1
|
Ljungberg E, Padormo F, Poorman M, Clemensson P, Bourke N, Evans JC, Gholam J, Vavasour I, Kollind SH, Lafayette SL, Bennallick C, Donald KA, Bradford LE, Lena B, Vokhiwa M, Shama T, Siew J, Sekoli L, van Rensburg J, Pepper MS, Khan A, Madhwani A, Banda FA, Mwila ML, Cassidy AR, Moabi K, Sephi D, Boakye RA, Ae‐Ngibise KA, Asante KP, Hollander WJ, Karaulanov T, Williams SCR, Deoni S. Characterization of Portable Ultra-Low Field MRI Scanners for Multi-Center Structural Neuroimaging. Hum Brain Mapp 2025; 46:e70217. [PMID: 40405769 PMCID: PMC12099222 DOI: 10.1002/hbm.70217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/17/2025] [Accepted: 04/08/2025] [Indexed: 05/24/2025] Open
Abstract
The lower infrastructure requirements of portable ultra-low field MRI (ULF-MRI) systems have enabled their use in diverse settings such as intensive care units and remote medical facilities. The UNITY Project is an international neuroimaging network harnessing this technology, deploying portable ULF-MRI systems globally to expand access to MRI for studies into brain development. Given the wide range of environments where ULF-MRI systems may operate, there are external factors that might influence image quality. This work aims to introduce the quality control (QC) framework used by the UNITY Project to investigate how robust the systems are and how QC metrics compare between sites and over time. We present a QC framework using a commercially available phantom, scanned with 64 mT portable MRI systems at 17 sites across 12 countries on four continents. Using automated, open-source analysis tools, we quantify signal-to-noise, image contrast, and geometric distortions. Our results demonstrated that the image quality is robust to the varying operational environment, for example, electromagnetic noise interference and temperature. The Larmor frequency was significantly correlated to room temperature, as was image noise and contrast. Image distortions were less than 2.5 mm, with high robustness over time. Similar to studies at higher field, we found that changes in pulse sequence parameters from software updates had an impact on QC metrics. This study demonstrates that portable ULF-MRI systems can be deployed in a variety of environments for multi-center neuroimaging studies and produce robust results.
Collapse
Affiliation(s)
- Emil Ljungberg
- Department of Medical Radiation PhysicsLund UniversityLundSweden
- Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | | | | | - Petter Clemensson
- Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Niall Bourke
- Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - John C. Evans
- CUBRIC, Cardiff School of PsychologyCardiff UniversityCardiffUK
| | - James Gholam
- CUBRIC, Cardiff School of PsychologyCardiff UniversityCardiffUK
| | - Irene Vavasour
- Department of RadiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Shannon H. Kollind
- Department of Medicine (Neurology)University of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Carly Bennallick
- Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Kirsten A. Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child HealthRed Cross War Memorial Children's HospitalCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Layla E. Bradford
- Division of Developmental Paediatrics, Department of Paediatrics and Child HealthRed Cross War Memorial Children's HospitalCape TownSouth Africa
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Beatrice Lena
- C.J. Gorter MRI Center, Radiology DepartmentLeids Universitair Medisch CentrumLeidenthe Netherlands
| | | | - Talat Shama
- Infectious Diseases DivisionInternational Centre for Diarrheal Disease ResearchDhakaBangladesh
| | - Jasmine Siew
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of MedicineBoston Children's HospitalBostonMassachusettsUSA
| | - Lydia Sekoli
- Institute for Cellular and Molecular Medicine, Department of Medical Immunology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Jeanne van Rensburg
- Institute for Cellular and Molecular Medicine, Department of Medical Immunology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Medical Immunology, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Amna Khan
- Department of Paediatrics & Child HealthThe Aga Khan UniversityKarachiPakistan
| | - Akber Madhwani
- Department of Paediatrics & Child HealthThe Aga Khan UniversityKarachiPakistan
| | - Frank A. Banda
- University of North Carolina Global ProjectsLusakaZambia
| | - Mwila L. Mwila
- University of North Carolina Global ProjectsLusakaZambia
