1
|
Moreno-Arciniegas A, Cádiz L, Galán-Arriola C, Clemente-Moragón A, Ibáñez B. Cardioprotection strategies for anthracycline cardiotoxicity. Basic Res Cardiol 2025; 120:71-90. [PMID: 39249555 PMCID: PMC11790697 DOI: 10.1007/s00395-024-01078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Thanks to the fantastic progress in cancer therapy options, there is a growing population of cancer survivors. This success has resulted in a need to focus much effort into improving the quality of life of this population. Cancer and cardiovascular disease share many common risk factors and have an interplay between them, with one condition mechanistically affecting the other and vice versa. Furthermore, widely prescribed cancer therapies have known toxic effects in the cardiovascular system. Anthracyclines are the paradigm of efficacious cancer therapy widely prescribed with a strong cardiotoxic potential. While some cancer therapies cardiovascular toxicities are transient, others are irreversible. There is a growing need to develop cardioprotective therapies that, when used in conjunction with cancer therapies, can prevent cardiovascular toxicity and thus improve long-term quality of life in survivors. The field has three main challenges: (i) identification of the ultimate mechanisms leading to cardiotoxicity to (ii) identify specific therapeutic targets, and (iii) more sensible diagnostic tools to early identify these conditions. In this review we will focus on the cardioprotective strategies tested and under investigation. We will focus this article into anthracycline cardiotoxicity since it is still the agent most widely prescribed, the one with higher toxic effects on the heart, and the most widely studied.
Collapse
Affiliation(s)
| | - Laura Cádiz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Agustín Clemente-Moragón
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.
| |
Collapse
|
2
|
Guz W, Podgórski R, Aebisher D, Truszkiewicz A, Machorowska-Pieniążek A, Cieślar G, Kawczyk-Krupka A, Bartusik-Aebisher D. Utility of 1.5 Tesla MRI Scanner in the Management of Small Sample Sizes Driven from 3D Breast Cell Culture. Int J Mol Sci 2024; 25:3009. [PMID: 38474256 DOI: 10.3390/ijms25053009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this work was to use and optimize a 1.5 Tesla magnetic resonance imaging (MRI) system for three-dimensional (3D) images of small samples obtained from breast cell cultures in vitro. The basis of this study was to design MRI equipment to enable imaging of MCF-7 breast cancer cell cultures (about 1 million cells) in 1.5 and 2 mL glass tubes and/or bioreactors with an external diameter of less than 20 mm. Additionally, the development of software to calculate longitudinal and transverse relaxation times is described. Imaging tests were performed using a clinical MRI scanner OPTIMA 360 manufactured by GEMS. Due to the size of the tested objects, it was necessary to design additional receiving circuits allowing for the study of MCF-7 cell cultures placed in glass bioreactors. The examined sample's volume did not exceed 2.0 mL nor did the number of cells exceed 1 million. This work also included a modification of the sequence to allow for the analysis of T1 and T2 relaxation times. The analysis was performed using the MATLAB package (produced by MathWorks). The created application is based on medical MR images saved in the DICOM3.0 standard which ensures that the data analyzed are reliable and unchangeable in an unintentional manner that could affect the measurement results. The possibility of using 1.5 T MRI systems for cell culture research providing quantitative information from in vitro studies was realized. The scanning resolution for FOV = 5 cm and the matrix was achieved at a level of resolution of less than 0.1 mm/pixel. Receiving elements were built allowing for the acquisition of data for MRI image reconstruction confirmed by images of a phantom with a known structure and geometry. Magnetic resonance sequences were modified for the saturation recovery (SR) method, the purpose of which was to determine relaxation times. An application in MATLAB was developed that allows for the analysis of T1 and T2 relaxation times. The relaxation times of cell cultures were determined over a 6-week period. In the first week, the T1 time value was 1100 ± 40 ms, which decreased to 673 ± 59 ms by the sixth week. For T2, the results were 171 ± 10 ms and 128 ± 12 ms, respectively.
