1
|
Kanp T, Dhuri A, M B, Rode K, Aalhate M, Paul P, Nair R, Singh PK. Exploring the Potential of Nanocarriers for Cancer Immunotherapy: Insights into Mechanism, Nanocarriers, and Regulatory Perspectives. ACS APPLIED BIO MATERIALS 2025; 8:108-138. [PMID: 39791993 DOI: 10.1021/acsabm.4c01797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Immunotherapy is a cutting-edge approach that leverages sophisticated technology to target tumor-specific antibodies and modulate the immune system to eradicate cancer and enhance patients' quality of life. Bioinformatics and genetic science advancements have made it possible to diagnose and treat cancer patients using immunotherapy technology. However, current immunotherapies against cancer have limited clinical benefits due to cancer-associated antigens, which often fail to interact with immune cells and exhibit insufficient therapeutic targeting with unintended side effects. To surmount this challenge, nanoparticle systems have emerged as a potential strategy for transporting immunotherapeutic agents to cancer cells and activating immune cells to combat tumors. Consequently, this process potentially generates an antigen-specific T cells response that effectively suppresses cancer growth. Furthermore, nanoplatforms have high specificity, efficacy, diagnostic potential, and imaging capabilities, making them promising tools for cancer treatment. However, this informative paper delves into the various available immunotherapies, including CAR T cells therapy and immune checkpoint blockade, cytokines, cancer vaccines, and monoclonal antibodies. Furthermore, the paper delves into the concept of theragnostic nanotechnology, which integrates therapy and diagnostics for a more personalized treatment approach for cancer therapy. Additionally, the paper covers the potential benefits of different nanocarrier systems, including marketed immunotherapy products, clinical trials, regulatory considerations, and future prospects for cancer immunotherapy.
Collapse
Affiliation(s)
- Tanmoy Kanp
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Anish Dhuri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Bharath M
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Khushi Rode
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| |
Collapse
|
2
|
Brismar TB, Geisel D, Kartalis N, Madrazo BL, Persson Hedman H, Norlin A. Oral Manganese Chloride Tetrahydrate: A Novel Magnetic Resonance Liver Imaging Agent for Patients With Renal Impairment: Efficacy, Safety, and Clinical Implication. Invest Radiol 2024; 59:197-205. [PMID: 37934630 PMCID: PMC11441735 DOI: 10.1097/rli.0000000000001042] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
ABSTRACT Manganese-based contrast agents (MBCAs) show promise to complement gadolinium-based contrast agents (GBCAs) in magnetic resonance imaging (MRI) of the liver. Management of patients with focal liver lesions and severely impaired renal function uses unenhanced liver MRI or GBCA-enhanced MRI. However, unenhanced MRI risks reducing patient's survival.Gadolinium-based contrast agents, which help to detect and visualize liver lesions, are associated with increased risk of nephrogenic systemic fibrosis in renally impaired patients, a severe adverse event (AE) with potentially fatal outcome. Therefore, use of GBCA in patients with impaired renal function requires careful consideration. Other concerns are related to tissue deposition in the brain and other organs due to lack of gadolinium clearance, which could lead to concerns also for other patient populations, for example, those exposed to multiple procedures with GBCA. Of particular concern are the linear chelates that remain available for liver MRI, where there is no replacement technology. This has highlighted the urgency for safer alternatives.An alternative may be the drug candidate Ascelia-MBCA (ACE-MBCA, Orviglance), oral manganese chloride tetrahydrate. This candidate effectively visualizes and detects focal liver lesions, as demonstrated in 8 clinical studies on 201 adults (healthy or with known or suspected focal liver lesions). ACE-MBCA has a low and transient systemic exposure, which is likely the reason for its beneficial safety profile. The AEs were primarily mild and transient, and related to the gastrointestinal tract. This new, orally administered product may offer a simple imaging approach, allowing appropriate patient management in renally impaired patients when use of GBCA requires careful consideration.In this review, we highlight the clinical development of ACE-MBCA-a novel, liver-specific contrast agent. We begin with a brief overview of manganese properties, addressing the need for MBCAs and describing their optimal properties. We then review key findings on the novel agent and how this allows high-quality MRIs that are comparable to GBCA and superior to unenhanced MRI. Lastly, we provide our view of future perspectives that could advance the field of liver imaging, addressing the medical needs of patients with focal liver lesions and severe renal impairment.Our review suggests that ACE-MBCA is a promising, effective, and well-tolerated new tool in the radiologist's toolbox.
