1
|
Vangenot C, Nunes JM, Doxiadis GM, Poloni ES, Bontrop RE, de Groot NG, Sanchez-Mazas A. Similar patterns of genetic diversity and linkage disequilibrium in Western chimpanzees (Pan troglodytes verus) and humans indicate highly conserved mechanisms of MHC molecular evolution. BMC Evol Biol 2020; 20:119. [PMID: 32933484 PMCID: PMC7491122 DOI: 10.1186/s12862-020-01669-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Many species are threatened with extinction as their population sizes decrease with changing environments or face novel pathogenic threats. A reduction of genetic diversity at major histocompatibility complex (MHC) genes may have dramatic effects on populations' survival, as these genes play a key role in adaptive immunity. This might be the case for chimpanzees, the MHC genes of which reveal signatures of an ancient selective sweep likely due to a viral epidemic that reduced their population size a few million years ago. To better assess how this past event affected MHC variation in chimpanzees compared to humans, we analysed several indexes of genetic diversity and linkage disequilibrium across seven MHC genes on four cohorts of chimpanzees and we compared them to those estimated at orthologous HLA genes in a large set of human populations. RESULTS Interestingly, the analyses uncovered similar patterns of both molecular diversity and linkage disequilibrium across the seven MHC genes in chimpanzees and humans. Indeed, in both species the greatest allelic richness and heterozygosity were found at loci A, B, C and DRB1, the greatest nucleotide diversity at loci DRB1, DQA1 and DQB1, and both significant global linkage disequilibrium and the greatest proportions of haplotypes in linkage disequilibrium were observed at pairs DQA1 ~ DQB1, DQA1 ~ DRB1, DQB1 ~ DRB1 and B ~ C. Our results also showed that, despite some differences among loci, the levels of genetic diversity and linkage disequilibrium observed in contemporary chimpanzees were globally similar to those estimated in small isolated human populations, in contrast to significant differences compared to large populations. CONCLUSIONS We conclude, first, that highly conserved mechanisms shaped the diversity of orthologous MHC genes in chimpanzees and humans. Furthermore, our findings support the hypothesis that an ancient demographic decline affecting the chimpanzee populations - like that ascribed to a viral epidemic - exerted a substantial effect on the molecular diversity of their MHC genes, albeit not more pronounced than that experienced by HLA genes in human populations that underwent rapid genetic drift during humans' peopling history. We thus propose a model where chimpanzees' MHC genes regenerated molecular variation through recombination/gene conversion and/or balancing selection after the selective sweep.
Collapse
Affiliation(s)
- Christelle Vangenot
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - José Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Gaby M Doxiadis
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288, GJ, Rijswijk, The Netherlands
| | - Estella S Poloni
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288, GJ, Rijswijk, The Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288, GJ, Rijswijk, The Netherlands
| | - Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland. .,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Eddine A, Rocha RG, Mostefai N, Karssene Y, De Smet K, Brito JC, Klees D, Nowak C, Cocchiararo B, Lopes S, van der Leer P, Godinho R. Demographic expansion of an African opportunistic carnivore during the Neolithic revolution. Biol Lett 2020; 16:20190560. [PMID: 31964262 PMCID: PMC7013491 DOI: 10.1098/rsbl.2019.0560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The diffusion of Neolithic technology together with the Holocene Climatic Optimum fostered the spread of human settlements and pastoral activities in North Africa, resulting in profound and enduring consequences for the dynamics of species, communities and landscapes. Here, we investigate the demographic history of the African wolf (Canis lupaster), a recently recognized canid species, to understand if demographic trends of this generalist and opportunistic carnivore reflect the increase in food availability that emerged after the arrival of the Neolithic economy in North Africa. We screened nuclear and mitochondrial DNA in samples collected throughout Algeria and Tunisia, and implemented coalescent approaches to estimate the variation of effective population sizes from present to ancestral time. We have found consistent evidence supporting the hypothesis that the African wolf population experienced a meaningful expansion concurring with a period of rapid population expansion of domesticates linked to the advent of agricultural practices.
