1
|
Vidal DF, Pires BC, Borges MMC, de Oliveira HL, Silva CF, Borges KB. Magnetic solid-phase extraction based on restricted-access molecularly imprinted polymers for ultrarapid determination of ractopamine residues from food samples by capillary electrophoresis. J Chromatogr A 2024; 1720:464809. [PMID: 38490141 DOI: 10.1016/j.chroma.2024.464809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
An ultrafast, efficient, and eco-friendly method combining magnetic solid phase extraction and capillary electrophoresis with diode array detection have been developed to determine ractopamine residues in food samples. A restricted access material based on magnetic and mesoporous molecularly imprinted polymer has been properly synthesized and characterized, demonstrating excellent selectivity and high adsorbent capacity. Short-end injection capillary electrophoresis method was optimized: 75 mM triethylamine pH 7 as BGE, -20 kV, 50 mbar by hydrodynamic injection during 8 s, and capillary temperature at 25 °C; reaching ultrafast ractopamine analysis (∼0.6 min) with good peak asymmetry, and free from interfering and/or baseline noise. After sample preparation optimization, the conditions were: 1000 µL of sample at pH 6, 20 mg of adsorbent, stirring time of 120 s, 250 µL of ultrapure water as washing solvent, 1000 µL of methanol: acetic acid (7: 3, v/v) as eluent, and the adsorbent can be reused four times. In these conditions, the analytical method showed recoveries around to 100 %, linearity ranged from 9.74 to 974.0 µg kg-1, correlation coefficient (r) ≥ 0,99 in addition to adequate precision, accuracy, and robustness. After proper validation, the method was successfully applied in the analysis ractopamine residues in bovine milk and bovine and porcine muscle.
Collapse
Affiliation(s)
- Daniel Ferreira Vidal
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, São João del-Rei, Minas Gerais 36301-160, Brazil
| | - Bruna Carneiro Pires
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, São João del-Rei, Minas Gerais 36301-160, Brazil
| | - Marcella Matos Cordeiro Borges
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, São João del-Rei, Minas Gerais 36301-160, Brazil
| | - Hanna Leijoto de Oliveira
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, São João del-Rei, Minas Gerais 36301-160, Brazil
| | - Camilla Fonseca Silva
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, São João del-Rei, Minas Gerais 36301-160, Brazil
| | - Keyller Bastos Borges
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio 74, Fábricas, São João del-Rei, Minas Gerais 36301-160, Brazil.
| |
Collapse
|
2
|
Zheng L, Hu F, Zhao Y, Zhu J, Wang X, Su M, Liu H. Core-Satellite Nanoassemblies as SPR/SERS Dual-Mode Plasmonic Sensors for Sensitively Detecting Ractopamine in Complex Media. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20793-20800. [PMID: 38095450 DOI: 10.1021/acs.jafc.3c06475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Highly sensitive and reliable detection of β-adrenergic agonists is especially necessary due to the illegal abuse of growth-promoting feed additives. Here, we develop a novel surface plasmon resonance/surface-enhanced Raman scattering (SPR/SERS) dual-mode plasmonic sensor based on core-satellite nanoassemblies for the highly sensitive and reliable detection of ractopamine (RAC). The addition of RAC results in the decomposition of core-satellite nanoassemblies and consequently changes the Rayleigh scattering color of dark-field microscopy (DFM) images and the Raman scattering intensity of SERS spectra. The excellent sensitivity, specificity, and uniformity of this strategy were confirmed by detecting RAC in various complex media in the farm-to-table chain, and the limit of detection (LOD) was 0.03 ng/mL in an aqueous solution. In particular, the convenient access to livestock sewage not only ensures animal welfare but also provides great convenience for the market regulation of β-agonists. The success of our on-site strategy only with a portable Raman device promises great application prospects for β-agonist detection.
