1
|
Xin Y, Foster SW, Makey DM, Parker D, Bradow J, Wang X, Berritt S, Mongillo R, Grinias JP, Kennedy RT. High-Throughput Capillary Liquid Chromatography Using a Droplet Injection and Application to Reaction Screening. Anal Chem 2024; 96:4693-4701. [PMID: 38442211 PMCID: PMC11001260 DOI: 10.1021/acs.analchem.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The cycle time of a standard liquid chromatography (LC) system is the sum of the time for the chromatographic run and the autosampler injection sequence. Although LC separation times in the 1-10 s range have been demonstrated, injection sequences are commonly >15 s, limiting throughput possible with LC separations. Further, such separations are performed on relatively large bore columns requiring flow rates of ≥5 mL/min, thus generating large volumes of mobile phase waste when used for large scale screening and increasing the difficulty in interfacing to mass spectrometry. Here, a droplet injector system was established that replaces the autosampler with a four-port, two-position valve equipped with a 20 nL internal loop interfaced to a syringe pump and a three-axis positioner to withdraw sample droplets from a well plate. In the system, sample and immiscible fluid are pulled alternately from a well plate into a capillary and then through the injection valve. The valve is actuated when sample fills the loop to allow sequential injection of samples at high throughput. Capillary LC columns with 300 μm inner diameter were used to reduce the consumption of mobile phase and sample. The system achieved 96 separations of 20 nL droplet samples containing 3 components in as little as 8.1 min with 5-s cycle time. This system was coupled to a mass spectrometer through an electrospray ionization source for high-throughput chemical reaction screening.
Collapse
Affiliation(s)
- Yue Xin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Samuel W Foster
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Devin M Makey
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Deklin Parker
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - James Bradow
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06415, United States
| | - Xiaochun Wang
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06415, United States
| | - Simon Berritt
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06415, United States
| | - Robert Mongillo
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06415, United States
| | - James P Grinias
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Kurre S, Foster S, Morrow K, Zimmer A, Ray M, Notarfrancesco L, Patel K, Grinias JP. Exploring the Implementation of Compact Chromatographic Instrumentation in Common Analytical Workflows. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.bi9066i9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In many industries, the concepts of “smaller,” “faster,” “easier to use,” and “cheaper” are key drivers when developing new technologies. The world of chemical separations is no different. Today, compact chromatographic instrumentation is being implemented in many workflows, as illustrated here through various examples.
Collapse
|
3
|
Vervoort N, Goossens K, Baeten M, Chen Q. Recent advances in analytical techniques for high throughput experimentation. ANALYTICAL SCIENCE ADVANCES 2021; 2:109-127. [PMID: 38716456 PMCID: PMC10989611 DOI: 10.1002/ansa.202000155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2024]
Abstract
High throughput experimentation is a growing and evolving field that allows to execute dozens to several thousands of experiments per day with relatively limited resources. Through miniaturization, typically a high degree of automation and the use of digital data tools, many parallel reactions or experiments at a time can be run in such workflows. High throughput experimentation also requires fast analytical techniques capable of generating critically important analytical data in line with the increased rate of experimentation. As traditional techniques usually do not deliver the speed required, some unique approaches are required to enable workflows to function as designed. This review covers the recent developments (2019-2020) in this field and was intended to give a comprehensive overview of the current "state-of-the-art."
Collapse
Affiliation(s)
- Nico Vervoort
- Chemical Process R&DProcess Analytical ResearchJanssen R&DBeerseBelgium
| | - Karel Goossens
- Chemical Process R&DProcess Analytical ResearchJanssen R&DBeerseBelgium
| | - Mattijs Baeten
- Chemical Process R&DProcess Analytical ResearchJanssen R&DBeerseBelgium
| | - Qinghao Chen
- Chemical Process R&DHigh Throughput ExperimentationJanssen R&DBeerseBelgium
| |
Collapse
|
4
|
Kresge GA, Grosse S, Zimmer A, Grinias KM, De Pra M, Wong JMT, Steiner F, Grinias JP. Strategies in developing high-throughput liquid chromatography protocols for method qualification of pharmacopeial monographs. J Sep Sci 2020; 43:2964-2970. [PMID: 32388922 DOI: 10.1002/jssc.202000403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 11/11/2022]
Abstract
Method qualification is a key step in the development of routine analytical monitoring of pharmaceutical products. However, when relying on published monographs that describe longer method times based on older high-performance liquid chromatography column and instrument technology, this can delay the overall analysis process for generated drug products. In this study, high-throughput ultrahigh pressure liquid chromatography techniques were implemented to decrease the amount of time needed to complete a 24-run sequence to identify linearity, recovery, and repeatability for both drug assay and impurity analysis in 16 min. Multiple experimental parameters were tested to identify a range of experimental settings that could be used for the sequence while still maintaining this fast analysis time. The full sequence was replicated on a different system and with different columns, further demonstrating its robustness.
Collapse
Affiliation(s)
- Glenn A Kresge
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ, USA
| | | | - Alexis Zimmer
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ, USA
| | - Kaitlin M Grinias
- Analytical Platforms & Platform Modernization , GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | - James P Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ, USA
| |
Collapse
|
5
|
Kaplitz AS, Kresge GA, Selover B, Horvat L, Franklin EG, Godinho JM, Grinias KM, Foster SW, Davis JJ, Grinias JP. High-Throughput and Ultrafast Liquid Chromatography. Anal Chem 2019; 92:67-84. [DOI: 10.1021/acs.analchem.9b04713] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexander S. Kaplitz
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Glenn A. Kresge
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Benjamin Selover
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Leah Horvat
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | | | - Justin M. Godinho
- Advanced Materials Technology, Inc., Wilmington, Delaware 19810, United States
| | - Kaitlin M. Grinias
- Analytical Platforms & Platform Modernization, GlaxoSmithKline, Upper Providence, Collegeville, Pennsylvania 19426, United States
| | - Samuel W. Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Joshua J. Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - James P. Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
6
|
Recognising the Rising Stars of Separation Science. Chromatographia 2019. [DOI: 10.1007/s10337-018-3674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|