Collapse
|
3
|
Zhao Y, Pan Y, Zou K, Lan Z, Cheng G, Mai Q, Cui H, Meng Q, Chen T, Rao L, Ma L, Yu G. Biomimetic manganese-based theranostic nanoplatform for cancer multimodal imaging and twofold immunotherapy. Bioact Mater 2023; 19:237-250. [PMID: 35510176 PMCID: PMC9048124 DOI: 10.1016/j.bioactmat.2022.04.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yuyue Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Kelong Zou
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhou Lan
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Guowang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qiuying Mai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hao Cui
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Qianfang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Limin Ma
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Corresponding author.
| | - Guangtao Yu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
- Corresponding author.
| |
Collapse
|
4
|
Sachse B, Kolbaum AE, Ziegenhagen R, Andres S, Berg K, Dusemund B, Hirsch-Ernst KI, Kappenstein O, Müller F, Röhl C, Lindtner O, Lampen A, Schäfer B. Dietary Manganese Exposure in the Adult Population in Germany-What Does it Mean in Relation to Health Risks? Mol Nutr Food Res 2019; 63:e1900065. [PMID: 31216097 DOI: 10.1002/mnfr.201900065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/29/2019] [Indexed: 11/10/2022]
Abstract
Manganese is both an essential nutrient and a potential neurotoxicant. Therefore, the question arises whether the dietary manganese intake in the German population is on the low or high side. Results from a pilot total diet study in Germany presented here reveal that the average dietary manganese intake in the general population in Germany aged 14-80 years is about 2.8 mg day-1 for a person of 70 kg body weight. This exposure level is within the intake range of 2-5 mg per person and day as recommended by the societies for nutrition in Germany, Austria, and Switzerland. No information on the dietary exposure of children in Germany can be provided so far. Although reliable information on health effects related to oral manganese exposure is limited, there is no indication from the literature that these dietary intake levels are associated with adverse health effects either by manganese deficiency or excess. However, there is limited evidence that manganese taken up as a highly bioavailable bolus, for example, uptake via drinking water or food supplements, could pose a potential risk to human health-particularly in certain subpopulations-when certain intake amounts, which are currently not well defined, are exceeded.
Collapse
Affiliation(s)
- Benjamin Sachse
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Anna Elena Kolbaum
- German Federal Institute for Risk Assessment (BfR), Department of Exposure, 12277, Berlin, Germany
| | - Rainer Ziegenhagen
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Susanne Andres
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Katharina Berg
- German Federal Institute for Risk Assessment (BfR), Department of Exposure, 12277, Berlin, Germany
| | - Birgit Dusemund
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Karen Ildico Hirsch-Ernst
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Oliver Kappenstein
- German Federal Institute for Risk Assessment (BfR), Department of Chemicals and Product Safety, 10589, Berlin, Germany
| | - Frederic Müller
- German Federal Institute for Risk Assessment (BfR), Department of Chemicals and Product Safety, 10589, Berlin, Germany
| | - Claudia Röhl
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany.,State Agency for Social Services Schleswig-Holstein (LAsD), Department of Environmental Health Protection, 24105, Kiel, Germany
| | - Oliver Lindtner
- German Federal Institute for Risk Assessment (BfR), Department of Exposure, 12277, Berlin, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| | - Bernd Schäfer
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, 10589, Berlin, Germany
| |
Collapse
|
5
|
Cloyd RA, Koren SA, Abisambra JF. Manganese-Enhanced Magnetic Resonance Imaging: Overview and Central Nervous System Applications With a Focus on Neurodegeneration. Front Aging Neurosci 2018; 10:403. [PMID: 30618710 PMCID: PMC6300587 DOI: 10.3389/fnagi.2018.00403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) rose to prominence in the 1990s as a sensitive approach to high contrast imaging. Following the discovery of manganese conductance through calcium-permeable channels, MEMRI applications expanded to include functional imaging in the central nervous system (CNS) and other body systems. MEMRI has since been employed in the investigation of physiology in many animal models and in humans. Here, we review historical perspectives that follow the evolution of applied MRI research into MEMRI with particular focus on its potential toxicity. Furthermore, we discuss the more current in vivo investigative uses of MEMRI in CNS investigations and the brief but decorated clinical usage of chelated manganese compound mangafodipir in humans.
