1
|
Hilgendorf K, Wang Y, Miller MJ, Jin YS. Precision fermentation for improving the quality, flavor, safety, and sustainability of foods. Curr Opin Biotechnol 2024; 86:103084. [PMID: 38394936 DOI: 10.1016/j.copbio.2024.103084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Precision fermentation involves the rewiring of metabolic pathways in generally recognized as safe microorganisms, fermentation scale-up, and downstream processing to produce food ingredients from abundant and inexpensive substrates. Using precise genome editing of food-fermenting microorganisms, precision fermentation can also produce fermented foods with more desirable properties. These genetic tools allow for the manipulation of flavors and nutritional content in fermented foods, the economic production of functional food ingredients, and the sustainable production of otherwise-costly macronutrients. By introducing the metabolic designs, genetic modifications, and resulting products of engineered microorganisms developed through academic and industrial research, this review aims to provide insights into the potentials and challenges of precision fermentation for the economic, safe, and sustainable production of foods.
Collapse
Affiliation(s)
- Karson Hilgendorf
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yirong Wang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL, USA.
| |
Collapse
|
2
|
Zhao H, Du B, Zhao P, Chen X, Zhao J, Wu Q, Zhu L, Ma H, Sun B, Min W, Li X. Analysis of ester-producing performance in high-yield ethyl hexanoate yeast and the effect on metabolites in bio- enhanced Daqu, the starter for Baijiu and other traditional fermented foods. J Appl Microbiol 2024; 135:lxae081. [PMID: 38565314 DOI: 10.1093/jambio/lxae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/04/2024]
Abstract
AIMS Ethyl hexanoate, one of the key flavor compounds in strong-flavor Baijiu. To improve the content of ethyl hexanoate in strong-flavor Baijiu, a functional strain with high yield of ethyl hexanoate was screened and its ester-producing performance was studied. METHODS AND RESULTS Upon identification, the strain was classified as Candida sp. and designated as ZY002. Under optimal fermentation conditions, the content of ethyl hexanoate synthesized by ZY002 can be as high as 170.56 mg L-1. A fermentation test was carried out using the ZY002 strain bioaugmented Daqu to verify the role of the strain applied to Baijiu brewing. It was found that strain ZY002 could not only improve the moisture and alcohol contents of fermented grains but also diminish the presence of reducing sugar and crude starch. Furthermore, it notably amplified the abundance of flavor compounds. CONCLUSION In this study, Candida sp. ZY002 with a high yield of ethyl hexanoate provided high-quality strain resources for the actual industrial production of Baijiu.
Collapse
Affiliation(s)
- He Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber Of Commerce, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Binghao Du
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber Of Commerce, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Pengju Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber Of Commerce, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xi Chen
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber Of Commerce, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jingrong Zhao
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber Of Commerce, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qiuhua Wu
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber Of Commerce, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Lining Zhu
- Hebei Fenglaiyi Distillery Co., Ltd., Xingtai, Hebei 055550, China
| | - Huifeng Ma
- Hebei Fenglaiyi Distillery Co., Ltd., Xingtai, Hebei 055550, China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber Of Commerce, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weihong Min
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber Of Commerce, Beijing 100048, China
- China Bio-Specialty Food Enzyme Technology Research Development and Promotion Center, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
3
|
Wang S, Zhao F, Yang M, Lin Y, Han S. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of valuable chemicals. Crit Rev Biotechnol 2024; 44:163-190. [PMID: 36596577 DOI: 10.1080/07388551.2022.2153008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/11/2022] [Accepted: 10/29/2022] [Indexed: 01/05/2023]
Abstract
In the twenty first century, biotechnology offers great opportunities and solutions to climate change mitigation, energy and food security and resource efficiency. The use of metabolic engineering to modify microorganisms for producing industrially significant chemicals is developing and becoming a trend. As a famous, generally recognized as a safe (GRAS) model microorganism, Saccharomyces cerevisiae is widely used due to its excellent operational convenience and high fermentation efficiency. This review summarizes recent advancements in the field of using metabolic engineering strategies to construct engineered S. cerevisiae over the past ten years. Five different types of compounds are classified by their metabolites, and the modified metabolic pathways and strategies are summarized and discussed independently. This review may provide guidance for future metabolic engineering efforts toward such compounds and analogues. Additionally, the limitations of S. cerevisiae as a cell factory and its future trends are comprehensively discussed.