Collapse
Affiliation(s)
- Ahmed Eddine
- Laboratory of Water Conservatory Management Soil and Forest, Faculty of Sciences of Nature and Life, University of Tlemcen, 13000 Tlemcen, Algeria.,Department of Biology and Plant Ecology, University of Setif, 19000 Setif, Algeria
| | - Rita Gomes Rocha
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Noureddine Mostefai
- Laboratory of Water Conservatory Management Soil and Forest, Faculty of Sciences of Nature and Life, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Yamna Karssene
- Laboratory of Livestock and Wildlife, Arid Land Institute of Medenine, 4119 Medenine, Tunisia
| | - Koen De Smet
- Society of North African Big Carnivores Stichting, Drabstraat 288, BE-2640 Mortsel, Belgium
| | - José Carlos Brito
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661 Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Dick Klees
- Society of North African Big Carnivores Stichting, Drabstraat 288, BE-2640 Mortsel, Belgium
| | - Casten Nowak
- Senckenberg Research Institute and Natural History Museum Frankfurt, Conservation Genetics Section, Clamecystraße. 12, 63571 Gelnhausen, Germany
| | - Berardino Cocchiararo
- Senckenberg Research Institute and Natural History Museum Frankfurt, Conservation Genetics Section, Clamecystraße. 12, 63571 Gelnhausen, Germany
| | - Susana Lopes
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Peter van der Leer
- Society of North African Big Carnivores Stichting, Drabstraat 288, BE-2640 Mortsel, Belgium
| | - Raquel Godinho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661 Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.,Department of Zoology, University of Johannesburg, PO Box 534, Auckland Park 2006, South Africa
| |
Collapse
|
3
|
Abstract
Most of our knowledge of wild chimpanzee behaviour stems from fewer than 10 long-term field sites. This bias limits studies to a potentially unrepresentative set of communities known to show great behavioural diversity on small geographic scales. Here, we introduce a new genetic approach to bridge the gap between behavioural material evidence in unhabituated chimpanzees and genetic advances in the field of primatology. The use of DNA analyses has revolutionised archaeological and primatological fields, whereby extraction of DNA from non-invasively collected samples allows researchers to reconstruct behaviour without ever directly observing individuals. We used commercially available forensic DNA kits to show that termite-fishing by wild chimpanzees (Pan troglodytes schweinfurthii) leaves behind detectable chimpanzee DNA evidence on tools. We then quantified the recovered DNA, compared the yield to that from faecal samples, and performed an initial assessment of mitochondrial and microsatellite markers to identify individuals. From 49 termite-fishing tools from the Issa Valley research site in western Tanzania, we recovered an average of 52 pg/μl chimpanzee DNA, compared to 376.2 pg/μl in faecal DNA extracts. Mitochondrial DNA haplotypes could be assigned to 41 of 49 tools (84%). Twenty-six tool DNA extracts yielded >25 pg/μl DNA and were selected for microsatellite analyses; genotypes were determined with confidence for 18 tools. These tools were used by a minimum of 11 individuals across the study period and termite mounds. These results demonstrate the utility of bio-molecular techniques and a primate archaeology approach in non-invasive monitoring and behavioural reconstruction of unhabituated primate populations.
Collapse
|
4
|
Rowan J, Kamilar JM, Beaudrot L, Reed KE. Strong influence of palaeoclimate on the structure of modern African mammal communities. Proc Biol Sci 2017; 283:rspb.2016.1207. [PMID: 27708155 DOI: 10.1098/rspb.2016.1207] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/16/2016] [Indexed: 11/12/2022] Open
Abstract
Ecological research often assumes that species are adapted to their current climatic environments. However, climate fluctuations over geologic timescales have influenced species dispersal and extinction, which in turn may affect community structure. Modern community structure is likely to be the product of both palaeoclimate and modern climate, with the relative degrees of influence of past and present climates unknown. Here, we assessed the influence of climate at different time periods on the phylogenetic and functional trait structure of 203 African mammal communities. We found that the climate of the mid-Holocene (approx. 6000 years ago) and Last Glacial Maximum (approx. 22 000 years ago) were frequently better predictors of community structure than modern climate for mammals overall, carnivorans and ungulates. Primate communities were more strongly influenced by modern climate than palaeoclimate. Overall, community structure of African mammals appears to be related to the ecological flexibility of the groups considered here and the regions of continental Africa that they occupy. Our results indicate that the future redistribution, expansion and contraction of particular biomes due to human activity, such as climate and land-use change, will differentially affect mammal groups that vary in their sensitivity to environmental change.