Collapse
Affiliation(s)
- Ryan A Cloyd
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,College of Medicine, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Shon A Koren
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Neuroscience & Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Jose F Abisambra
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Neuroscience & Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
6
|
Wen L, Shi X, He L, Han D. Manganese-Enhanced Magnetic Resonance Imaging for Detection and Characterization of Colorectal Cancers. ACTA ACUST UNITED AC 2018; 4:78-83. [PMID: 30206548 PMCID: PMC6127351 DOI: 10.18383/j.tom.2018.00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here, we investigated the diagnostic performance of manganese (Mn)-enhanced magnetic resonance imaging (MEMRI) in colorectal cancer (CRC). The ability of CRC cell lines SW620 and SW480 to uptake Mn was evaluated and compared with a normal colon cell using MEMRI. Subcutaneous xenografts in nude mice underwent MRI examination at tumor sizes of 5, 10, and 15 mm. Contrast enhancement was compared between gadolinium (Gd)- and Mn-enhanced MRI. SW620 and SW480 cell lines took up more Mn2+ than normal cells, resulting in 4.5 and 2 times greater T1 value shortening than normal cell using in vitro MEMRI (P < .001). Most xenografts (17/23) enhanced markedly on MEMRI. A heterogeneous enhancement pattern invariably noted whether Mn or Gd agents were administered, but tumors imaged using MEMRI showed a greater degree of enhancement with a larger extent of enhanced area than those imaged using Gd-enhanced MRI. The numbers of markedly Mn-enhanced cases were more in the 5-mm-size tumor group than in 10- or 15-mm-size tumor groups. Overall, MEMRI could enhance CRCs and it showed potential in detecting early small lesions and markedly enhancing tumors that had minimal Gd enhancement.
Collapse
Affiliation(s)
- Liang Wen
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xinan Shi
- Chinese Medicine College of Yun Nan, Kunming, Chinac; and
| | - Liping He
- Public Health School of Kunming Medical University, Kunming, China
| | - Dan Han
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Vanasschen C, Brandt M, Ermert J, Coenen HH. Radiolabelling with isotopic mixtures of (52g/55)Mn(II) as a straight route to stable manganese complexes for bimodal PET/MR imaging. Dalton Trans 2016; 45:1315-21. [PMID: 26685974 DOI: 10.1039/c5dt04270d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiolabelling using isotopic mixtures of (52g/55)Mn(ii) offers fast and easy access to new small molecule PET/MR tracers, composed of chemically identical reporting units. trans-1,2-Diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) was radiolabelled with carrier-added (52g)Mn(ii) in >99% radiochemical yield, producing the first manganese-based bimodal PET/MR probe. The Mn-CDTA chelate was shown to be very stable to air oxidation and sufficiently inert to decomplexation in blood serum. These data sparked our interest in functionalized CDTA ligands for the design of optimized PET/MR tracers.