| | - Adam R. Cassidy
- Botswana Harvard Health PartnershipGaboroneBotswana
- Department of Psychiatry & PsychologyMayo ClinicRochesterMinnesotaUSA
- Department of Pediatric & Adolescent MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - Dolly Sephi
- Botswana Harvard Health PartnershipGaboroneBotswana
| | | | | | | | | | | | - Steven C. R. Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Sean Deoni
- MNCH D&T, Bill & Melinda Gates FoundationSeattleWAUSA
| |
Collapse
|
2
|
Li L, He Q, Wei S, Wang H, Wang Z, Yang W. Exploring the potential performance of 0.2 T low-field unshielded MRI scanner using deep learning techniques. MAGMA (NEW YORK, N.Y.) 2025; 38:253-269. [PMID: 39964601 DOI: 10.1007/s10334-025-01234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/16/2025] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVE Using deep learning-based techniques to overcome physical limitations and explore the potential performance of 0.2 T low-field unshielded MRI in terms of imaging quality and speed. METHODS First, fast and high-quality unshielded imaging is achieved using active electromagnetic shielding and basic super-resolution. Then, the speed of basic super-resolution imaging is further improved by reducing the number of excitations. Next, the feasibility of using cross-field super-resolution to map low-field low-resolution images to high-field ultra-high-resolution images is analyzed. Finally, by cascading basic and cross-field super-resolution, the quality of the low-field low-resolution image is improved to the level of the high-field ultra-high-resolution image. RESULTS Under unshielded conditions, our 0.2 T scanner can achieve image quality comparable to that of a 1.5 T scanner (acquisition resolution of 512 × 512, spatial resolution of 0.45 mm2), and a single-orientation imaging time of less than 3.3 min. DISCUSSION The proposed strategy overcomes the physical limitations of the hardware and rapidly acquires images close to the high-field level on a low-field unshielded MRI scanner. These findings have significant practical implications for the advances in MRI technology, supporting the shift from conventional scanners to point-of-care imaging systems.
Collapse
Affiliation(s)
- Lei Li
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingyuan He
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Shufeng Wei
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Huixian Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zheng Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wenhui Yang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Parsa J, Webb A. Signal-to-noise trade-offs between magnet diameter and shield-to-coil distance for cylindrical Halbach-based portable MRI systems for neuroimaging. MAGMA (NEW YORK, N.Y.) 2025; 38:97-105. [PMID: 39417921 PMCID: PMC11790726 DOI: 10.1007/s10334-024-01210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE To investigate the trade-off between magnet bore diameter and the distance between the conductive Faraday shield and RF head coil for low-field point-of-care neuroimaging systems. METHODS Electromagnetic simulations were performed for three different Faraday shield geometries and two commonly used RF coil designs (spiral and solenoid) to assess the effects of a close-fitting shield on the RF coil's transmit and receive efficiencies. Experimental measurements were performed to confirm the accuracy of the simulations. Parallel simulations were performed to assess the static magnet ( B 0 ) field as a function of the magnet bore diameter. The obtainable SNR was then calculated as a function of these two related variables. RESULTS Simulations of the RF coil characteristics and B 1 + transmit efficiencies agreed well with corresponding experimentally determined parameters. Overall, the RF coil transmit efficiency was, as expected, higher when the gap between the shield and coil increased. The calculated intrinsic SNR showed that maximum SNR would be obtained for a cylindrical shield of diameter 310 mm with an inner diameter of the magnet of 320 mm (assuming 10 mm for the gradient coils). CONCLUSION This work presents an overview of the trade-offs in transmit efficiencies for RF coils used for POC MRI neuroimaging as a function of coil-to-shield distance and inner diameter of the Halbach magnet. Results show that there is a relatively shallow optimum between a magnet diameter of 290 and 330 mm, with values falling more than 10% if either smaller or larger magnets are used.