Collapse
Affiliation(s)
- Shuai Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Fengguang Zhao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, China
| | - Manli Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuangyan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Miao Z, Bai Y, Wang X, Han C, Wang B, Li Z, Sun J, Zheng F, Zhang Y, Sun B. Unravelling Metabolic Heterogeneity of Chinese Baijiu Fermentation in Age-Gradient Vessels. Foods 2023; 12:3425. [PMID: 37761135 PMCID: PMC10530105 DOI: 10.3390/foods12183425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Fermentation vessels affect the characteristics of food fermentation; however, we lack an approach to identify the biomarkers indicating fermentation. In this study, we applied metabolomics and high-throughput sequencing analysis to reveal the dynamic of metabolites and microbial communities in age-gradient fermentation vessels for baijiu production. Furthermore, we identified 64 metabolites during fermentation, and 19 metabolites significantly varied among the three vessels (p < 0.05). Moreover, the formation of these 19 metabolites were positively correlated with the core microbiota (including Aspergillus, Saccharomyces, Lactobacillus, and Bacillus). In addition, ethyl lactate or ethyl acetate were identified as the biomarkers for indicating the metabolism among age-gradient fermentation vessels by BP-ANN (R2 > 0.40). Therefore, this study combined the biological analysis and predictive model to identify the biomarkers indicating metabolism in different fermentation vessels, and it also provides a potential approach to assess the profiling of food fermentations.
Collapse
Affiliation(s)
- Zijian Miao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (Z.M.); (Y.B.); (J.S.); (F.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Laboratory for Food Quality and Safety, School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yu Bai
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (Z.M.); (Y.B.); (J.S.); (F.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Laboratory for Food Quality and Safety, School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xinlei Wang
- Hebei Solid State Fermentation Making Industry Technology Research Institute, Hebei Baijiu Making Technology Innovation Center, Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui 053000, China; (X.W.); (C.H.); (Z.L.); (Y.Z.)
| | - Chao Han
- Hebei Solid State Fermentation Making Industry Technology Research Institute, Hebei Baijiu Making Technology Innovation Center, Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui 053000, China; (X.W.); (C.H.); (Z.L.); (Y.Z.)
| | - Bowen Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (Z.M.); (Y.B.); (J.S.); (F.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Laboratory for Food Quality and Safety, School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Zexia Li
- Hebei Solid State Fermentation Making Industry Technology Research Institute, Hebei Baijiu Making Technology Innovation Center, Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui 053000, China; (X.W.); (C.H.); (Z.L.); (Y.Z.)
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (Z.M.); (Y.B.); (J.S.); (F.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Laboratory for Food Quality and Safety, School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Fuping Zheng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (Z.M.); (Y.B.); (J.S.); (F.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Laboratory for Food Quality and Safety, School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yuhang Zhang
- Hebei Solid State Fermentation Making Industry Technology Research Institute, Hebei Baijiu Making Technology Innovation Center, Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui 053000, China; (X.W.); (C.H.); (Z.L.); (Y.Z.)