Collapse
Affiliation(s)
- Liqin Zheng
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Fan Hu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yueyue Zhao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Juanjuan Zhu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xian Wang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Mengke Su
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
3
|
Gu X, Wang K, Tian S, Shao X, Li J, Deng A. A SERS/electrochemical dual-signal readout immunosensor using highly-ordered Au/Ag bimetallic cavity array as the substrate for simultaneous detection of three β-adrenergic agonists. Talanta 2023; 254:124159. [PMID: 36470022 DOI: 10.1016/j.talanta.2022.124159] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
A surface-enhanced Raman scattering (SERS)/electrochemical dual-signal readout immunosensor was developed for simultaneous detection of β-adrenergic agonists salbutamol (SAL), ractopamine (RAC) and phenylethanolamine A (PA). The highly-ordered gold/silver bimetallic cavity array (BMCA) was prepared by electrodepositing Au/Ag nanoparticles to the interstice of highly ordered close-packed polystyrene templates. After electrochemical and SERS characterization, the BMCA was used as the substrate for constructing SERS/electrochemical dual-signal readout immunosensor. 3,3',5,5'-tetramethylbenzidine (TMB), methylene blue (MB) and Nile blue (NB) were selected as the dual-signal reporters, and hybridization chain reaction (HCR) was used as the signal amplifier. The immunoprobe was prepared by absorption of the antibody (Ab) and constructing HCR system embedded with electro/SERS reporter on Au nanoparticles (NPs). After competitive immuno-reaction between coating antigen and analyte for limited Ab on immunoprobe, the SERS/electrochemical dual-signals on BMCA were measured for quantitatively detecting SAL, RAC and PA simultaneously. SAL, RAC and PA were detected in concentration range of 1 pg mL-1 to 100 ng mL-1 with LOD of 0.8, 0.4, and 1.3 pg mL-1, respectively. The applicability of the proposed immunosensor in spiked pork liver samples was verified by the recovery of 95.0%-108.5% with RSD of 6.9%-10.7%. It was proven that the immunosensor was able to detect multiple β-adrenergic agonists with high sensitivity, specificity, accuracy and precision. The immunosensor can be used as a platform for the determination of other small molecular compounds in biological, food and environmental analytical fields.
Collapse
Affiliation(s)
- Xuefang Gu
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, China; School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226007, Jiangsu, PR China
| | - Kaiyue Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226007, Jiangsu, PR China
| | - Shu Tian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226007, Jiangsu, PR China.
| | - Xinyi Shao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226007, Jiangsu, PR China
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Wu T, Li J, Zheng S, Yu Q, Qi K, Shao Y, Wang C, Tu J, Xiao R. Magnetic Nanotag-Based Colorimetric/SERS Dual-Readout Immunochromatography for Ultrasensitive Detection of Clenbuterol Hydrochloride and Ractopamine in Food Samples. BIOSENSORS 2022; 12:bios12090709. [PMID: 36140094 PMCID: PMC9496078 DOI: 10.3390/bios12090709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 12/29/2022]
Abstract
Direct and sensitive detection of multiple illegal additives in complex food samples is still a challenge in on-site detection. In this study, an ultrasensitive immunochromatographic assay (ICA) using magnetic Fe3O4@Au nanotags as a capture/detection difunctional tool was developed for the direct detection of β2-adrenoceptor agonists in real samples. The Fe3O4@Au tag is composed of a large magnetic core (~160 nm), a rough Au nanoshell, dense surface-modified Raman molecules, and antibodies, which cannot only effectively enrich targets from complex solutions to reduce the matrix effects of food samples and improve detection sensitivity, but also provide strong colorimetric/surface-enhanced Raman scattering (SERS) dual signals for ICA testing. The dual readout signals of the proposed ICA can meet the detection requirements in different environments. Specifically, the colorimetric signal allows for rapid visual detection of the analyte, and the SERS signal is used for the sensitive and quantitative detection modes. The proposed dual-signal ICA can achieve the simultaneous determination of two illegal additives, namely, clenbuterol hydrochloride and ractopamine. The detection limits for the two targets via colorimetric and SERS signals were down to ng mL−1 and pg mL−1 levels, respectively. Moreover, the proposed assay has demonstrated high accuracy and stability in real food samples.