Collapse
Affiliation(s)
- Javad Parsa
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Andrew Webb
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Li L, He Q, Wei S, Wang H, Wang Z, Wei Z, He H, Xiang C, Yang W. Fast, high-quality, and unshielded 0.2 T low-field mobile MRI using minimal hardware resources. MAGMA (NEW YORK, N.Y.) 2024; 37:1091-1104. [PMID: 38967865 DOI: 10.1007/s10334-024-01184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE To propose a deep learning-based low-field mobile MRI strategy for fast, high-quality, unshielded imaging using minimal hardware resources. METHODS Firstly, we analyze the correlation of EMI signals between the sensing coil and the MRI coil to preliminarily verify the feasibility of active EMI shielding using a single sensing coil. Then, a powerful deep learning EMI elimination model is proposed, which can accurately predict the EMI components in the MRI coil signals using EMI signals from at least one sensing coil. Further, deep learning models with different task objectives (super-resolution and denoising) are strategically stacked for multi-level post-processing to enable fast and high-quality low-field MRI. Finally, extensive phantom and brain experiments were conducted on a home-built 0.2 T mobile brain scanner for the evaluation of the proposed strategy. RESULTS 20 healthy volunteers were recruited to participate in the experiment. The results show that the proposed strategy enables the 0.2 T scanner to generate images with sufficient anatomical information and diagnostic value under unshielded conditions using a single sensing coil. In particular, the EMI elimination outperforms the state-of-the-art deep learning methods and numerical computation methods. In addition, 2 × super-resolution (DDSRNet) and denoising (SwinIR) techniques enable further improvements in imaging speed and quality. DISCUSSION The proposed strategy enables low-field mobile MRI scanners to achieve fast, high-quality imaging under unshielded conditions using minimal hardware resources, which has great significance for the widespread deployment of low-field mobile MRI scanners.
Collapse
Affiliation(s)
- Lei Li
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingyuan He
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Shufeng Wei
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, China
| | - Huixian Wang
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, China
| | - Zheng Wang
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, China
| | - Zhao Wei
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, China
| | - Hongyan He
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, China
| | - Ce Xiang
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Yang
- Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Zhao Y, Bhosale AA, Zhang X. Coupled stack-up volume RF coils for low-field open MR imaging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.30.24312851. [PMID: 39252906 PMCID: PMC11383509 DOI: 10.1101/2024.08.30.24312851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background Low-field open magnetic resonance imaging (MRI) systems, typically operating at magnetic field strengths below 1 Tesla, has greatly expanded the accessibility of MRI technology to meet a wide range of patient needs. However, the inherent challenges of low-field MRI, such as limited signal-to-noise ratios and limited availability of dedicated radiofrequency (RF) coils, have prompted the need for innovative coil designs that can improve imaging quality and diagnostic capabilities. Purpose In response to these challenges, we introduce the coupled stack-up volume coil, a novel RF coil design that addresses the shortcomings of conventional birdcage in the context of low-field open MRI. Methods The proposed coupled stack-up volume coil design utilizes a unique architecture that optimizes both transmit/receive efficiency and RF field homogeneity and offers the advantage of a simple design and construction, making it a practical and feasible solution for low-field MRI applications. This paper presents a comprehensive exploration of the theoretical framework, design considerations, and experimental validation of this innovative coil design. Results We demonstrate the superior performance of the coupled stack-up volume coil in achieving 47.7% higher transmit/receive efficiency and 68% more uniform magnetic field distribution compared to traditional birdcage coils in electromagnetic simulations. Bench tests results show that the B1 field efficiency of coupled stack-up volume coil is 57.3% higher compared with that of conventional birdcage coil. Conclusions The proposed coupled stack-up volume coil outperforms the conventional birdcage coil in terms of B1 efficiency, imaging coverage, and low-frequency operation capability. This design provides a robust and simple solution to low-field MR RF coil design.