Collapse
Affiliation(s)
- John Rowan
- Institute of Human Origins, Arizona State University, Tempe, AZ 85282, USA School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85282, USA
| | - Jason M Kamilar
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85282, USA Department of Anthropology, University of Massachusetts, Amherst, MA 01003, USA Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Lydia Beaudrot
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA Michigan Society of Fellows, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kaye E Reed
- Institute of Human Origins, Arizona State University, Tempe, AZ 85282, USA School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85282, USA
| |
Collapse
|
5
|
The Primates 2017 Most-Cited Paper Award is conferred upon the following authors: M. A. Schillaci et al. and C. Hvilsom et al. Primates 2017. [DOI: 10.1007/s10329-017-0622-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Abstract
The great apes (orangutans, gorillas, chimpanzees, bonobos and humans) descended from a common ancestor around 13 million years ago, and since then their sex chromosomes have followed very different evolutionary paths. While great-ape X chromosomes are highly conserved, their Y chromosomes, reflecting the general lability and degeneration of this male-specific part of the genome since its early mammalian origin, have evolved rapidly both between and within species. Understanding great-ape Y chromosome structure, gene content and diversity would provide a valuable evolutionary context for the human Y, and would also illuminate sex-biased behaviours, and the effects of the evolutionary pressures exerted by different mating strategies on this male-specific part of the genome. High-quality Y-chromosome sequences are available for human and chimpanzee (and low-quality for gorilla). The chromosomes differ in size, sequence organisation and content, and while retaining a relatively stable set of ancestral single-copy genes, show considerable variation in content and copy number of ampliconic multi-copy genes. Studies of Y-chromosome diversity in other great apes are relatively undeveloped compared to those in humans, but have nevertheless provided insights into speciation, dispersal, and mating patterns. Future studies, including data from larger sample sizes of wild-born and geographically well-defined individuals, and full Y-chromosome sequences from bonobos, gorillas and orangutans, promise to further our understanding of population histories, male-biased behaviours, mutation processes, and the functions of Y-chromosomal genes.
Collapse
|
7
|
de Manuel M, Kuhlwilm M, Frandsen P, Sousa VC, Desai T, Prado-Martinez J, Hernandez-Rodriguez J, Dupanloup I, Lao O, Hallast P, Schmidt JM, Heredia-Genestar JM, Benazzo A, Barbujani G, Peter BM, Kuderna LFK, Casals F, Angedakin S, Arandjelovic M, Boesch C, Kühl H, Vigilant L, Langergraber K, Novembre J, Gut M, Gut I, Navarro A, Carlsen F, Andrés AM, Siegismund HR, Scally A, Excoffier L, Tyler-Smith C, Castellano S, Xue Y, Hvilsom C, Marques-Bonet T. Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science 2016; 354:477-481. [PMID: 27789843 DOI: 10.1126/science.aag2602] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022]
Abstract
Our closest living relatives, chimpanzees and bonobos, have a complex demographic history. We analyzed the high-coverage whole genomes of 75 wild-born chimpanzees and bonobos from 10 countries in Africa. We found that chimpanzee population substructure makes genetic information a good predictor of geographic origin at country and regional scales. Multiple lines of evidence suggest that gene flow occurred from bonobos into the ancestors of central and eastern chimpanzees between 200,000 and 550,000 years ago, probably with subsequent spread into Nigeria-Cameroon chimpanzees. Together with another, possibly more recent contact (after 200,000 years ago), bonobos contributed less than 1% to the central chimpanzee genomes. Admixture thus appears to have been widespread during hominid evolution.
Collapse
Affiliation(s)
- Marc de Manuel
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona Biomedical Research Park, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain
| | - Martin Kuhlwilm
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona Biomedical Research Park, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain
| | - Peter Frandsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark. Center for Zoo and Wild Animal Health, Copenhagen Zoo, 2000 Frederiksberg, Denmark
| | - Vitor C Sousa
- Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Berne, 3012 Berne, Switzerland. Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Tariq Desai
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Javier Prado-Martinez
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona Biomedical Research Park, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain. Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Jessica Hernandez-Rodriguez
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona Biomedical Research Park, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain
| | - Isabelle Dupanloup
- Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Berne, 3012 Berne, Switzerland. Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Oscar Lao
- National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain. Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Pille Hallast
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK. Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Joshua M Schmidt
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - José María Heredia-Genestar
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona Biomedical Research Park, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Guido Barbujani
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Benjamin M Peter
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Lukas F K Kuderna
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona Biomedical Research Park, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain
| | - Ferran Casals
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona Biomedical Research Park, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain
| | - Samuel Angedakin
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Mimi Arandjelovic
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Christophe Boesch
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Hjalmar Kühl
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Linda Vigilant
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Kevin Langergraber
- School of Human Evolution and Social Change and Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Marta Gut
- National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Ivo Gut
- National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona Biomedical Research Park, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain. National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain. Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia 08010, Spain
| | - Frands Carlsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, 2000 Frederiksberg, Denmark
| | - Aida M Andrés
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Hans R Siegismund
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Aylwyn Scally
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Laurent Excoffier
- Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Berne, 3012 Berne, Switzerland. Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Sergi Castellano
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Yali Xue
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Christina Hvilsom
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, 2000 Frederiksberg, Denmark.