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (Z.M.); (Y.B.); (J.S.); (F.Z.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Laboratory for Food Quality and Safety, School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Srivastava RK, Nedungadi SV, Akhtar N, Sarangi PK, Subudhi S, Shadangi KP, Govarthanan M. Effective hydrolysis for waste plant biomass impacts sustainable fuel and reduced air pollution generation: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160260. [PMID: 36400296 DOI: 10.1016/j.scitotenv.2022.160260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Among various natural biowastes availability in the environment, agricultural residues showed great impacts. It is due to huge availability and cheap carbon source, creating big challenges for their utility and systematic reduction. Objective of this review is to address the waste biomass availability and huge quantities issues and also put effort to minimize this nutrient load via biotransforming into value-added products. Different wastes (organic/inorganic) generation with their negative issues are due to numbers of developmental and social activities, reported. Currently, various efforts are found for these wastes minimization via generation of different types of value-added products (biogas, bioH2, alcoholic fuel, organic acids and others products) and these wastes in municipal cities are also reported with production of advanced biofuels as promising outcomes. For hydrolysis of complex organic resources including lignocellulosic biomasses, physicochemical, structural or compositional changes are needed that aid in conversion into sugar and organic compounds such as biofuels. So, efficient and effective pretreatment processes selection (physical, biological, chemical or combined one) is critical to achieve these hydrolysis goals and resultant cellulose or hemicellulose components can be accessible by biological catalysis. These can achieve final hydrolysis and fermentative or monomer sugars. And later, synthesis of fuels or value-added products during microbial fermentation or biotransformation processes can be achieved. This review discusses pretreatment techniques for improved hydrolysis for fermentative sugar with emphasis on reduced quantities of toxic compounds (furfural compound) in hydrolyzed biomasses. Minimum deterioration fuel economy also reported with production of different bioproducts including biofuels. Additionally, impacts of toxic products and gasses emission are also discussed with their minimization.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India.
| | - Sruthy Vineed Nedungadi
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India
| | - Nasim Akhtar
- Department of Biotechnology, GITAM School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India
| | | | - Sanjukta Subudhi
- Advanced Biofuels program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi 110 003, India
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| |
Collapse
|
6
|
Cui D, Liu L, Zhang X, Lin L, Li X, Cheng T, Wei C, Zhang Y, Zhou Z, Li W, Zhang C. Using transcriptomics to reveal the molecular mechanism of higher alcohol metabolism in Saccharomyces cerevisiae. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Yang D, Wang Y. Metabolic flux analysis of the effect of carbon dioxide top pressure on acetyl coenzyme A and ester production by Saccharomyces cerevisiae. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2051540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Dongsheng Yang
- Department of Bioengineering, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Yasheng Wang
- Department of Bioengineering, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| |
Collapse
|
8
|
Yang Q, Zhi‐ping D, You‐gui Y. Formation of basic soybean‐flavor substances using pork fat soaked in rice‐flavored liquor. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qin Yang
- College of Food and Chemical Engineering Shao Yang University Shao Yang China
| | - Deng Zhi‐ping
- College of Food and Chemical Engineering Shao Yang University Shao Yang China
| | - Yu You‐gui
- College of Food and Chemical Engineering Shao Yang University Shao Yang China
| |
Collapse
|
9
|
Xu X, Niu C, Liu C, Wang J, Zheng F, Li Q. Screening lager yeast with higher ethyl-acetate production by adaptive laboratory evolution in high concentration of acetic acid. World J Microbiol Biotechnol 2021; 37:125. [PMID: 34173085 DOI: 10.1007/s11274-021-03082-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
Ethyl-acetate is important for the flavor and aroma of the alcoholic beverages, therefore, there have been extensive efforts toward increasing its production by engineering yeast strains. In this study, we reported a new approach to breed non-genetic modified producing yeast strain with higher ethyl-acetate production for beer brewing. First, we demonstrated the positive effect of higher acetic acid concentration on inducing the expression of acetyl-CoA synthetase (ACS). Then, we applied adaptive laboratory evolution method to evolve strain with higher expression level of ACS. As a result, we obtained several evolved strains with increased ACS expression level as well as ethyl-acetate production. In 3 L scale fermentation, the optimal strain EA60 synthesized more ethyl-acetate than M14 at the same time point. At the end of fermentation, the ethyl-acetate production in EA60 was 21.4% higher than M14, while the other flavor components except for acetic acid were changed in a moderate degree, indicating this strain had a bright prospect in industrial application. Moreover, this study also indicated that ACS1 played a more important role in increasing the acetic acid tolerance of yeast, while ACS2 contributed to the synthesis of cytosol acetyl-CoA, thereby facilitating the production of ethyl-acetate during fermentation.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China.,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, NO.1800, Lihu Avenue, Wuxi, 214122, Jiangsu, China. .,Laboratory of Brewing Science and Engineering, Jiangnan University, Wuxi, 214000, China.
