolic pathways of the two strains and determined that Halomonas profundus 13 could use more carbon sources than Cobetia amphilecti N-80. The main genes associated with N metabolism in Halomonas profundus 13 are narG, narY, narI, nirS, norB, norC, nosZ, and nirD. On the contrast, nirD, using NH4+ for energy, plays a main role in Cobetia amphilecti N-80. Both of them have the same genes for fixing inorganic carbon: icd, ppc, fdhA, accC, accB, accD, and accA. CONCLUSION In this study, the whole genomes of two strains were sequenced to clarify the basic characteristics of their genomes, laying the foundation for further studying nitrogen-metabolizing bacteria. Halomonas profundus 13 can utilize more carbon sources than Cobetia amphilecti N-80, as indicated by API as well as COG and KEGG prediction results. Finally, through the analysis of the nitrification and denitrification abilities as well as the inorganic carbon fixation ability of the two strains, the related genes were identified, and the possible metabolic pathways were predicted. Together, these results provide molecular markers and theoretical support for the mechanisms of inorganic carbon fixation by deep-sea microorganisms.
Collapse
Affiliation(s)
- Wenqi Liu
- School of Advanced Manufacturing, Fuzhou University, Fuzhou, 350108, China
| | - Bailin Cong
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| | - Jing Lin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Linlin Zhao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Shenghao Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| |
Collapse
|
11
|
Woods DF, Kozak IM, O'Gara F. Genome analysis and phenotypic characterization of Halomonas hibernica isolated from a traditional food process with novel quorum quenching and catalase activities. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36099016 DOI: 10.1099/mic.0.001238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traditional food processes can utilize bacteria to promote positive organoleptic qualities and increase shelf life. Wiltshire curing has a vital bacterial component that has not been fully investigated from a microbial perspective. During the investigation of a Wiltshire brine, a culturable novel bacterium of the genus Halomonas was identified by 16S rRNA gene (MN822133) sequencing and analysis. The isolate was confirmed as representing a novel species (Halomonas hibernica B1.N12) using a housekeeping (HK) gene phylogenetic tree reconstruction with the selected genes 16S rRNA, 23S rRNA, atpA, gyrB, rpoD and secA. The genome of the new isolate was sequenced and annotated and comparative genome analysis was conducted. Functional analysis revealed that the isolate has a unique phenotypic signature including high salt tolerance, a wide temperature growth range and substrate metabolism. Phenotypic and biochemical profiling demonstrated that H. hibernica B1.N12 possesses strong catalase activity which is an important feature for an industrial food processing bacterium, as it can promote an increased product shelf life and improve organoleptic qualities. Moreover, H. hibernica exhibits biocontrol properties based on its quorum quenching capabilities. Our work on this novel isolate advances knowledge on potential mechanistic interplays operating in complex microbial communities that mediate traditional food processes.
Collapse
Affiliation(s)
- David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Iwona M Kozak
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia.,Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Liu L, Bao W, Men X, Zhang H. Engineering for life in toxicity: Key to industrializing microbial synthesis of high energy density fuels. ENGINEERING MICROBIOLOGY 2022; 2:100013. [PMID: 39628844 PMCID: PMC11611038 DOI: 10.1016/j.engmic.2022.100013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/06/2024]
Abstract
With the growing demand for air transportation combined with global concerns about environmental issues and the instability and lack of renewability of the oil market, microbial production of high energy density fuels for jets (bio-jet fuels) has received more attention in recent years. Bio-jet fuels can be derived from both isoprenoids and fatty acids, and, additionally, aromatic hydrocarbons derived from expanded shikimate pathways are also candidates for jet fuels. Compared to fatty acid derivatives, most of isoprenoids and aromatic hydrocarbons used for jet fuels have higher density energies. However, they are also highly toxic to host microbes. The cytotoxicity induced during the synthesis of isoprenoid or shikimate pathway-derived biofuels remains one of the major obstacles for industrial production even though synthetic and systems biology approaches have reconstructed and optimized metabolic pathways for production of these bio-jet fuels. Here, we review recent developments in the production of known and potential jet fuels by microorganisms, with a focus on alleviating cytotoxicity caused by the final products, intermediates, and metabolic pathways.