Collapse
Affiliation(s)
- Wiesław Guz
- Department of Diagnostic Imaging and Nuclear Medicine, Medical College of the University of Rzeszow, 35-310 Rzeszów, Poland
| | - Rafał Podgórski
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszow, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszow, 35-310 Rzeszów, Poland
| | - Adrian Truszkiewicz
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszow, 35-310 Rzeszów, Poland
| | | | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15, 41-902 Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Centre for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszow, 35-310 Rzeszów, Poland
| |
Collapse
|
3
|
Ghonim S, Babu-Narayan SV. Use of Cardiovascular Magnetic Resonance for Risk Stratification in Repaired Tetralogy of Fallot. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:393-403. [PMID: 38161667 PMCID: PMC10755838 DOI: 10.1016/j.cjcpc.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 01/03/2024]
Abstract
The risk of premature death in adult patients with repaired tetralogy of Fallot is real and not inconsiderable. From the third decade of life, the incidence of malignant ventricular arrhythmia (VA) is known to exponentially rise. Progressive adverse mechanoelectrical modelling because of years of volume and/or pressure overload from residual pulmonary valve dysfunction and ventricular scar creates the perfect catalyst for VA. Although potentially lifesaving, implantable cardiac defibrillators are associated with substantial psychological and physical morbidity. Better selection of patients most at risk of VA, so that implantable cardiac defibrillators are not inflicted on patients who will never need them, is therefore crucial and has inspired research on this topic for several decades. Cardiovascular magnetic resonance (CMR) enables noninvasive, radiation-free clinical assessment of anatomy and function, making it ideal for the lifelong surveillance of patients with congenital heart disease. Gold standard measurements of ventricular volumes and systolic function can be derived from CMR. Tissue characterization using CMR can identify a VA substrate and provides insight into myocardial disease. We detail risk factors for VA identified using currently available CMR techniques. We also discuss emerging and advanced CMR techniques that have not all yet translated into routine clinical practice. We review how CMR-defined predictors of VA in repaired tetralogy of Fallot can be incorporated into risk scores with other clinical factors to improve the accuracy of risk prediction and to allow for pragmatic clinical application. Finally, we discuss what the future may hold.
Collapse
Affiliation(s)
- Sarah Ghonim
- Adult Congenital Disease Unit, Royal Brompton Hospital, London, United Kingdom
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom
- National Heart Lung Institute, Imperial College London, London, United Kingdom
| | - Sonya V. Babu-Narayan
- Adult Congenital Disease Unit, Royal Brompton Hospital, London, United Kingdom
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom
- National Heart Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Hufnagel S, Metzner S, Kerkering KM, Aigner CS, Kofler A, Schulz-Menger J, Schaeffter T, Kolbitsch C. 3D model-based super-resolution motion-corrected cardiac T1 mapping. Phys Med Biol 2022; 67. [PMID: 36265478 DOI: 10.1088/1361-6560/ac9c40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022]
Abstract
Objective. To provide 3D high-resolution cardiac T1 maps using model-based super-resolution reconstruction (SRR).Approach. Due to signal-to-noise ratio limitations and the motion of the heart during imaging, often 2D T1 maps with only low through-plane resolution (i.e. slice thickness of 6-8 mm) can be obtained. Here, a model-based SRR approach is presented, which combines multiple stacks of 2D acquisitions with 6-8 mm slice thickness and generates 3D high-resolution T1 maps with a slice thickness of 1.5-2 mm. Every stack was acquired in a different breath hold (BH) and any misalignment between BH was corrected retrospectively. The novelty of the proposed approach is the BH correction and the application of model-based SRR on cardiac T1 Mapping. The proposed approach was evaluated in numerical simulations and phantom experiments and demonstrated in four healthy subjects.Main results. Alignment of BH states was essential for SRR even in healthy volunteers. In simulations, respiratory motion could be estimated with an RMS error of 0.18 ± 0.28 mm. SRR improved the visualization of small structures. High accuracy and precision (average standard deviation of 69.62 ms) of the T1 values was ensured by SRR while the detectability of small structures increased by 40%.Significance. The proposed SRR approach provided T1 maps with high in-plane and high through-plane resolution (1.3 × 1.3 × 1.5-2 mm3). The approach led to improvements in the visualization of small structures and precise T1 values.