Collapse
Affiliation(s)
- Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Aditya A Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
- Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
6
|
Altaf A, Shakir M, Irshad HA, Atif S, Kumari U, Islam O, Kimberly WT, Knopp E, Truwit C, Siddiqui K, Enam SA. Applications, limitations and advancements of ultra-low-field magnetic resonance imaging: A scoping review. Surg Neurol Int 2024; 15:218. [PMID: 38974534 PMCID: PMC11225429 DOI: 10.25259/sni_162_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/17/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Ultra-low-field magnetic resonance imaging (ULF-MRI) has emerged as an alternative with several portable clinical applications. This review aims to comprehensively explore its applications, potential limitations, technological advancements, and expert recommendations. METHODS A review of the literature was conducted across medical databases to identify relevant studies. Articles on clinical usage of ULF-MRI were included, and data regarding applications, limitations, and advancements were extracted. A total of 25 articles were included for qualitative analysis. RESULTS The review reveals ULF-MRI efficacy in intensive care settings and intraoperatively. Technological strides are evident through innovative reconstruction techniques and integration with machine learning approaches. Additional advantages include features such as portability, cost-effectiveness, reduced power requirements, and improved patient comfort. However, alongside these strengths, certain limitations of ULF-MRI were identified, including low signal-to-noise ratio, limited resolution and length of scanning sequences, as well as variety and absence of regulatory-approved contrast-enhanced imaging. Recommendations from experts emphasize optimizing imaging quality, including addressing signal-to-noise ratio (SNR) and resolution, decreasing the length of scan time, and expanding point-of-care magnetic resonance imaging availability. CONCLUSION This review summarizes the potential of ULF-MRI. The technology's adaptability in intensive care unit settings and its diverse clinical and surgical applications, while accounting for SNR and resolution limitations, highlight its significance, especially in resource-limited settings. Technological advancements, alongside expert recommendations, pave the way for refining and expanding ULF-MRI's utility. However, adequate training is crucial for widespread utilization.
Collapse
Affiliation(s)
- Ahmed Altaf
- Department of Surgery, Section of Neurosurgery, Aga Khan University Hospital, Karachi, Sindh, Pakistan
| | - Muhammad Shakir
- Department of Surgery, Section of Neurosurgery, Aga Khan University Hospital, Karachi, Sindh, Pakistan
| | | | - Shiza Atif
- Medical College, Aga Khan University Hospital, Karachi, Sindh, Pakistan
| | - Usha Kumari
- Medical College, Peoples University of Medical and Health Sciences for Women, Karachi, Sindh, Pakistan
| | - Omar Islam
- Department of Diagnostic Radiology, Queen’s University, Kingston General Hospital, Kingston, Canada
| | - W. Taylor Kimberly
- Department of Neurology, Massachusetts General Hospital, Boston, United States
| | | | | | | | - S. Ather Enam
- Department of Surgery, Section of Neurosurgery, Aga Khan University Hospital, Karachi, Sindh, Pakistan
| |
Collapse
|
7
|
de Vos B, Remis R, Webb A. Segmented RF shield design to minimize eddy currents for low-field Halbach MRI systems. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107669. [PMID: 38598991 DOI: 10.1016/j.jmr.2024.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
MRI systems have a thin conducting layer placed between the gradient and RF coils, this acts as a shield at the RF-frequency, minimizing noise coupled into the experiment, and decreasing the coupling between the RF and gradient coils. Ideally, this layer should be transparent to the gradient fields to reduce eddy currents. In this work the design of such a shield, specifically for low-field point-of-care Halbach based MRI devices, is discussed. A segmented double layer shield is designed and constructed based on eddy current simulations. Subsequently, the performance of the improved shield is compared to a reference shield by measuring the eddy current decay times as well as using noise measurements. A maximum reduction factor of 2.9 in the eddy current decay time is observed. The segmented shield couples in an equivalent amount of noise when compared to the unsegmented reference shield. Turbo spin echo images of a phantom and the brain of a healthy volunteer show improvements in terms of blurring using the segmented shield.
Collapse
Affiliation(s)
- Bart de Vos
- C.J. Gorter MRI center, Radiology, Leiden University Center, Leiden, The Netherlands; Terahertz Sensing, Microelectronics, Delft University of Technology, Delft, The Netherlands.
| | - Rob Remis
- Terahertz Sensing, Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Andrew Webb
- C.J. Gorter MRI center, Radiology, Leiden University Center, Leiden, The Netherlands; Terahertz Sensing, Microelectronics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
8
|
Tian Y, Nayak KS. New clinical opportunities of low-field MRI: heart, lung, body, and musculoskeletal. MAGMA (NEW YORK, N.Y.) 2024; 37:1-14. [PMID: 37902898 PMCID: PMC10876830 DOI: 10.1007/s10334-023-01123-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Contemporary whole-body low-field MRI scanners (< 1 T) present new and exciting opportunities for improved body imaging. The fundamental reason is that the reduced off-resonance and reduced SAR provide substantially increased flexibility in the design of MRI pulse sequences. Promising body applications include lung parenchyma imaging, imaging adjacent to metallic implants, cardiac imaging, and dynamic imaging in general. The lower cost of such systems may make MRI favorable for screening high-risk populations and population health research, and the more open configurations allowed may prove favorable for obese subjects and for pregnant women. This article summarizes promising body applications for contemporary whole-body low-field MRI systems, with a focus on new platforms developed within the past 5 years. This is an active area of research, and one can expect many improvements as MRI physicists fully explore the landscape of pulse sequences that are feasible, and as clinicians apply these to patient populations.