Collapse
Affiliation(s)
- Lijuan Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Wenzhi Bao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xiao Men
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Haibo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| |
Collapse
|
13
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
14
|
Bhola S, Arora K, Kulshrestha S, Mehariya S, Bhatia RK, Kaur P, Kumar P. Established and Emerging Producers of PHA: Redefining the Possibility. Appl Biochem Biotechnol 2021; 193:3812-3854. [PMID: 34347250 DOI: 10.1007/s12010-021-03626-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022]
Abstract
The polyhydroxyalkanoate was discovered almost around a century ago. Still, all the efforts to replace the traditional non-biodegradable plastic with much more environmentally friendly alternative are not enough. While the petroleum-based plastic is like a parasite, taking over the planet rapidly and without any feasible cure, its perennial presence has made the ocean a floating island of life-threatening debris and has flooded the landfills with toxic towering mountains. It demands for an immediate solution; most resembling answer would be the polyhydroxyalkanoates. The production cost is yet one of the significant challenges that various corporate is facing to replace the petroleum-based plastic. To deal with the economic constrain better strain, better practices, and a better market can be adopted for superior results. It demands for systems for polyhydroxyalkanoate production namely bacteria, yeast, microalgae, and transgenic plants. Solely strains affect more than 40% of overall production cost, playing a significant role in both upstream and downstream processes. The highly modifiable nature of the biopolymer provides the opportunity to replace the petroleum plastic in almost all sectors from food packaging to medical industry. The review will highlight the recent advancements and techno-economic analysis of current commercial models of polyhydroxyalkanoate production. Bio-compatibility and the biodegradability perks to be utilized highly efficient in the medical applications gives ample reason to tilt the scale in the favor of the polyhydroxyalkanoate as the new conventional and sustainable plastic.
Collapse
Affiliation(s)
- Shivam Bhola
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Kanika Arora
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | | | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Parneet Kaur
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| |
Collapse
|
15
|
Sindhu R, Madhavan A, Arun KB, Pugazhendhi A, Reshmy R, Awasthi MK, Sirohi R, Tarafdar A, Pandey A, Binod P. Metabolic circuits and gene regulators in polyhydroxyalkanoate producing organisms: Intervention strategies for enhanced production. BIORESOURCE TECHNOLOGY 2021; 327:124791. [PMID: 33579565 DOI: 10.1016/j.biortech.2021.124791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Worldwide worries upsurge concerning environmental pollutions triggered by the accumulation of plastic wastes. Biopolymers are promising candidates for resolving these difficulties by replacing non-biodegradable plastics. Among biopolymers, polyhydroxyalkanoates (PHAs), are natural polymers that are synthesized and accumulated in a range of microorganisms, are considered as promising biopolymers since they have biocompatibility, biodegradability, and other physico-chemical properties comparable to those of synthetic plastics. Consequently, considerable research have been attempted to advance a better understanding of mechanisms related to the metabolic synthesis and characteristics of PHAs and to develop native and recombinant microorganisms that can proficiently produce PHAs comprising desired monomers with high titer and productivity for industrial applications. Recent developments in metabolic engineering and synthetic biology applied to enhance PHA synthesis include, promoter engineering, ribosome-binding site (RBS) engineering, development of synthetic constructs etc. This review gives a brief overview of metabolic routes and regulators of PHA production and its intervention strategies.
Collapse
Affiliation(s)
- Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - K B Arun
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Ranjna Sirohi
- Department of Post Harvest Process and Food Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145, India
| | - Ayon Tarafdar
- Divison of Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
16
|
Otero-Muras I, Carbonell P. Automated engineering of synthetic metabolic pathways for efficient biomanufacturing. Metab Eng 2020; 63:61-80. [PMID: 33316374 DOI: 10.1016/j.ymben.2020.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
Metabolic engineering involves the engineering and optimization of processes from single-cell to fermentation in order to increase production of valuable chemicals for health, food, energy, materials and others. A systems approach to metabolic engineering has gained traction in recent years thanks to advances in strain engineering, leading to an accelerated scaling from rapid prototyping to industrial production. Metabolic engineering is nowadays on track towards a truly manufacturing technology, with reduced times from conception to production enabled by automated protocols for DNA assembly of metabolic pathways in engineered producer strains. In this review, we discuss how the success of the metabolic engineering pipeline often relies on retrobiosynthetic protocols able to identify promising production routes and dynamic regulation strategies through automated biodesign algorithms, which are subsequently assembled as embedded integrated genetic circuits in the host strain. Those approaches are orchestrated by an experimental design strategy that provides optimal scheduling planning of the DNA assembly, rapid prototyping and, ultimately, brings forward an accelerated Design-Build-Test-Learn cycle and the overall optimization of the biomanufacturing process. Achieving such a vision will address the increasingly compelling demand in our society for delivering valuable biomolecules in an affordable, inclusive and sustainable bioeconomy.