Collapse
Affiliation(s)
- Christian Vanasschen
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Marie Brandt
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Heinz H Coenen
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
8
|
Forgács A, Regueiro-Figueroa M, Barriada JL, Esteban-Gómez D, de Blas A, Rodríguez-Blas T, Botta M, Platas-Iglesias C. Mono-, bi-, and trinuclear bis-hydrated Mn(2+) complexes as potential MRI contrast agents. Inorg Chem 2015; 54:9576-87. [PMID: 26397808 DOI: 10.1021/acs.inorgchem.5b01677] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a series of ligands containing pentadentate 6,6′-((methylazanediyl)bis(methylene))dipicolinic acid binding units that form mono- (H2dpama), di- (mX(H2dpama)2), and trinuclear (mX(H2dpama)3) complexes with Mn2+ containing two coordinated water molecules per metal ion, which results in pentagonal bipyramidal coordination around the metal ions. In contrast, the hexadentate ligand 6,6′-((ethane-1,2-diylbis(azanediyl))bis(methylene))dipicolinic acid (H2bcpe) forms a complex with distorted octahedral coordination around Mn2+ that lacks coordinated water molecules. The protonation constants of the ligands and the stability constants of the Mn2+, Cu2+, and Zn2+ complexes were determined using potentiometric and spectrophotometric titrations in 0.15 M NaCl. The pentadentate dpama2– ligand and the di- and trinucleating mX(dpama)24– and mX(dpama)36– ligands provide metal complexes with stabilities that are very similar to that of the complex with the hexadentate ligand bcpe2–, with log β101 values in the range 10.1–11.6. Cyclic voltammetry experiments on aqueous solutions of the [Mn(bcpe)] complex reveal a quasireversible system with a half-wave potential of +595 mV versus Ag/AgCl. However, [Mn(dpama)] did not suffer oxidation in the range 0.0–1.0 V, revealing a higher resistance toward oxidation. A detailed 1H NMRD and 17O NMR study provided insight into the parameters that govern the relaxivity for these systems. The exchange rate of the coordinated water molecules in [Mn(dpama)] is relatively fast, kex298 = (3.06 ± 0.16) × 108 s–1. The trinuclear [mX(Mn(dpama)(H2O)2)3] complex was found to bind human serum albumin with an association constant of 1286 ± 55 M–1 and a relaxivity of the adduct of 45.2 ± 0.6 mM–1 s–1 at 310 K and 20 MHz.
Collapse
Affiliation(s)
- Attila Forgács
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11, 15121 Alessandria, Italy
| | | | | | | | | | | | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11, 15121 Alessandria, Italy
| | | |
Collapse
|
9
|
Bissig D, Berkowitz BA. Testing the calcium hypothesis of aging in the rat hippocampus in vivo using manganese-enhanced MRI. Neurobiol Aging 2013; 35:1453-8. [PMID: 24439958 DOI: 10.1016/j.neurobiolaging.2013.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 11/30/2022]
Abstract
In this study, we noninvasively tested the hypothesis that Mn(2+)-enhanced magnetic resonance imaging (MEMRI) is sensitive to age-related changes in Ca(2+) influx occurring in the hippocampal region CA1. Uptake of Mn(2+), an MRI contrast agent and Ca(2+) surrogate with low cellular efflux rates (days to weeks), was measured in longitudinal MEMRI studies involving 2 separate groups of male Long-Evans rats: one group was studied at 2.5 and 7 months of age, whereas the other was studied at 7 and 19 months of age. Separate or combined analysis revealed that the extent of Mn(2+) accumulation in CA1 significantly increased with age (p < 0.05). These results provide first-time in vivo confirmation of the calcium hypothesis of aging and justify future longitudinal studies combining MEMRI with behavioral testing to investigate mechanisms of age-related cognitive decline.
Collapse
Affiliation(s)
- David Bissig
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
10
|
Jørgensen JT, Rief M, Brismar TB, Wagner M, Albiin N. A new manganese-based oral contrast agent (CMC-001) for liver MRI: pharmacological and pharmaceutical aspects. Acta Radiol 2012; 53:707-713. [PMID: 22821959 DOI: 10.1258/ar.2012.120034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Manganese is one of the most abundant metals on earth and is found as a component of more than 100 different minerals. Besides being an essential trace element in relation to the metabolic processes in the body, manganese is also a paramagnetic metal that possesses similar characteristics to gadolinium with regards to T1-weighted (T1-w) magnetic resonance imaging (MRI). Manganese, in the form of manganese (II) chloride tetrahydrate, is the active substance in a new targeted oral contrast agent, currently known as CMC-001, indicated for hepatobiliary MRI. Under physiological circumstances manganese is poorly absorbed from the intestine after oral intake, but by the use of specific absorption promoters, L-alanine and vitamin D(3), it is possible to obtain a sufficiently high concentration in the liver in order to achieve a significant signal enhancing effect. In the liver manganese is exposed to a very high first-pass effect, up to 98%, which prevents the metal from reaching the systemic circulation, thereby reducing the number of systemic side-effects. Manganese is one of the least toxic trace elements, and due to its favorable safety profile it may be an attractive alternative to gadolinium-based contrast agents for patients undergoing an MRI evaluation for liver metastases in the future. In this review the basic pharmacological and pharmaceutical aspects of this new targeted oral hepatobiliary specific contrast agent will be discussed.
Collapse
|