1
|
Tayade P, Saini M, Saini G, Muthukrishnan SP, Kaur S, Sharma R, Sahoo A. Effect of short-term chanting on electroencephalographic microstates. Pan Afr Med J 2024; 49:76. [PMID: 39989938 PMCID: PMC11845998 DOI: 10.11604/pamj.2024.49.76.44648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/06/2024] [Indexed: 02/25/2025] Open
Abstract
Introduction chanting in meditation reduces stress and it is reported to have a relaxation effect during both verbal "OM" chanting (VOM) and listening to "OM" chanting (LOM). There is paucity of literature on EEG microstates information after VOM and LOM using qEEG compared to the resting condition. Methods therefore, to examine the effect of these actions on the brain using qEEG, it is required to compare the EEG microstates among the baseline, VOM, and LOM. In the present work, 23 adult male subjects were examined and given a paradigm designed using E-prime for both VOM and LOM chanting each of 5 min duration. A 128-channel geodesic sensor net was used to obtain the experimental data, which was later pre-processed, segmented, and analysed. Results the present work is the first to report the three scalp maps topographies, i.e. microstates obtained utilizing k-means cluster analysis for the response of the VOM and LOM. Also, the number of time frames, Global Explained Variance (GEV), time coverage, and mean duration parameters for the three maps were analysed statistically. Conclusion the study revealed three microstate topographies as markers and reported no significant effect/changes for the short-term chanting.
Collapse
Affiliation(s)
- Prashant Tayade
- Stress and Cognitive Electro-Imaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Manorma Saini
- Department of Physiology, All India Institute of Medical Sciences, Kalyani, West Bengal, India
| | - Gaurav Saini
- Stress and Cognitive Electro-Imaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Suriya Prakash Muthukrishnan
- Stress and Cognitive Electro-Imaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Simran Kaur
- Stress and Cognitive Electro-Imaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ratna Sharma
- Stress and Cognitive Electro-Imaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Abhisek Sahoo
- Stress and Cognitive Electro-Imaging Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Nazare K, Tomescu MI. Valence-specific EEG microstate modulations during self-generated affective states. Front Psychol 2024; 15:1300416. [PMID: 38855303 PMCID: PMC11160840 DOI: 10.3389/fpsyg.2024.1300416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction This study aims to explore the temporal dynamics of brain networks involved in self-generated affective states, specifically focusing on modulating these states in both positive and negative valences. The overarching goal is to contribute to a deeper understanding of the neurodynamic patterns associated with affective regulation, potentially informing the development of biomarkers for therapeutic interventions in mood and anxiety disorders. Methods Utilizing EEG microstate analysis during self-generated affective states, we investigated the temporal dynamics of five distinct microstates across different conditions, including baseline resting state and self-generated states of positive valence (e.g., awe, contentment) and negative valence (e.g., anger, fear). Results The study revealed noteworthy modulations in microstate dynamics during affective states. Additionally, valence-specific mechanisms of spontaneous affective regulation were identified. Negative valence affective states were characterized by the heightened presence of attention-associated microstates and reduced occurrence of salience-related microstates during negative valence states. In contrast, positive valence affective states manifested a prevalence of microstates related to visual/autobiographical memory and a reduced presence of auditory/language-associated microstates compared to both baseline and negative valence states. Discussion This study contributes to the field by employing EEG microstate analysis to discern the temporal dynamics of brain networks involved in self-generated affective states. Insights from this research carry significant implications for understanding neurodynamic patterns in affective regulation. The identification of valence-specific modulations and mechanisms has potential applications in developing biomarkers for mood and anxiety disorders, offering novel avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Karina Nazare
- CINETic Center, Department of Research and Development, National University of Theatre and Film “I.L. Caragiale”, Bucharest, Romania
- Faculty of Automatic Control and Computers, POLITEHNICA University of Bucharest, Bucharest, Romania
| | - Miralena I. Tomescu
- CINETic Center, Department of Research and Development, National University of Theatre and Film “I.L. Caragiale”, Bucharest, Romania
- Department of Psychology, Faculty of Educational Sciences, University “Stefan cel Mare” of Suceava, Suceava, Romania
| |
Collapse
|
3
|
Zarka D, Cevallos C, Ruiz P, Petieau M, Cebolla AM, Bengoetxea A, Cheron G. Electroencephalography microstates highlight specific mindfulness traits. Eur J Neurosci 2024; 59:1753-1769. [PMID: 38221503 DOI: 10.1111/ejn.16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
The present study aimed to investigate the spontaneous dynamics of large-scale brain networks underlying mindfulness as a dispositional trait, through resting-state electroencephalography (EEG) microstates analysis. Eighteen participants had attended a standardized mindfulness-based stress reduction training (MBSR), and 18 matched waitlist individuals (CTRL) were recorded at rest while they were passively exposed to auditory stimuli. Participants' mindfulness traits were assessed with the Five Facet Mindfulness Questionnaire (FFMQ). To further explore the relationship between microstate dynamics at rest and mindfulness traits, participants were also asked to rate their experience according to five phenomenal dimensions. After training, MBSR participants showed a highly significant increase in FFMQ score, as well as higher observing and non-reactivity FFMQ sub-scores than CTRL participants. Microstate analysis revealed four classes of microstates (A-D) in global clustering across all subjects. The MBSR group showed lower duration, occurrence and coverage of microstate C than the control group. Moreover, these microstate C parameters were negatively correlated to non-reactivity sub-scores of FFMQ across participants, whereas the microstate A occurrence was negatively correlated to FFMQ total score. Further analysis of participants' self-reports suggested that MBSR participants showed a better sensory-affective integration of auditory interferences. In line with previous studies, our results suggest that temporal dynamics of microstate C underlie specifically the non-reactivity trait of mindfulness. These findings encourage further research into microstates in the evaluation and monitoring of the impact of mindfulness-based interventions on the mental health and well-being of individuals.