Collapse
Affiliation(s)
- Irene Otero-Muras
- BioProcess Engineering Group, IIM-CSIC, Spanish National Research Council, Vigo, 36208, Spain.
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (ai2), Universitat Politècnica de València, 46022, Spain.
| |
Collapse
|
17
|
Young R, Haines M, Storch M, Freemont PS. Combinatorial metabolic pathway assembly approaches and toolkits for modular assembly. Metab Eng 2020; 63:81-101. [PMID: 33301873 DOI: 10.1016/j.ymben.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022]
Abstract
Synthetic Biology is a rapidly growing interdisciplinary field that is primarily built upon foundational advances in molecular biology combined with engineering design principles such as modularity and interoperability. The field considers living systems as programmable at the genetic level and has been defined by the development of new platform technologies and methodological advances. A key concept driving the field is the Design-Build-Test-Learn cycle which provides a systematic framework for building new biological systems. One major application area for synthetic biology is biosynthetic pathway engineering that requires the modular assembly of different genetic regulatory elements and biosynthetic enzymes. In this review we provide an overview of modular DNA assembly and describe and compare the plethora of in vitro and in vivo assembly methods for combinatorial pathway engineering. Considerations for part design and methods for enzyme balancing are also presented, and we briefly discuss alternatives to intracellular pathway assembly including microbial consortia and cell-free systems for biosynthesis. Finally, we describe computational tools and automation for pathway design and assembly and argue that a deeper understanding of the many different variables of genetic design, pathway regulation and cellular metabolism will allow more predictive pathway design and engineering.
Collapse
Affiliation(s)
- Rosanna Young
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Matthew Haines
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK
| | - Marko Storch
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK
| | - Paul S Freemont
- Department of Infectious Disease, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK; London Biofoundry, Imperial College Translation & Innovation Hub, London, W12 0BZ, UK; UK DRI Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
18
|
Gao P, Lu H, Xing P, Wu QL. Halomonas rituensis sp. nov. and Halomonas zhuhanensis sp. nov., isolated from natural salt marsh sediment on the Tibetan Plateau. Int J Syst Evol Microbiol 2020; 70:5217-5225. [PMID: 32816656 DOI: 10.1099/ijsem.0.004395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel Gram-stain-negative, aerobic and non-motile rods bacteria, designated TQ8ST and ZH2ST, were isolated from salt marsh sediment collected from the Tibetan Plateau. Strain TQ8ST was found to grow at 10-40 °C (optimum, 30 °C), pH 6.0-11.0 (optimum, pH 8.0-9.0) and in the presence of 2-12 % (w/v) NaCl (optimum, 6-8 %). Strain ZH2ST was found to grow at 15-40 °C (optimum, 30 °C), pH 7.0-10.0 (optimum pH 9.0) and in the presence of 2-10 % (w/v) NaCl (optimum, 4-6 %). Phylogenetic analysis based on the 16S rRNA gene sequences showed that strains TQ8ST and ZH2ST shared 99.07 % sequence similarity between each other and were affiliated with the genus Halomonas, sharing 97.48 % and 97.41 % of sequence similarity to their closest neighbour Halomonas sulfidaeris Esulfide1T, respectively. DNA-DNA hybridization analyses showed 61.0 % relatedness between strains TQ8ST and ZH2ST. The average nucleotide identity and the average amino acid identity values between the two genomes were 92.33 and 92.84 %, respectively. The values between the two strains and their close phylogenetic relatives were all below 95 %. The major respiratory quinones of strain TQ8ST were Q-9 and Q-8, while that of ZH2ST was Q-9. The main fatty acids shared by the two strains were C18 : 1 ω6c and/or C18 : 1 ω7c, C16 : 1 ω6c and/or C16 : 1 ω7c, C16 : 0 and C12 : 0 3-OH. Strain ZH2ST can be distinguished from TQ8ST by a higher proportion of C19 : 0 cyclo ω8c. The G+C content of the genomic DNA of strains TQ8ST and ZH2ST were 57.20 and 57.14 mol%, respectively. On the basis of phenotypic distinctiveness and phylogenetic divergence, the two isolates are considered to represent two novel species of the genus Halomonas, for which the names Halomonas rituensis sp. nov (type strain TQ8ST=KCTC 62530T=CICC 24572T) and Halomonas zhuhanensis sp. nov (type strain ZH2ST=KCTC 62531T=CICC 24505T) are proposed.