| |
Collapse
|
10
|
Ma W, Yu J, Zhang X, Guo S, Zhang F, Jin W, Dong J, Jia S, Zhong C, Xue J. Whole-genome sequencing exploitation analysis of non-Saccharomyces yeast Nakazawaea ishiwadae GDMCC 60786 and its physiological characterizations. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Enhancement of C6–C10 fatty acid ethyl esters production in Saccharomyces cerevisiae CA by metabolic engineering. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Zhu L, Zhang J, Yang J, Jiang Y, Yang S. Strategies for optimizing acetyl-CoA formation from glucose in bacteria. Trends Biotechnol 2021; 40:149-165. [PMID: 33965247 DOI: 10.1016/j.tibtech.2021.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022]
Abstract
Acetyl CoA is an important precursor for various chemicals. We provide a metabolic engineering guideline for the production of acetyl-CoA and other end products from a bacterial chassis. Among 13 pathways that produce acetyl-CoA from glucose, 11 lose carbon in the process, and two do not. The first 11 use the Embden-Meyerhof-Parnas (EMP) pathway to produce redox cofactors and gain or lose ATP. The other two pathways function via phosphoketolase with net consumption of ATP, so they must therefore be combined with one of the 11 glycolytic pathways or auxiliary pathways. Optimization of these pathways can maximize the theoretical acetyl-CoA yield, thereby minimizing the overall cost of subsequent acetyl-CoA-derived molecules. Other strategies for generating hyper-producer strains are also addressed.
Collapse
Affiliation(s)
- Li Zhu
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai 200240, China
| | - Jieze Zhang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Jiawei Yang
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China; Shanghai Taoyusheng Biotechnology Company Ltd, Shanghai 200032, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China.
| |
Collapse
|
13
|
Li J, Tang X, Qian H, Yang Y, Zhu X, Wu Q, Mu Y, Huang Z. Analysis of Saccharification Products of High-Concentration Glutinous Rice Fermentation by Rhizopus nigricans Q3 and Alcoholic Fermentation of Saccharomyces cerevisiae GY-1. ACS OMEGA 2021; 6:8038-8044. [PMID: 33817463 PMCID: PMC8014914 DOI: 10.1021/acsomega.0c05452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/02/2021] [Indexed: 06/01/2023]
Abstract
A two-stage process was used to prepare rice alcohol, i.e., saccharification of glutinous rice by Rhizopus nigricans Q3, followed by Saccharomyces cerevisiae's fermentation. Rhizopus nigricans Q3 was cultured during the saccharification stage, and Saccharomyces cerevisiae GY-1 was added in the fermentation stage. Total sugar content and reducing sugar content in these two stages were analyzed. The relationship between the production proportion and consumption of the reducing sugar in the saccharification interval was analyzed using reducing sugar indices. It is an important rule that the high-concentration syrup and oligosaccharides prepared by glutinous rice could reach 42°Bx and 250 mg/mL by high-concentration fermentation in the growth stage of R. nigricans Q3.
