1
|
Pezhhanfar S, Farajzadeh MA, Hosseini-Yazdi SA, Afshar Mogaddam MR. NiGA MOF-based dispersive micro solid phase extraction coupled to temperature-assisted evaporation using low boiling point solvents for the extraction and preconcentration of butylated hydroxytoluene and some phthalate and adipate esters. RSC Adv 2023; 13:30378-30390. [PMID: 37854488 PMCID: PMC10580260 DOI: 10.1039/d3ra04612e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
The first-ever attempt to apply nickel gallic acid metal-organic framework (NiGA MOF) in analytical method development was done in this research by the extraction of some plasticizers from aqueous media. The greenness of the method is owing to the use of gallic acid and nickel as safe reagents and water as the safest solvent. Low boiling point solvents were applied as desorption solvents that underwent temperature-assisted evaporation in the preconcentration step. Performing the evaporation using a low-temperature water bath for a short period of time streamlines the preconcentration section. Into the solution of interest enriched with sodium sulfate, a mg amount of NiGA MOF was added alongside vortexing to extract the analytes. Following centrifugation and discarding the supernatant, a μL level of diethyl ether was added onto the analyte-loaded NiGA MOF particles and vortexed. The analyte-enriched diethyl ether phase was transferred into a conical bottom glass test tube and located in a water bath set at the temperature of 35 °C under a laboratory hood. After the evaporation, a μL level of 1,2-dibromoethane was added to the test tube and vortexed to dissolve the analytes from the inner perimeter of the tube. One microliter of the organic phase was injected into a gas chromatograph equipped with flame ionization detection. Appreciable extraction recoveries (61-98%), high enrichment factors (305-490), low limits of detection (0.80-1.74 μg L-1) and quantification (2.64-5.74 μg L-1), and wide linear ranges (5.74-1000 μg L-1) were obtained at the optimum conditions.
Collapse
Affiliation(s)
- Sakha Pezhhanfar
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz Tabriz Iran +98 41 33340191 +98 41 33393084
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz Tabriz Iran +98 41 33340191 +98 41 33393084
- Engineering Faculty, Near East University 99138 Nicosia, North Cyprus Mersin 10 Turkey
| | | | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
2
|
Zhinzhilo VA, Uflyand IE. Magnetic Nanocomposites Based on Metal-Organic Frameworks: Preparation, Classification, Structure, and Properties (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Taghavi R, Rostamnia S, Farajzadeh M, Karimi-Maleh H, Wang J, Kim D, Jang HW, Luque R, Varma RS, Shokouhimehr M. Magnetite Metal-Organic Frameworks: Applications in Environmental Remediation of Heavy Metals, Organic Contaminants, and Other Pollutants. Inorg Chem 2022; 61:15747-15783. [PMID: 36173289 DOI: 10.1021/acs.inorgchem.2c01939] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to the increasing environmental pollution caused by human activities, environmental remediation has become an important subject for humans and environmental safety. The quest for beneficial pathways to remove organic and inorganic contaminants has been the theme of considerable investigations in the past decade. The easy and quick separation made magnetic solid-phase extraction (MSPE) a popular method for the removal of different pollutants from the environment. Metal-organic frameworks (MOFs) are a class of porous materials best known for their ultrahigh porosity. Moreover, these materials can be easily modified with useful ligands and form various composites with varying characteristics, thus rendering them an ideal candidate as adsorbing agents for MSPE. Herein, research on MSPE, encompassing MOFs as sorbents and Fe3O4 as a magnetic component, is surveyed for environmental applications. Initially, assorted pollutants and their threats to human and environmental safety are introduced with a brief introduction to MOFs and MSPE. Subsequently, the deployment of magnetic MOFs (MMOFs) as sorbents for the removal of various organic and inorganic pollutants from the environment is deliberated, encompassing the outlooks and perspectives of this field.