Collapse
Affiliation(s)
- Simone Hufnagel
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Selma Metzner
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | | | | | - Andreas Kofler
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jeanette Schulz-Menger
- Charité Medical Faculty University Medicine, Berlin, Germany.,Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center (ECRC), Charité Humboldt University Berlin, DZHK partner site Berlin, Berlin, Germany.,Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Biomedical Engineering, Technical University of Berlin, Berlin, Germany
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
5
|
Aoike T, Fujima N, Yoneyama M, Fujiwara T, Takamori S, Aoike S, Ishizaka K, Kudo K. Development of three-dimensional MR neurography using an optimized combination of compressed sensing and parallel imaging. Magn Reson Imaging 2021; 87:32-37. [PMID: 34968698 DOI: 10.1016/j.mri.2021.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/18/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE To assess the cervical magnetic resonance neurography (MRN) imaging quality obtained with compressed sensing and sensitivity-encoding (compressed SENSE; CS-SENSE) technique in comparison to that obtained with the conventional parallel imaging (i.e., SENSE) technique. MATERIALS AND METHODS Five healthy volunteers underwent a three-dimensional (3D) turbo spin-echo (TSE)-based cervical MRN examination using a 3.0 Tesla MR-unit. All MRN acquisitions were performed with CS-SENSE and conventional SENSE. We used four acceleration factors (4, 8, 16 and 32) in CS-SENSE. The image quality in MRN was evaluated by assessing the degree of cervical nerve depiction using the contrast ratio (CR) and contrast-noise ratio (CNR) between the cervical nerve and the background signal intensity and a visual scoring system (1: poor, 2: moderate, 3: good). In all of the CR, CNR and visual score, we calculated the ratio of the CS-SENSE-based MRN to that from SENSE-based MRN plus the 95% confidence intervals (CIs) of these ratios. RESULTS In the multiple comparison of MRN images with the control of conventional SENSE-based MRN, both the quantitative CR values and the visual score for the CS-SENSE factors of 16 and 32 were significantly lower, whereas the CS-SENSE factors of 4 and 8 showed a non-significant difference. In addition, the quantitative CNR values obtained with the CS-SENSE factors of 4 and 8 were significantly higher than that obtained with the conventional SENSE-based MRN while the CS-SENSE factor of 32 was significantly lower, in contrast, the CS-SENSE factors of 16 showed a non-significant difference. For CS-SENSE factors of 4 and 8, all ratios of the CS-SENSE-based MRN values for CR, CNR and visual scores to those from SENSE-based MRN were above 0.95. CONCLUSION CS-SENSE-based MRN can accomplish fast scanning with sufficient image quality when using a high acceleration factor.
Collapse
Affiliation(s)
- Takuya Aoike
- Department of Radiological Technology, Hokkaido University Hospital, Sapporo, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan.