Collapse
Affiliation(s)
- Junjun Li
- Engineering
Research Center of Sustainable Development and Utilization of Biomass
Energy, Ministry of Education and School of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- School
of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
| | - Xianghua Tang
- Engineering
Research Center of Sustainable Development and Utilization of Biomass
Energy, Ministry of Education and School of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- School
of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
| | - Hong Qian
- School
of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
| | - Yunjuan Yang
- Engineering
Research Center of Sustainable Development and Utilization of Biomass
Energy, Ministry of Education and School of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- School
of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
| | - Xuan Zhu
- Guangdong
Haid Group Co., Ltd., Guangzhou 51400, P. R. China
| | - Qian Wu
- Engineering
Research Center of Sustainable Development and Utilization of Biomass
Energy, Ministry of Education and School of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- School
of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- Key
Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, P. R. China
| | - Yuelin Mu
- Engineering
Research Center of Sustainable Development and Utilization of Biomass
Energy, Ministry of Education and School of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- School
of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- Key
Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, P. R. China
| | - Zunxi Huang
- Engineering
Research Center of Sustainable Development and Utilization of Biomass
Energy, Ministry of Education and School of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- School
of Life Science, Yunnan Normal University, Kunming 650500, P. R. China
- Key
Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, P. R. China
| |
Collapse
|
14
|
Shi W, Li J, Chen Y, Liu X, Chen Y, Guo X, Xiao D. Metabolic Engineering of Saccharomyces cerevisiae for Ethyl Acetate Biosynthesis. ACS Synth Biol 2021; 10:495-504. [PMID: 33576609 DOI: 10.1021/acssynbio.0c00446] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ethyl acetate can be synthesized from acetyl-CoA and ethanol via a reaction by alcohol acetyltransferases (AATase) in yeast. In order to increase the yield of acetyl-CoA, different terminators were used to optimize the expressions of acetyl-CoA synthetase (ACS1/2) and aldehyde dehydrogenase (ALD6) to increase the contents of acetyl-CoA in Saccharomyces cerevisiae. ATF1 coding AATase was coexpressed in expression cassettes of ACS1/ACS2 and ALD6 to promote the carbon flux toward ethyl acetate from acetyl-CoA. Further to improve ethyl acetate production, four heterologous AATase including HuvEAT1 (Hanseniaspora uvarum), KamEAT1 (Kluyveromyces marxianus), VAAT (wild strawberry), and AeAT9 (kiwifruit) were introduced. Subsequently mitochondrial transport and utilization of pyruvate and acetyl-CoA were impeded to increase the ethyl acetate accumulation in cytoplasm. Under the optimal fermentation conditions, the engineered strain of PGAeΔPOR2 produced 1.69 g/L ethyl acetate, which was the highest value reported to date by metabolic engineering methods.
Collapse
Affiliation(s)
- Wenqi Shi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jie Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanfang Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaohang Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
15
|
Zhang S, Guo F, Yan W, Dong W, Zhou J, Zhang W, Xin F, Jiang M. Perspectives for the microbial production of ethyl acetate. Appl Microbiol Biotechnol 2020; 104:7239-7245. [PMID: 32656615 DOI: 10.1007/s00253-020-10756-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
Ethyl acetate is one of the short-chain esters and widely used in the food, beverage, and solvent areas. The ethyl acetate production currently proceeds through unsustainable and energy intensive processes, which are based on natural gas and crude oil. Microbial conversion of biomass-derived sugars into ethyl acetate may provide a sustainable alternative. In this review, the perspectives of bio-catalyzing ethanol and acetic acid to ethyl acetate using lipases in vitro was introduced. Besides, the crucial elements for high yield of ethyl acetate in fermentation was expounded. Also, metabolic engineering in yeasts to product ethyl acetate in vivo using alcohol acyl transferases (AAT) was discussed. KEY POINTS: •The accumulation of acetyl-CoA is crucial for synthesizing ethyl acetate in vivo; AAT-mediated metabolic engineering could efficiently improve ethyl acetate production.
Collapse
Affiliation(s)
- Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Feng Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wei Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| |
Collapse
|
16
|
Lee JW, Trinh CT. Towards renewable flavors, fragrances, and beyond. Curr Opin Biotechnol 2020; 61:168-180. [PMID: 31986468 DOI: 10.1016/j.copbio.2019.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
Abstract
Esters constitute a large space of unique molecules with broad range of applications as flavors, fragrances, pharmaceuticals, cosmetics, green solvents, and advanced biofuels. Global demand of natural esters in food, household cleaner, personal care, and perfume industries is increasing while the ester supply from natural sources has been limited. Development of novel microbial cell factories for ester production from renewable feedstocks can potentially provide an alternative and sustainable source of natural esters and hence help fulfill growing demand. Here, we highlight recent advances in microbial production of esters and provide perspectives for improving its economic feasibility. As the field matures, microbial ester production platforms will enable renewable and sustainable production of flavors and fragrances, and open new market opportunities beyond what nature can offer.
Collapse
Affiliation(s)
- Jong-Won Lee
- Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Cong T Trinh
- Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, USA; Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|