1
|
Friesen E, Gosal R, Herrera S, Mercredi M, Buist R, Matsuda K, Martin M. Comparisons of MR and EM inferred tissue microstructure properties using a human autopsy corpus callosum sample. Magn Reson Imaging 2024; 115:110255. [PMID: 39401603 DOI: 10.1016/j.mri.2024.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Degeneration of white matter (WM) microstructure in the central nervous system is characteristic of many neurodegenerative conditions. Previous research indicates that axonal degeneration visible in ex vivo electron microscopy (EM) photomicrographs precede the onset of clinical symptoms. Measuring WM microstructural features, such as axon diameter and packing fraction, currently require these highly invasive methods of analysis and it is therefore of great importance to develop methods for in vivo measurements. Diffusion weighted Magnetic Resonance Imaging (MRI) is a non-invasive method which can be used in conjunction with temporal diffusion spectroscopy (TDS) and an oscillating gradient spin echo (OGSE) pulse sequence to probe micron-scale structures within neural tissue. The current experiment aims to compare axon diameter measurements, mean effective axon diameter (AxD¯), and packing fractions calculated from EM histopathological analysis and inferred values from MR images. Mathematical models of axon diameters used for analysis include the ActiveAx Frequency-Dependent Extra-Axonal Diffusion (AAD) model and the AxCaliber Frequency-Dependent Extra-Axonal Diffusion (ACD) model using ROI (Region of Interest) based analysis (RBA) and voxel-based analysis (VBA), respectively. Overall, it was observed that MRI inferred WM microstructural parameters overestimate those calculated from EM. This may be attributable to tissue shrinkage during EM dehydration, the sensitivity of MR pulse sequences to larger diameter axons, and/or inaccurate model assumptions. The results of the current study provide a means to characterize the precision and accuracy of RBA-ACD and VBA-AAD OGSE-TDS and highlight the need for further research investigating the relationship between ex vivo MRI and EM, with the goal of reaching in vivo MRI.
Collapse
Affiliation(s)
- Emma Friesen
- Department of Chemistry, University of Winnipeg, Winnipeg, MB, Canada.
| | - Rubeena Gosal
- Department of Chemistry, University of Winnipeg, Winnipeg, MB, Canada.
| | - Sheryl Herrera
- Department of Physics, University of Winnipeg, Winnipeg, MB, Canada
| | - Morgan Mercredi
- Department of Physics, University of Winnipeg, Winnipeg, MB, Canada
| | - Richard Buist
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada.
| | - Kant Matsuda
- Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| | - Melanie Martin
- Department of Physics, University of Winnipeg, Winnipeg, MB, Canada.
| |
Collapse
|
2
|
Fang C, Nguyen VD, Wassermann D, Li JR. Diffusion MRI simulation of realistic neurons with SpinDoctor and the Neuron Module. Neuroimage 2020; 222:117198. [PMID: 32730957 DOI: 10.1016/j.neuroimage.2020.117198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/30/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023] Open
Abstract
The diffusion MRI signal arising from neurons can be numerically simulated by solving the Bloch-Torrey partial differential equation. In this paper we present the Neuron Module that we implemented within the Matlab-based diffusion MRI simulation toolbox SpinDoctor. SpinDoctor uses finite element discretization and adaptive time integration to solve the Bloch-Torrey partial differential equation for general diffusion-encoding sequences, at multiple b-values and in multiple diffusion directions. In order to facilitate the diffusion MRI simulation of realistic neurons by the research community, we constructed finite element meshes for a group of 36 pyramidal neurons and a group of 29 spindle neurons whose morphological descriptions were found in the publicly available neuron repository NeuroMorpho.Org. These finite elements meshes range from having 15,163 nodes to 622,553 nodes. We also broke the neurons into the soma and dendrite branches and created finite elements meshes for these cell components. Through the Neuron Module, these neuron and cell components finite element meshes can be seamlessly coupled with the functionalities of SpinDoctor to provide the diffusion MRI signal attributable to spins inside neurons. We make these meshes and the source code of the Neuron Module available to the public as an open-source package. To illustrate some potential uses of the Neuron Module, we show numerical examples of the simulated diffusion MRI signals in multiple diffusion directions from whole neurons as well as from the soma and dendrite branches, and include a comparison of the high b-value behavior between dendrite branches and whole neurons. In addition, we demonstrate that the neuron meshes can be used to perform Monte-Carlo diffusion MRI simulations as well. We show that at equivalent accuracy, if only one gradient direction needs to be simulated, SpinDoctor is faster than a GPU implementation of Monte-Carlo, but if many gradient directions need to be simulated, there is a break-even point when the GPU implementation of Monte-Carlo becomes faster than SpinDoctor. Furthermore, we numerically compute the eigenfunctions and the eigenvalues of the Bloch-Torrey and the Laplace operators on the neuron geometries using a finite elements discretization, in order to give guidance in the choice of the space and time discretization parameters for both finite elements and Monte-Carlo approaches. Finally, we perform a statistical study on the set of 65 neurons to test some candidate biomakers that can potentially indicate the soma size. This preliminary study exemplifies the possible research that can be conducted using the Neuron Module.