Collapse
Affiliation(s)
- Ye Tian
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, 3740 McClintock Ave, EEB 406, Los Angeles, CA, 90089-2564, USA.
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, 3740 McClintock Ave, EEB 406, Los Angeles, CA, 90089-2564, USA
| |
Collapse
|
9
|
Torres E, Wang P, Kantesaria S, Jenkins P, DelaBarre L, Cosmo Pizetta D, Froelich T, Steyn L, Tannús A, Papas KK, Sakellariou D, Garwood M. Development of a compact NMR system to measure pO 2 in a tissue-engineered graft. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 357:107578. [PMID: 37952431 PMCID: PMC10787953 DOI: 10.1016/j.jmr.2023.107578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
Cellular macroencapsulation devices, known as tissue engineered grafts (TEGs), enable the transplantation of allogeneic cells without the need for life-long systemic immunosuppression. Islet containing TEGs offer promise as a potential functional cure for type 1 diabetes. Previous research has indicated sustained functionality of implanted islets at high density in a TEG requires external supplementary oxygen delivery and an effective tool to monitor TEG oxygen levels. A proven oxygen-measurement approach employs a 19F oxygen probe molecule (a perfluorocarbon) implanted alongside therapeutic cells to enable oxygen- and temperature- dependent NMR relaxometry. Although the approach has proved effective, the clinical translation of 19F oxygen relaxometry for TEG monitoring will be limited by the current inaccessibility and high cost of MRI. Here, we report the development of an affordable, compact, and tabletop 19F NMR relaxometry system for monitoring TEG oxygenation. The system uses a 0.5 T Halbach magnet with a bore diameter (19 cm) capable of accommodating the human arm, a potential site of future TEG implantation. 19F NMR relaxometry was performed while controlling the temperature and oxygenation levels of a TEG using a custom-built perfusion setup. Despite the magnet's nonuniform field, a pulse sequence of broadband adiabatic full-passage pulses enabled accurate 19F longitudinal relaxation rate (R1) measurements in times as short as ∼2 min (R1 vs oxygen partial pressure and temperature (R2 > 0.98)). The estimated sensitivity of R1 to oxygen changes at 0.5 T was 1.62-fold larger than the sensitivity previously reported for 16.4 T. We conclude that TEG oxygenation monitoring with a compact, tabletop 19F NMR relaxometry system appears feasible.
Collapse
Affiliation(s)
- Efraín Torres
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Paul Wang
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Saurin Kantesaria
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Parker Jenkins
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Lance DelaBarre
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| | - Daniel Cosmo Pizetta
- Centro de Imagens e Espectroscopia por Ressonância Magnética - CIERMag - São Carlos Physics Institute, University of São Paulo - IFSC-USP, São Carlos, Brazil.
| | - Taylor Froelich
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| | - Leah Steyn
- Department of Surgery, The University of Arizona, Tucson, AZ, USA.
| | - Alberto Tannús
- Centro de Imagens e Espectroscopia por Ressonância Magnética - CIERMag - São Carlos Physics Institute, University of São Paulo - IFSC-USP, São Carlos, Brazil.
| | | | | | - Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
10
|
Salameh N, Lurie DJ, Ipek Ö, Cooley CZ, Campbell-Washburn AE. Exploring the foothills: benefits below 1 Tesla? MAGMA (NEW YORK, N.Y.) 2023; 36:329-333. [PMID: 37482583 DOI: 10.1007/s10334-023-01106-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 07/25/2023]
Affiliation(s)
- Najat Salameh
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - David J Lurie
- Biomedical Physics, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Özlem Ipek
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Clarissa Zimmerman Cooley
- Department of Radiology, Massachusetts General Hospital, Athinoula A Martinos Center for Biomedical Imaging, Boston, MA, USA
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|