Collapse
Affiliation(s)
- D Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - C Cevallos
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito, Ecuador
| | - P Ruiz
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito, Ecuador
| | - M Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - A M Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - A Bengoetxea
- Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Athenea Neuroclinics, San Sebastian, Spain
| | - G Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Research Unit in Sciences of Osteopathy, Faculty of Human Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Electrophysiology, Université de Mons, Mons, Belgium
| |
Collapse
|
4
|
Tarailis P, Koenig T, Michel CM, Griškova-Bulanova I. The Functional Aspects of Resting EEG Microstates: A Systematic Review. Brain Topogr 2024; 37:181-217. [PMID: 37162601 DOI: 10.1007/s10548-023-00958-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
A growing body of clinical and cognitive neuroscience studies have adapted a broadband EEG microstate approach to evaluate the electrical activity of large-scale cortical networks. However, the functional aspects of these microstates have not yet been systematically reviewed. Here, we present an overview of the existing literature and systematize the results to provide hints on the functional role of electrical brain microstates. Studies that evaluated and manipulated the temporal properties of resting-state microstates and utilized questionnaires, task-initiated thoughts, specific tasks before or between EEG session(s), pharmacological interventions, neuromodulation approaches, or localized sources of the extracted microstates were selected. Fifty studies that met the inclusion criteria were included. A new microstate labeling system has been proposed for a comprehensible comparison between the studies, where four classical microstates are referred to as A-D, and the others are labeled by the frequency of their appearance. Microstate A was associated with both auditory and visual processing and links to subjects' arousal/arousability. Microstate B showed associations with visual processing related to self, self-visualization, and autobiographical memory. Microstate C was related to processing personally significant information, self-reflection, and self-referential internal mentation rather than autonomic information processing. In contrast, microstate E was related to processing interoceptive and emotional information and to the salience network. Microstate D was associated with executive functioning. Microstate F is suggested to be a part of the Default Mode Network and plays a role in personally significant information processing, mental simulations, and theory of mind. Microstate G is potentially linked to the somatosensory network.
Collapse
Affiliation(s)
- Povilas Tarailis
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | | |
Collapse
|
5
|
Zanesco AP. Normative Temporal Dynamics of Resting EEG Microstates. Brain Topogr 2024; 37:243-264. [PMID: 37702825 DOI: 10.1007/s10548-023-01004-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
The large-scale electrophysiological events known as electroencephalographic microstates provide an important window into the intrinsic activity of whole-brain neuronal networks. The spontaneous activity of coordinated brain networks, including the ongoing temporal dynamics expressed by microstates, are thought to reflect individuals' neurocognitive functioning, and predict development, disease progression, and psychological differences among varied populations. A comprehensive understanding of human brain function therefore requires characterizing typical and atypical patterns in the temporal dynamics of microstates. But population-level estimates of normative microstate temporal dynamics are still unknown. To address this gap, I conducted a systematic search of the literature and accompanying meta-analysis of the average dynamics of microstates obtained from studies investigating spontaneous brain activity in individuals during periods of eyes-closed and eyes-open rest. Meta-analyses provided estimates of the average temporal dynamics of microstates across 93 studies totaling 6583 unique individual participants drawn from diverse populations. Results quantified the expected range of plausible estimates of average microstate dynamics across study samples, as well as characterized heterogeneity resulting from sampling variability and systematic differences in development, clinical diagnoses, or other study methodological factors. Specifically, microstate dynamics significantly differed for samples with specific developmental differences or clinical diagnoses, relative to healthy, typically developing samples. This research supports the notion that microstates and their dynamics reflect functionally relevant properties of large-scale brain networks, encoding typical and atypical neurocognitive functioning.