Collapse
Affiliation(s)
- Chengran Fang
- INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, 91128 Palaiseau Cedex, France; INRIA Saclay, Equipe Parietal, 1 Rue Honoré d'Estienne d'Orves, 91120 Palaiseau, France
| | - Van-Dang Nguyen
- Department of Computational Science and Technology, KTH Royal Institute of Technology, Sweden
| | - Demian Wassermann
- INRIA Saclay, Equipe Parietal, 1 Rue Honoré d'Estienne d'Orves, 91120 Palaiseau, France
| | - Jing-Rebecca Li
- INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, 91128 Palaiseau Cedex, France.
| |
Collapse
|
3
|
Li JR, Tran TN, Nguyen VD. Practical computation of the diffusion MRI signal of realistic neurons based on Laplace eigenfunctions. NMR IN BIOMEDICINE 2020; 33:e4353. [PMID: 32725935 DOI: 10.1002/nbm.4353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium such as brain tissue can be modeled by the Bloch-Torrey partial differential equation. The spatial integral of the solution of this equation in realistic geometry provides a gold-standard reference model for the diffusion MRI signal arising from different tissue micro-structures of interest. A closed form representation of this reference diffusion MRI signal called matrix formalism, which makes explicit the link between the Laplace eigenvalues and eigenfunctions of the biological cell and its diffusion MRI signal, was derived 20 years ago. In addition, once the Laplace eigendecomposition has been computed and saved, the diffusion MRI signal can be calculated for arbitrary diffusion-encoding sequences and b-values at negligible additional cost. Up to now, this representation, though mathematically elegant, has not been often used as a practical model of the diffusion MRI signal, due to the difficulties of calculating the Laplace eigendecomposition in complicated geometries. In this paper, we present a simulation framework that we have implemented inside the MATLAB-based diffusion MRI simulator SpinDoctor that efficiently computes the matrix formalism representation for realistic neurons using the finite element method. We show that the matrix formalism representation requires a few hundred eigenmodes to match the reference signal computed by solving the Bloch-Torrey equation when the cell geometry originates from realistic neurons. As expected, the number of eigenmodes required to match the reference signal increases with smaller diffusion time and higher b-values. We also convert the eigenvalues to a length scale and illustrate the link between the length scale and the oscillation frequency of the eigenmode in the cell geometry. We give the transformation that links the Laplace eigenfunctions to the eigenfunctions of the Bloch-Torrey operator and compute the Bloch-Torrey eigenfunctions and eigenvalues. This work is another step in bringing advanced mathematical tools and numerical method development to the simulation and modeling of diffusion MRI.