Collapse
Affiliation(s)
- Peixin Gao
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, PR China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Huibin Lu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Qinglong L Wu
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, PR China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| |
Collapse
|
19
|
Established and advanced approaches for recovery of microbial polyhydroxyalkanoate (PHA) biopolyesters from surrounding microbial biomass. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Downstream processing for recovery of microbial polyhydroxyalkanoate (PHA) biopolyesters from biomass constitutes an integral part of the entire PHA production chain; beside the feedstocks used for cultivation of PHA-production strains, this process is currently considered the major cost factor for PHA production.
Besides economic aspects, PHA recovery techniques need to be sustainable by avoiding excessive use of (often precarious!) solvents, other hazardous chemicals, non-recyclable compounds, and energy. Moreover, the applied PHA recovery method is decisive for the molecular mass and purity of the obtained product, and the achievable recovery yield. In addition to the applied method, also the PHA content in biomass is decisive for the feasibility of a selected technique. Further, not all investigated recovery techniques are applicable for all types of PHA (crystalline versus amorphous PHA) and all PHA-producing microorganisms (robust versus fragile cell structures).
The present review shines a light on benefits and shortcomings of established solvent-based, chemical, enzymatic, and mechanical methods for PHA recovery. Focus is dedicated on innovative, novel recovery strategies, encompassing the use of “green” solvents, application of classical “PHA anti-solvents” under pressurized conditions, ionic liquids, supercritical solvents, hypotonic cell disintegration for release of PHA granules, switchable anionic surfactants, and even digestion of non-PHA biomass by animals.
The different established and novel techniques are compared in terms of PHA recovery yield, product purity, impact on PHA molar mass, scalability to industrial plants, and demand for chemicals, energy, and time.
Collapse
|
20
|
Zhang X, Lin Y, Wu Q, Wang Y, Chen GQ. Synthetic Biology and Genome-Editing Tools for Improving PHA Metabolic Engineering. Trends Biotechnol 2020; 38:689-700. [DOI: 10.1016/j.tibtech.2019.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
|
21
|
Khan SA, Zununi Vahed S, Forouhandeh H, Tarhriz V, Chaparzadeh N, Hejazi MA, Jeon CO, Hejazi MS. Halomonas urmiana sp. nov., a moderately halophilic bacterium isolated from Urmia Lake in Iran. Int J Syst Evol Microbiol 2020; 70:2254-2260. [PMID: 32039745 DOI: 10.1099/ijsem.0.004005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the course of screening halophilic bacteria in Urmia Lake in Iran, which is being threatened by dryness, a novel Gram-negative, moderately halophilic, heterotrophic and short rod-shaped bacteria was isolated and characterized. The bacterium was isolated from a water specimen and designated as TBZ3T. Colonies were found to be creamy yellow, with catalase- and oxidase-positive activities. The growth of strain TBZ3T was observed to be at 10-45 °C (optimum, 30 °C), at pH 6.0-9.0 (optimum, pH 7.0) and in the presence of 0.5-20 % (w/v) NaCl (optimum, 7.5 %). Strain TBZ3T contained C16 : 0, cyclo-C19 : 0 ω8c, summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1 ω6c) as major fatty acids and ubiquinone-9 as the only respiratory isoprenoid quinone. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, glycolipid, unidentified phospholipid and unidentified polar lipids were detected as the major polar lipids. Strain TBZ3T was found to be most closely related to Halomonas saccharevitans AJ275T , Halomonas denitrificans M29T and Halomonas sediminicola CPS11T with the 16S rRNA gene sequence similarities of 98.93, 98.15 and 97.60 % respectively and in phylogenetic analysis strain TBZ3T grouped with Halomonas saccharevitans AJ275T contained within a large cluster within the genus Halomonas. Based on phenotypic, chemotaxonomic and molecular properties, strain TBZ3T represents a novel species of the Halomonas genus, for which the name Halomonas urmiana sp. nov. is proposed. The type strain is TBZ3T (=DSM 22871T=LMG 25416T).