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona Biomedical Research Park, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain. National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain. Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia 08010, Spain.
| |
Collapse
|
8
|
Malukiewicz J, Hepp CM, Guschanski K, Stone AC. Phylogeny of the jacchus group of Callithrix marmosets based on complete mitochondrial genomes. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 162:157-169. [PMID: 27762445 DOI: 10.1002/ajpa.23105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Two subgroups make up the marmoset genus Callithrix. The "aurita" group is composed of two species, whereas evolutionary relationships among the four species of the "jacchus" group remain unclear. To uncover these relationships, we first sequenced mitochondrial genomes for C. kuhlii and C. penicillata to complement data available for congeners. We then constructed a phylogenetic tree based on mtDNA heavy chain protein coding genes from several primates to untangle species relationships and estimate divergence times of the jacchus group. MATERIALS AND METHODS MtDNA genomes of C. kuhlii and C. penicillata were Sanger sequenced. These Callithrix mitogenomes were combined with other publically available primate mtDNA genomes. Phylogenies were produced using maximum likelihood and Bayesian inference. Finally, divergence times within the jacchus group of marmosets were estimated with Bayesian inference. RESULTS In our phylogenetic tree, C. geoffroyi was the sister to all other jacchus group species, followed by C. kuhlii, while C. jacchus and C. penicillata diverged most recently. Bayesian inference showed that C. jacchus and C. penicillata diverged approximately 0.70 MYA and that the jacchus group radiated approximately 1.30 MYA. DISCUSSION Callithrix nuclear and mtDNA phylogenies frequently result in polytomies and paraphyly. Here, we present a well-supported phylogenetic tree based on mitochondrial genome sequences, which facilitates the understanding of the divergence of the jacchus marmosets. Our results demonstrate how mitochondrial genomes can enrich Callithrix phylogenetic studies by alleviating some of the difficulties faced by previous mtDNA studies and allow formulation of hypotheses to test further under larger genomic-scale analyses.
Collapse
Affiliation(s)
- Joanna Malukiewicz
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA
| | - Crystal M Hepp
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Katerina Guschanski
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA.,Institute of Human Origins, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
9
|
Kuhlwilm M, de Manuel M, Nater A, Greminger MP, Krützen M, Marques-Bonet T. Evolution and demography of the great apes. Curr Opin Genet Dev 2016; 41:124-129. [PMID: 27716526 DOI: 10.1016/j.gde.2016.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/03/2016] [Accepted: 09/12/2016] [Indexed: 01/27/2023]
Abstract
The great apes are the closest living relatives of humans. Chimpanzees and bonobos group together with humans, while gorillas and orangutans are more divergent from humans. Here, we review insights into their evolution pertaining to the topology of species and subspecies and the reconstruction of their demography based on genome-wide variation. These advances have only become possible recently through next-generation sequencing technologies. Given the close relationship to humans, they provide an important evolutionary context for human genetics.
Collapse
Affiliation(s)
- Martin Kuhlwilm
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain
| | - Marc de Manuel
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain
| | - Alexander Nater
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Maja P Greminger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Michael Krützen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia 08010, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain.