Collapse
Affiliation(s)
- Reza Taghavi
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Mustafa Farajzadeh
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), 16846-13114 Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, 611731 Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, 9477177870 Quchan, Iran
| | - Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 08826 Seoul, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering, Hanyang University, 15588 Ansan, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 08826 Seoul, Republic of Korea
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014 Cordoba, Spain.,Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya St., 117198 Moscow, Russia
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 08826 Seoul, Republic of Korea
| |
Collapse
|
4
|
Fabrication of a novel surface molecularly imprinted polymer based on zeolitic imidazolate framework-7 for selective extraction of phthalates. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Yu Y, Yuan B, Hu C, Fu N, Xu N, Zhang J, Wang B, Xie S, Yuan L. Homochiral Metal-Organic Framework [Co(L)(bpe)2(H2O)2]·H2O Used for Separation of Racemates in High-Performance Liquid Chromatography. J Chromatogr Sci 2021; 59:355-360. [PMID: 33395701 DOI: 10.1093/chromsci/bmaa117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/24/2020] [Accepted: 11/14/2020] [Indexed: 11/14/2022]
Abstract
A homochiral metal-organic framework (MOF) comprising [Co(L)(bpe)2(H2O)2]·H2O was prepared using (1R,2R)-(-)-1,2-cyclohexanedicarboxylic acid (H2L) and 1,2-bis(4-pyridyl)-ethylene as organic ligands. The homochiral MOF [Co(L)(bpe)2(H2O)2]·H2O was explored as chiral stationary phase (CSP) for high-performance liquid chromatography (HPLC) separation of racemates. Nine racemates including naphthol, alcohol, diol, amine, ketone, ether and organic acid were well separated on the homochiral MOF [Co(L)(bpe)2(H2O)2]·H2O column (250 mm long × 4.6 mm i.d.). The relative standard deviation for five replicate separations of 1,1'-bi-2-naphthol is 0.69% for the retention time, indicating that the good reproducibility and stability of the homochiral MOF column for HPLC enantioseparation. The results indicated that the homochiral MOF as CSP is practical, which promotes the application of homochiral MOFs in HPLC.
Collapse
Affiliation(s)
- Yunyan Yu
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Baoyan Yuan
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Cong Hu
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Nan Fu
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Nayan Xu
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Junhui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Bangjin Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Shengming Xie
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Liming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
6
|
Yilmaz E, Sarp G, Uzcan F, Ozalp O, Soylak M. Application of magnetic nanomaterials in bioanalysis. Talanta 2021; 229:122285. [PMID: 33838779 DOI: 10.1016/j.talanta.2021.122285] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
The importance of magnetic nanomaterials and magnetic hybrid materials, which are classified as new generation materials, in analytical applications is increasingly understood, and research on the adaptation of these materials to analytical methods has gained momentum. Development of sample preparation techniques and sensor systems using magnetic nanomaterials for the analysis of inorganic, organic and biomolecules in biological samples, which are among the samples that analytical chemists work on most, are among the priority issues. Therefore in this review, we focused on the use of magnetic nanomaterials for the bioanalytical applications including inorganic and organic species and biomolecules in different biological samples such as primarily blood, serum, plasma, tissue extracts, urine and milk. We summarized recent progresses, prevailing techniques, applied formats, and future trends in sample preparation-analysis methods and sensors based on magnetic nanomaterials (Mag-NMs). First, we provided a brief introduction of magnetic nanomaterials, especially their magnetic properties that can be utilized for bioanalytical applications. Second, we discussed the synthesis of these Mag-NMs. Third, we reviewed recent advances in bioanalytical applications of the Mag-NMs in different formats. Finally, recently literature studies on the relevance of Mag-NMs for bioanalysis applications were presented.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Gokhan Sarp
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Furkan Uzcan
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Ozgur Ozalp
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
7
|