Collapse
Affiliation(s)
- Ting Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Jiaxuan Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Shuai Zheng
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Qing Yu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chongwen Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (C.W.); (J.T.); (R.X.)
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (C.W.); (J.T.); (R.X.)
| | - Rui Xiao
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
- Correspondence: (C.W.); (J.T.); (R.X.)
| |
Collapse
|
5
|
Xu X, Xu X, Sun L, Wu A, Song S, Kuang H, Xu C. An ultrasensitive colloidal gold immunosensor to simultaneously detect 12 beta (2)-adrenergic agonists. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1191:123119. [DOI: 10.1016/j.jchromb.2022.123119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 01/08/2022] [Indexed: 01/03/2023]
|
6
|
Kanu AB. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. J Chromatogr A 2021; 1654:462444. [PMID: 34380070 DOI: 10.1016/j.chroma.2021.462444] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022]
Abstract
This review article compares and contrasts sample preparation techniques coupled with high-performance liquid chromatography (HPLC) and describes applications developed in biomedical, forensics, and environmental/industrial hygiene in the last two decades. The proper sample preparation technique can offer valued data for a targeted application when coupled to HPLC and a suitable detector. Improvements in sample preparation techniques in the last two decades have resulted in efficient extraction, cleanup, and preconcentration in a single step, thus providing a pathway to tackle complex matrix applications. Applications such as biological therapeutics, proteomics, lipidomics, metabolomics, environmental/industrial hygiene, forensics, glycan cleanup, etc., have been significantly enhanced due to improved sample preparation techniques. This review looks at the early sample preparation techniques. Further, it describes eight sample preparation technique coupled to HPLC that has gained prominence in the last two decades. They are (1) solid-phase extraction (SPE), (2) liquid-liquid extraction (LLE), (3) gel permeation chromatography (GPC), (4) Quick Easy Cheap Effective Rugged, Safe (QuEChERS), (5) solid-phase microextraction (SPME), (6) ultrasonic-assisted solvent extraction (UASE), and (7) microwave-assisted solvent extraction (MWASE). SPE, LLE, GPC, QuEChERS, and SPME can be used offline and online with HPLC. UASE and MWASE can be used offline with HPLC but have also been combined with the online automated techniques of SPE, LLE, GPC, or QuEChERS for targeted analysis. Three application areas of biomedical, forensics, and environmental/industrial hygiene are reviewed for the eight sample preparation techniques. Three hundred and twenty references on the eight sample preparation techniques published over the last two decades (2001-2021) are provided. Other older references were included to illustrate the historical development of sample preparation techniques.
Collapse
Affiliation(s)
- A Bakarr Kanu
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, United States.
| |
Collapse
|
7
|
He M, Wang Y, Zhang Q, Zang L, Chen B, Hu B. Stir bar sorptive extraction and its application. J Chromatogr A 2020; 1637:461810. [PMID: 33360434 DOI: 10.1016/j.chroma.2020.461810] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022]
Abstract
Recent progress of stir bar sorptive extraction (SBSE) in the past six years is reviewed. The preparation methods including electrodeposition, self-assembly, solvent exchange, physical magnetic adsorption and electrostatic spinning, for the coated stir bar are summarized and compared, specifically for a specific material for coatings fabrication, e.g., carbon-based materials and metal organic frameworks. The emerging materials (e.g., graphene, graphene oxide, carbon nanotubes, monolith, metal-organic frameworks and porous organic polymers) applied for coated stir bar fabrication are one of the focus of this review, along with their respective advantages in extraction process and application in trace analysis. The development and application of extraction apparatus of SBSE are also involved. Based on these information, the development status and prospects of SBSE as an efficient sample pretreatment technique in real sample analysis are discussed.