| |
Collapse
|
10
|
Lobon I, Tucci S, de Manuel M, Ghirotto S, Benazzo A, Prado-Martinez J, Lorente-Galdos B, Nam K, Dabad M, Hernandez-Rodriguez J, Comas D, Navarro A, Schierup MH, Andres AM, Barbujani G, Hvilsom C, Marques-Bonet T. Demographic History of the Genus Pan Inferred from Whole Mitochondrial Genome Reconstructions. Genome Biol Evol 2016; 8:2020-30. [PMID: 27345955 PMCID: PMC4943195 DOI: 10.1093/gbe/evw124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2016] [Indexed: 01/02/2023] Open
Abstract
The genus Pan is the closest genus to our own and it includes two species, Pan paniscus (bonobos) and Pan troglodytes (chimpanzees). The later is constituted by four subspecies, all highly endangered. The study of the Pan genera has been incessantly complicated by the intricate relationship among subspecies and the statistical limitations imposed by the reduced number of samples or genomic markers analyzed. Here, we present a new method to reconstruct complete mitochondrial genomes (mitogenomes) from whole genome shotgun (WGS) datasets, mtArchitect, showing that its reconstructions are highly accurate and consistent with long-range PCR mitogenomes. We used this approach to build the mitochondrial genomes of 20 newly sequenced samples which, together with available genomes, allowed us to analyze the hitherto most complete Pan mitochondrial genome dataset including 156 chimpanzee and 44 bonobo individuals, with a proportional contribution from all chimpanzee subspecies. We estimated the separation time between chimpanzees and bonobos around 1.15 million years ago (Mya) [0.81-1.49]. Further, we found that under the most probable genealogical model the two clades of chimpanzees, Western + Nigeria-Cameroon and Central + Eastern, separated at 0.59 Mya [0.41-0.78] with further internal separations at 0.32 Mya [0.22-0.43] and 0.16 Mya [0.17-0.34], respectively. Finally, for a subset of our samples, we compared nuclear versus mitochondrial genomes and we found that chimpanzee subspecies have different patterns of nuclear and mitochondrial diversity, which could be a result of either processes affecting the mitochondrial genome, such as hitchhiking or background selection, or a result of population dynamics.
Collapse
Affiliation(s)
- Irene Lobon
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Serena Tucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marc de Manuel
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Silvia Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | | - Kiwoong Nam
- Bioinformatics Research Center, C.F. Møllers Alle, Aarhus University, Denmark
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jessica Hernandez-Rodriguez
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Arcadi Navarro
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, Barcelona, Spain CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Mikkel H Schierup
- Bioinformatics Research Center, C.F. Møllers Alle, Aarhus University, Denmark
| | - Aida M Andres
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Guido Barbujani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Tomas Marques-Bonet
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, Barcelona, Spain CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
11
|
Takemoto H, Kawamoto Y, Furuichi T. How did bonobos come to range south of the congo river? Reconsideration of the divergence of Pan paniscus from other Pan populations. Evol Anthropol 2016; 24:170-84. [PMID: 26478139 DOI: 10.1002/evan.21456] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While investigating the genetic structure in wild bonobos,(1) we realized that the widely accepted scenario positing that the Pleistocene appearance of the Congo River separated the common ancestor of chimpanzees (Pan troglodytes) and bonobos (P. paniscus) into two species is not supported by recent geographical knowledge about the formation of the Congo River. We explored the origin of bonobos using a broader biogeographical perspective by examining local faunas in the central African region. The submarine Congo River sediments and paleotopography of central Africa show that the Congo River has functioned as a geographical barrier for the last 34 million years. This evidence allows us to hypothesize that when the river was first formed, the ancestor of bonobos did not inhabit the current range of the species on the left bank of the Congo River but that, during rare times when the Congo River discharge decreased during the Pleistocene, one or more founder populations of ancestral Pan paniscus crossed the river to its left bank. The proposed scenario for formation of the Congo River and the corridor hypothesis for an ancestral bonobo population is key to understanding the distribution of great apes and their evolution.