Maciel EVS, Mejía-Carmona K, Jordan-Sinisterra M, da Silva LF, Vargas Medina DA, Lanças FM. The Current Role of Graphene-Based Nanomaterials in the Sample Preparation Arena. Front Chem 2020; 8:664. [PMID: 32850673 PMCID: PMC7431689 DOI: 10.3389/fchem.2020.00664] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Since its discovery in 2004 by Novoselov et al., graphene has attracted increasing attention in the scientific community due to its excellent physical and chemical properties, such as thermal/mechanical resistance, electronic stability, high Young's modulus, and fast mobility of charged atoms. In addition, other remarkable characteristics support its use in analytical chemistry, especially as sorbent. For these reasons, graphene-based materials (GBMs) have been used as a promising material in sample preparation. Graphene and graphene oxide, owing to their excellent physical and chemical properties as a large surface area, good mechanical strength, thermal stability, and delocalized π-electrons, are ideal sorbents, especially for molecules containing aromatic rings. They have been used in several sample preparation techniques such as solid-phase extraction (SPE), stir bar sorptive extraction (SBSE), magnetic solid-phase extraction (MSPE), as well as in miniaturized modes as solid-phase microextraction (SPME) in their different configurations. However, the reduced size and weight of graphene sheets can limit their use since they commonly aggregate to each other, causing clogging in high-pressure extractive devices. One way to overcome it and other drawbacks consists of covalently attaching the graphene sheets to support materials (e.g., silica, polymers, and magnetically modified supports). Also, graphene-based materials can be further chemically modified to favor some interactions with specific analytes, resulting in more efficient hybrid sorbents with higher selectivity for specific chemical classes. As a result of this wide variety of graphene-based sorbents, several studies have shown the current potential of applying GBMs in different fields such as food, biological, pharmaceutical, and environmental applications. Within such a context, this review will focus on the last five years of achievements in graphene-based materials for sample preparation techniques highlighting their synthesis, chemical structure, and potential application for the extraction of target analytes in different complex matrices.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernando Mauro Lanças
- Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry (IQSC), University of São Paulo, São Carlos, Brazil
| |
Collapse
|
8
|
Dong R, Chen D, Li N, Xu Q, Li H, He J, Lu J. Removal of phenol from aqueous solution using acid-modified Pseudomonas putida-sepiolite/ZIF-8 bio-nanocomposites. CHEMOSPHERE 2020; 239:124708. [PMID: 31505442 DOI: 10.1016/j.chemosphere.2019.124708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
The discharge of phenol, a harmful pollutant, in the environment poses a threat to human health. With the rapid urbanization and industrialization of the land, there is a pressing need to find new technologies and efficient adsorption materials to address phenol contamination. As a potential adsorbent candidate, sepiolite (SEP) has garnered much interest owing to its large specific surface area, and excellent adsorption performance and biocompatibility. Herein, nanocomposite CESEP/ZIF-8, consisting of zeolite imidazole framework (ZIF-8) and hydrochloric acid-modified SEP (CESEP), was prepared and examined toward the adsorption of phenol. Adsorption equilibrium was achieved within 150 min at initial phenol solution concentrations of 10 and 20 mg/L. However, complete removal was not achieved. Accordingly, biodegradation was introduced. Microorganism Pseudomonas putida was immobilized onto CESEP/ZIF-8, which afforded synergistic adsorption and biodegradation action. Phenol at solution concentrations of 10 and 20 mg/L was effectively removed within 13 and 24 h, respectively (as opposed to 21 and 36 h when phenol was removed in the presence of free Pseudomonas putida solely). The synergistic physical-biological treatment presented herein is expected to have great potential in the field of wastewater treatment.
Collapse
Affiliation(s)
- Ruifang Dong
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Dongyun Chen
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China.
| | - Najun Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Qingfeng Xu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Hua Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Jinghui He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Jianmei Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China.
| |
Collapse
|
9
|
Preparation of nickel-doped nanoporous carbon microspheres from metal-organic framework as a recyclable magnetic adsorbent for phthalate esters. J Chromatogr A 2019; 1605:460364. [DOI: 10.1016/j.chroma.2019.460364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 11/20/2022]
|
10
|
Abstract
Metal-organic frameworks (MOFs) are porous hybrid materials composed of metal ions and organic linkers, characterized by their crystallinity and by the highest known surface areas. MOFs structures present accessible cages, tunnels and modifiable pores, together with adequate mechanical and thermal stability. Their outstanding properties have led to their recognition as revolutionary materials in recent years. Analytical chemistry has also benefited from the potential of MOF applications. MOFs succeed as sorbent materials in extraction and microextraction procedures, as sensors, and as stationary or pseudo-stationary phases in chromatographic systems. To date, around 100 different MOFs form part of those analytical applications. This review intends to give an overview on the use of MOFs in analytical chemistry in recent years (2017–2019) within the framework of green analytical chemistry requirements, with a particular emphasis on possible toxicity issues of neat MOFs and trends to ensure green approaches in their preparation.
Collapse
|