Collapse
Affiliation(s)
- Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yuxin Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qiulin Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Lijuan Zang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Hasan CK, Ghiasvand A, Lewis TW, Nesterenko PN, Paull B. Recent advances in stir-bar sorptive extraction: Coatings, technical improvements, and applications. Anal Chim Acta 2020; 1139:222-240. [DOI: 10.1016/j.aca.2020.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
|
9
|
Wang Q, Deng J, Chen Y, Luo Y, Jiang X. An immunoassay based on lab-on-a-chip for simultaneous and sensitive detection of clenbuterol and ractopamine. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Hu X, Du J, Pan J, Wang F, Gong D, Zhang G. Colorimetric detection of the β-agonist ractopamine in animal feed, tissue and urine samples using gold-silver alloy nanoparticles modified with sulfanilic acid. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 36:35-45. [PMID: 30517825 DOI: 10.1080/19440049.2018.1552026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A highly sensitive, selective and simple method was proposed for colorimetric detection of ractopamine on the basis of the interaction between ractopamine and sulfanilic acid-modified gold-silver alloy nanoparticles (AuAgNPs). The AuAgNPs were prepared by the reduction of HAuCl4 and AgNO3 with sodium citrate in aqueous medium and further modified by sulfanilic acid. The interaction of ractopamine with sulfanilic acid induced rapid aggregation of sulfanilic acid-modified AuAgNPs along with an optical colour change, leading to precise quantification which could be detected by absorptiometry. Under the optimum conditions, the absorbance ratio (A600/A435) of sulfanilic acid-modified AuAgNPs exhibited a linear relationship with the concentration of ractopamine in the range of 4.5-31.6 ng/mL. The detection limit of ractopamine was 1.5 ng/mL. The established novel colorimetric detection method showed high selectivity towards ractopamine. The method was successfully applied to detect ractopamine in spiked pork, swine feed and swine urine samples with excellent recoveries from 94.4% to 112.5%. These results demonstrated that the proposed new method has a good potential for practical applications.
Collapse
Affiliation(s)
- Xing Hu
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
| | - Jiawei Du
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
| | - Junhui Pan
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
| | - Fengfeng Wang
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
| | - Deming Gong
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China.,b Department of Biomedicine , New Zealand Institute of Natural Medicine Research , Auckland , New Zealand
| | - Guowen Zhang
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
| |
Collapse
|
11
|
Asfaw AA, Aspromonte J, Wolfs K, Van Schepdael A, Adams E. Overview of sample introduction techniques prior to GC for the analysis of volatiles in solid materials. J Sep Sci 2018; 42:214-225. [DOI: 10.1002/jssc.201800711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Adissu Alemayehu Asfaw
- Department of Pharmaceutical and Pharmacological Sciences; Pharmaceutical Analysis; KU Leuven - University of Leuven; Leuven Belgium
- College of Health Sciences; Department of Pharmacy; Mekelle University; Mekelle Ethiopia
| | - Juan Aspromonte
- Department of Pharmaceutical and Pharmacological Sciences; Pharmaceutical Analysis; KU Leuven - University of Leuven; Leuven Belgium
| | - Kris Wolfs
- Department of Pharmaceutical and Pharmacological Sciences; Pharmaceutical Analysis; KU Leuven - University of Leuven; Leuven Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences; Pharmaceutical Analysis; KU Leuven - University of Leuven; Leuven Belgium
| | - Erwin Adams
- Department of Pharmaceutical and Pharmacological Sciences; Pharmaceutical Analysis; KU Leuven - University of Leuven; Leuven Belgium
| |
Collapse
|
12
|
Jiang W, Zeng L, Liu L, Song S, Kuang H. Development of an immunochromatographic assay for rapid detection of clorprenaline in pig urine. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1411469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Wei Jiang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Lu Zeng
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
13
|
de Toffoli AL, Maciel EVS, Fumes BH, Lanças FM. The role of graphene-based sorbents in modern sample preparation techniques. J Sep Sci 2017; 41:288-302. [DOI: 10.1002/jssc.201700870] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Ana Lúcia de Toffoli
- Institute of Chemistry of São Carlos; University of São Paulo,; São Carlos SP Brazil
| | | | - Bruno Henrique Fumes
- Institute of Chemistry of São Carlos; University of São Paulo,; São Carlos SP Brazil
| | - Fernando Mauro Lanças
- Institute of Chemistry of São Carlos; University of São Paulo,; São Carlos SP Brazil
| |
Collapse
|