Collapse
|
12
|
Hallast P, Maisano Delser P, Batini C, Zadik D, Rocchi M, Schempp W, Tyler-Smith C, Jobling MA. Great ape Y Chromosome and mitochondrial DNA phylogenies reflect subspecies structure and patterns of mating and dispersal. Genome Res 2016; 26:427-39. [PMID: 26883546 PMCID: PMC4817767 DOI: 10.1101/gr.198754.115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/25/2016] [Indexed: 12/30/2022]
Abstract
The distribution of genetic diversity in great ape species is likely to have been affected by patterns of dispersal and mating. This has previously been investigated by sequencing autosomal and mitochondrial DNA (mtDNA), but large-scale sequence analysis of the male-specific region of the Y Chromosome (MSY) has not yet been undertaken. Here, we use the human MSY reference sequence as a basis for sequence capture and read mapping in 19 great ape males, combining the data with sequences extracted from the published whole genomes of 24 additional males to yield a total sample of 19 chimpanzees, four bonobos, 14 gorillas, and six orangutans, in which interpretable MSY sequence ranges from 2.61 to 3.80 Mb. This analysis reveals thousands of novel MSY variants and defines unbiased phylogenies. We compare these with mtDNA-based trees in the same individuals, estimating time-to-most-recent common ancestor (TMRCA) for key nodes in both cases. The two loci show high topological concordance and are consistent with accepted (sub)species definitions, but time depths differ enormously between loci and (sub)species, likely reflecting different dispersal and mating patterns. Gorillas and chimpanzees/bonobos present generally low and high MSY diversity, respectively, reflecting polygyny versus multimale–multifemale mating. However, particularly marked differences exist among chimpanzee subspecies: The western chimpanzee MSY phylogeny has a TMRCA of only 13.2 (10.8–15.8) thousand years, but that for central chimpanzees exceeds 1 million years. Cross-species comparison within a single MSY phylogeny emphasizes the low human diversity, and reveals species-specific branch length variation that may reflect differences in long-term generation times.
Collapse
Affiliation(s)
- Pille Hallast
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom; Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | | | - Chiara Batini
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Daniel Zadik
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mariano Rocchi
- Department of Biology, University of Bari, 70124 Bari, Italy
| | - Werner Schempp
- Institute of Human Genetics, University of Freiburg, 79106 Freiburg, Germany
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Mark A Jobling
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
13
|
Bataillon T, Duan J, Hvilsom C, Jin X, Li Y, Skov L, Glemin S, Munch K, Jiang T, Qian Y, Hobolth A, Wang J, Mailund T, Siegismund HR, Schierup MH. Inference of purifying and positive selection in three subspecies of chimpanzees (Pan troglodytes) from exome sequencing. Genome Biol Evol 2015; 7:1122-32. [PMID: 25829516 PMCID: PMC4419804 DOI: 10.1093/gbe/evv058] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We study genome-wide nucleotide diversity in three subspecies of extant chimpanzees using exome capture. After strict filtering, Single Nucleotide Polymorphisms and indels were called and genotyped for greater than 50% of exons at a mean coverage of 35× per individual. Central chimpanzees (Pan troglodytes troglodytes) are the most polymorphic (nucleotide diversity, θw = 0.0023 per site) followed by Eastern (P. t. schweinfurthii) chimpanzees (θw = 0.0016) and Western (P. t. verus) chimpanzees (θw = 0.0008). A demographic scenario of divergence without gene flow fits the patterns of autosomal synonymous nucleotide diversity well except for a signal of recent gene flow from Western into Eastern chimpanzees. The striking contrast in X-linked versus autosomal polymorphism and divergence previously reported in Central chimpanzees is also found in Eastern and Western chimpanzees. We show that the direction of selection statistic exhibits a strong nonmonotonic relationship with the strength of purifying selection S, making it inappropriate for estimating S. We instead use counts in synonymous versus nonsynonymous frequency classes to infer the distribution of S coefficients acting on nonsynonymous mutations in each subspecies. The strength of purifying selection we infer is congruent with the differences in effective sizes of each subspecies: Central chimpanzees are undergoing the strongest purifying selection followed by Eastern and Western chimpanzees. Coding indels show stronger selection against indels changing the reading frame than observed in human populations.
Collapse
Affiliation(s)
| | - Jinjie Duan
- Bioinformatics Research Centre, Aarhus University, Denmark
| | - Christina Hvilsom
- Science and Conservation, Copenhagen Zoo, Denmark Bioinformatics, University of Copenhagen, Denmark
| | | | | | - Laurits Skov
- Bioinformatics Research Centre, Aarhus University, Denmark
| | - Sylvain Glemin
- Institut des Sciences de l'Evolution, Universite Montpellier 2, France
| | - Kasper Munch
- Bioinformatics Research Centre, Aarhus University, Denmark
| | | | - Yu Qian
- Bioinformatics Research Centre, Aarhus University, Denmark
| | - Asger Hobolth
- Bioinformatics Research Centre, Aarhus University, Denmark
| | - Jun Wang
- BGI Shenzhen, China Section of Metabolic Genetics, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark The Department of Genetic Medicine, Faculty of Medicine and Princess Al Jawhara Albrahim Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia Department of Biology, University of Copenhagen, Denmark Macau University of Science and Technology, China
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, Denmark
| | | | | |
Collapse
|