Collapse
Affiliation(s)
- Jing-Rebecca Li
- INRIA Saclay-Equipe DEFI, CMAP, Ecole Polytechnique, Palaiseau, France
| | - Try Nguyen Tran
- INRIA Saclay-Equipe DEFI, CMAP, Ecole Polytechnique, Palaiseau, France
| | - Van-Dang Nguyen
- Division of Computational Science and Technology, KTH Royal Institute of Technology, Sweden
| |
Collapse
|
4
|
Li JR, Nguyen VD, Tran TN, Valdman J, Trang CB, Nguyen KV, Vu DTS, Tran HA, Tran HTA, Nguyen TMP. SpinDoctor: A MATLAB toolbox for diffusion MRI simulation. Neuroimage 2019; 202:116120. [DOI: 10.1016/j.neuroimage.2019.116120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
|
5
|
Rensonnet G, Scherrer B, Girard G, Jankovski A, Warfield SK, Macq B, Thiran JP, Taquet M. Towards microstructure fingerprinting: Estimation of tissue properties from a dictionary of Monte Carlo diffusion MRI simulations. Neuroimage 2019; 184:964-980. [PMID: 30282007 PMCID: PMC6230496 DOI: 10.1016/j.neuroimage.2018.09.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Many closed-form analytical models have been proposed to relate the diffusion-weighted magnetic resonance imaging (DW-MRI) signal to microstructural features of white matter tissues. These models generally make assumptions about the tissue and the diffusion processes which often depart from the biophysical reality, limiting their reliability and interpretability in practice. Monte Carlo simulations of the random walk of water molecules are widely recognized to provide near groundtruth for DW-MRI signals. However, they have mostly been limited to the validation of simpler models rather than used for the estimation of microstructural properties. This work proposes a general framework which leverages Monte Carlo simulations for the estimation of physically interpretable microstructural parameters, both in single and in crossing fascicles of axons. Monte Carlo simulations of DW-MRI signals, or fingerprints, are pre-computed for a large collection of microstructural configurations. At every voxel, the microstructural parameters are estimated by optimizing a sparse combination of these fingerprints. Extensive synthetic experiments showed that our approach achieves accurate and robust estimates in the presence of noise and uncertainties over fixed or input parameters. In an in vivo rat model of spinal cord injury, our approach provided microstructural parameters that showed better correspondence with histology than five closed-form models of the diffusion signal: MMWMD, NODDI, DIAMOND, WMTI and MAPL. On whole-brain in vivo data from the human connectome project (HCP), our method exhibited spatial distributions of apparent axonal radius and axonal density indices in keeping with ex vivo studies. This work paves the way for microstructure fingerprinting with Monte Carlo simulations used directly at the modeling stage and not only as a validation tool.
Collapse
Affiliation(s)
- Gaëtan Rensonnet
- ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium; Signal Processing Lab (LTS5), École polytechnique fédérale de Lausanne, Lausanne, Switzerland.
| | - Benoît Scherrer
- Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Girard
- Signal Processing Lab (LTS5), École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Aleksandar Jankovski
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium; Department of Neurosurgery, Centre hospitalier universitaire Dinant Godinne, Université catholique de Louvain, Namur, Belgium
| | - Simon K Warfield
- Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benoît Macq
- ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Philippe Thiran
- Signal Processing Lab (LTS5), École polytechnique fédérale de Lausanne, Lausanne, Switzerland; Radiology Department, Centre hospitalier universitaire vaudois and University of Lausanne, Lausanne, Switzerland
| | - Maxime Taquet
- ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium; Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Herrera SL, Mercredi ME, Buist R, Martin M. Inferring diameters of spheres and cylinders using interstitial water. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:609-620. [PMID: 29869134 DOI: 10.1007/s10334-018-0685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 04/06/2018] [Accepted: 04/19/2018] [Indexed: 11/25/2022]
Abstract
OBJECT Most early methods to infer axon diameter distributions using magnetic resonance imaging (MRI) used single diffusion encoding sequences such as pulsed gradient spin echo (SE) and are thus sensitive to axons of diameters > 5 μm. We previously simulated oscillating gradient (OG) SE sequences for diffusion spectroscopy to study smaller axons including the majority constituting cortical connections. That study suggested the model of constant extra-axonal diffusion breaks down at OG accessible frequencies. In this study we present data from phantoms to test a time-varying interstitial apparent diffusion coefficient. MATERIALS AND METHODS Diffusion spectra were measured in four samples from water packed around beads of diameters 3, 6 and 10 μm; and 151 μm diameter tubes. Surface-to-volume ratios, and diameters were inferred. RESULTS The bead pore radii estimates were 0.60±0.08 μm, 0.54±0.06 μm and 1.0±0.1 μm corresponding to bead diameters ranging from 2.9±0.4 μm to 5.3±0.7 μm, 2.6±0.3 μm to 4.8±0.6 μm, and 4.9±0.7 μm to 9±1 μm. The tube surface-to-volume ratio estimate was 0.06±0.02 μm-1 corresponding to a tube diameter of 180±70 μm. CONCLUSION Interstitial models with OG inferred 3-10 μm bead diameters from 0.54±0.06 μm to 1.0±0.1 μm pore radii and 151 μm tube diameters from 0.06±0.02 μm-1 surface-to-volume ratios.
Collapse
Affiliation(s)
- Sheryl L Herrera
- Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Morgan E Mercredi
- Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Richard Buist
- Radiology, University of Manitoba, Winnipeg, MB, R3E 0T6, Canada
| | - Melanie Martin
- Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Physics, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| |
Collapse
|