Collapse
Affiliation(s)
- Shehzad Abid Khan
- Department of Life Science, Chung Ang University, Seoul 06974, Republic of Korea
| | | | - Haleh Forouhandeh
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Chaparzadeh
- Department of Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Amin Hejazi
- Branch for the Northwest and West Region, Agriculture Biotechnology Research Institute of Iran (ABRII), Tabriz, Iran
| | - Che Ok Jeon
- Department of Life Science, Chung Ang University, Seoul 06974, Republic of Korea
| | - Mohammad Saeid Hejazi
- School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis. Nat Chem Biol 2020; 16:113-121. [DOI: 10.1038/s41589-019-0452-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
|
23
|
Wang Y, Ling C, Chen Y, Jiang X, Chen GQ. Microbial engineering for easy downstream processing. Biotechnol Adv 2019; 37:107365. [DOI: 10.1016/j.biotechadv.2019.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 11/26/2022]
|
24
|
Nora LC, Westmann CA, Guazzaroni ME, Siddaiah C, Gupta VK, Silva-Rocha R. Recent advances in plasmid-based tools for establishing novel microbial chassis. Biotechnol Adv 2019; 37:107433. [PMID: 31437573 DOI: 10.1016/j.biotechadv.2019.107433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/11/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
Abstract
A key challenge for domesticating alternative cultivable microorganisms with biotechnological potential lies in the development of innovative technologies. Within this framework, a myriad of genetic tools has flourished, allowing the design and manipulation of complex synthetic circuits and genomes to become the general rule in many laboratories rather than the exception. More recently, with the development of novel technologies such as DNA automated synthesis/sequencing and powerful computational tools, molecular biology has entered the synthetic biology era. In the beginning, most of these technologies were established in traditional microbial models (known as chassis in the synthetic biology framework) such as Escherichia coli and Saccharomyces cerevisiae, enabling fast advances in the field and the validation of fundamental proofs of concept. However, it soon became clear that these organisms, although extremely useful for prototyping many genetic tools, were not ideal for a wide range of biotechnological tasks due to intrinsic limitations in their molecular/physiological properties. Over the last decade, researchers have been facing the great challenge of shifting from these model systems to non-conventional chassis with endogenous capacities for dealing with specific tasks. The key to address these issues includes the generation of narrow and broad host plasmid-based molecular tools and the development of novel methods for engineering genomes through homologous recombination systems, CRISPR/Cas9 and other alternative methods. Here, we address the most recent advances in plasmid-based tools for the construction of novel cell factories, including a guide for helping with "build-your-own" microbial host.
Collapse
Affiliation(s)
- Luísa Czamanski Nora
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Cauã Antunes Westmann
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - María-Eugenia Guazzaroni
- Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | | | - Vijai Kumar Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| |
Collapse
|
25
|
A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42768-019-00013-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Yu L, Wu F, Chen G. Next‐Generation Industrial Biotechnology‐Transforming the Current Industrial Biotechnology into Competitive Processes. Biotechnol J 2019; 14:e1800437. [DOI: 10.1002/biot.201800437] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/01/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Lin‐Ping Yu
- Ministry of Education Key Laboratory for Bioinformatics, School of Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Center for Synthetic and Systems BiologyTsinghua University New Biology Building 100084 Beijing China
- Tsinghua‐Peking Center for Life SciencesTsinghua University New Biology Building 100084 Beijing China
| | - Fu‐Qing Wu
- Ministry of Education Key Laboratory for Bioinformatics, School of Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Center for Synthetic and Systems BiologyTsinghua University New Biology Building 100084 Beijing China
- Tsinghua‐Peking Center for Life SciencesTsinghua University New Biology Building 100084 Beijing China
| | - Guo‐Qiang Chen
- Ministry of Education Key Laboratory for Bioinformatics, School of Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Center for Synthetic and Systems BiologyTsinghua University New Biology Building 100084 Beijing China
- Tsinghua‐Peking Center for Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Manchester Institute of Biotechnology, Centre for Synthetic BiologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
27
|
de Lorenzo V, Couto J. The important versus the exciting: reining contradictions in contemporary biotechnology. Microb Biotechnol 2019; 12:32-34. [PMID: 30508281 PMCID: PMC6302708 DOI: 10.1111/1751-7915.13348] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Víctor de Lorenzo
- Centro Nacional de Biotecnología‐CSIC Campus de CantoblancoMadrid28049Spain
| | - Jillian Couto
- School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|