| | | | - Taro Fujiwara
- Department of Radiological Technology, Hokkaido University Hospital, Sapporo, Japan
| | - Sayaka Takamori
- Department of Radiological Technology, Hokkaido University Hospital, Sapporo, Japan
| | - Suzuko Aoike
- Department of Radiological Technology, Hokkaido University Hospital, Sapporo, Japan
| | - Kinya Ishizaka
- Department of Radiological Technology, Hokkaido University Hospital, Sapporo, Japan
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Altmann S, Halfmann MC, Abidoye I, Yacoub B, Schmidt M, Wenzel P, Forman C, Schoepf UJ, Xiong F, Dueber C, Kreitner KF, Varga-Szemes A, Emrich T. Compressed sensing acceleration of cardiac cine imaging allows reliable and reproducible assessment of volumetric and functional parameters of the left and right atrium. Eur Radiol 2021; 31:7219-7230. [PMID: 33779815 PMCID: PMC8452582 DOI: 10.1007/s00330-021-07830-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 11/05/2022]
Abstract
Objectives To compare volumetric and functional parameters of the atria derived from highly accelerated compressed sensing (CS)–based cine sequences in comparison to conventional (Conv) cine imaging. Methods CS and Conv cine sequences were acquired in 101 subjects (82 healthy volunteers (HV) and 19 patients with heart failure with reduced ejection fraction (HFrEF)) using a 3T MR scanner in this single-center study. Time-volume analysis of the left (LA) and right atria (RA) were performed in both sequences to evaluate atrial volumes and function (total, passive, and active emptying fraction). Inter-sequence and inter- and intra-reader agreement were analyzed using correlation, intraclass correlation (ICC), and Bland-Altman analysis. Results CS-based cine imaging led to a 69% reduction of acquisition time. There was significant difference in atrial parameters between CS and Conv cine, e.g., LA minimal volume (LAVmin) (Conv 24.0 ml (16.7–32.7), CS 25.7 ml (19.2–35.2), p < 0.0001) or passive emptying fraction (PEF) (Conv 53.9% (46.7–58.4), CS 49.0% (42.0–54.1), p < 0.0001). However, there was high correlation between the techniques, yielding good to excellent ICC (0.76–0.99) and small mean of differences in Bland-Altman analysis (e.g. LAVmin − 2.0 ml, PEF 3.3%). Measurements showed high inter- (ICC > 0.958) and intra-rater (ICC > 0.934) agreement for both techniques. CS-based parameters (PEF AUC = 0.965, LAVmin AUC = 0.864) showed equivalent diagnostic ability compared to Conv cine imaging (PEF AUC = 0.989, LAVmin AUC = 0.859) to differentiate between HV and HFrEF. Conclusion Atrial volumetric and functional evaluation using CS cine imaging is feasible with relevant reduction of acquisition time, therefore strengthening the role of CS in clinical CMR for atrial imaging. Key Points • Reliable assessment of atrial volumes and function based on compressed sensing cine imaging is feasible. • Compressed sensing reduces scan time and has the potential to overcome obstacles of conventional cine imaging. • No significant differences for subjective image quality, inter- and intra-rater agreement, and ability to differentiate healthy volunteers and heart failure patients were detected between conventional and compressed sensing cine imaging. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-07830-z.
Collapse
Affiliation(s)
- Sebastian Altmann
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Moritz C Halfmann
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Ibukun Abidoye
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.,Afe Babalola University/Multisystem Hospital, Km 8.5, Afe Babalola way, Ado-Ekiti, Ekiti, Nigeria
| | - Basel Yacoub
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, 29425, USA
| | - Michaela Schmidt
- Cardiac MR R&D, Siemens Healthcare GmbH, Henkestraße, 127, 91052, Erlangen, Germany
| | - Philip Wenzel
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.,Center for Cardiology, Cardiology I, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Christoph Forman
- Cardiac MR R&D, Siemens Healthcare GmbH, Henkestraße, 127, 91052, Erlangen, Germany
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, 29425, USA
| | - Fei Xiong
- Cardiac MR R&D, Siemens Healthcare GmbH, Henkestraße, 127, 91052, Erlangen, Germany
| | - Christoph Dueber
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Karl-Friedrich Kreitner
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Akos Varga-Szemes
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, 29425, USA
| | - Tilman Emrich
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Langenbeckstraße 1, 55131, Mainz, Germany. .,Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, 29425, USA.
| |
Collapse
|