Collapse
Affiliation(s)
- Anthony P Zanesco
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
6
|
Chen J, Ke Y, Ni G, Liu S, Ming D. Evidence for modulation of EEG microstates by mental workload levels and task types. Hum Brain Mapp 2024; 45:e26552. [PMID: 38050776 PMCID: PMC10789204 DOI: 10.1002/hbm.26552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Electroencephalography (EEG) microstate analysis has become a popular tool for studying the spatial and temporal dynamics of large-scale electrophysiological activities in the brain in recent years. Four canonical topographies of the electric field (classes A, B, C, and D) have been widely identified, and changes in microstate parameters are associated with several psychiatric disorders and cognitive functions. Recent studies have reported the modulation of EEG microstate by mental workload (MWL). However, the common practice of evaluating MWL is in a specific task. Whether the modulation of microstate by MWL is consistent across different types of tasks is still not clear. Here, we studied the topographies and dynamics of microstate in two independent MWL tasks: NBack and the multi-attribute task battery (MATB) and showed that the modulation of MWL on microstate topographies and parameters depended on tasks. We found that the parameters of microstates A and C, and the topographies of microstates A, B, and D were significantly different between the two tasks. Meanwhile, all four microstate topographies and parameters of microstates A and C were different during the NBack task, but no significant difference was found during the MATB task. Furthermore, we employed a support vector machine recursive feature elimination procedure to investigate whether microstate parameters were suitable for MWL classification. An averaged classification accuracy of 87% for within-task and 78% for cross-task MWL discrimination was achieved with at least 10 features. Collectively, our findings suggest that topographies and parameters of microstates can provide valuable information about neural activity patterns with a dynamic temporal structure at different levels of MWL, but the modulation of MWL depends on tasks and their corresponding functional systems. Moreover, as a potential indicator, microstate parameters could be used to distinguish MWL.
Collapse
Affiliation(s)
- Jingxin Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural EngineeringTianjin UniversityTianjinPeople's Republic of China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjinPeople's Republic of China
| | - Yufeng Ke
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural EngineeringTianjin UniversityTianjinPeople's Republic of China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjinPeople's Republic of China
| | - Guangjian Ni
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural EngineeringTianjin UniversityTianjinPeople's Republic of China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjinPeople's Republic of China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural EngineeringTianjin UniversityTianjinPeople's Republic of China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjinPeople's Republic of China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural EngineeringTianjin UniversityTianjinPeople's Republic of China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjinPeople's Republic of China
| |
Collapse
|
7
|
Zhang C, Wang X, Ding Z, Zhou H, Liu P, Xue X, Wang L, Jiang Y, Chen J, Shen W, Yang S, Wang F. Study on tinnitus-related electroencephalogram microstates in patients with vestibular schwannomas. Front Neurosci 2023; 17:1159019. [PMID: 37090804 PMCID: PMC10118047 DOI: 10.3389/fnins.2023.1159019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Tinnitus is closely associated with cognition functioning. In order to clarify the central reorganization of tinnitus in patients with vestibular schwannoma (VS), this study explored the aberrant dynamics of electroencephalogram (EEG) microstates and their correlations with tinnitus features in VS patients. Clinical and EEG data were collected from 98 VS patients, including 76 with tinnitus and 22 without tinnitus. Microstates were clustered into four categories. Our EEG microstate analysis revealed that VS patients with tinnitus exhibited an increased frequency of microstate C compared to those without tinnitus. Furthermore, correlation analysis demonstrated that the Tinnitus Handicap Inventory (THI) score was negatively associated with the duration of microstate A and positively associated with the frequency of microstate C. These findings suggest that the time series and syntax characteristics of EEG microstates differ significantly between VS patients with and without tinnitus, potentially reflecting abnormal allocation of neural resources and transition of functional brain activity. Our results provide a foundation for developing diverse treatments for tinnitus in VS patients.
Collapse
Affiliation(s)
- Chi Zhang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Zhan Tan Temple Outpatient Department, Central Medical Branch of PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
| | - Xiaoguang Wang
- Zhan Tan Temple Outpatient Department, Central Medical Branch of PLA General Hospital, Beijing, China
| | - Zhiwei Ding
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Hanwen Zhou
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Peng Liu
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Xinmiao Xue
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Li Wang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yuke Jiang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Jiyue Chen
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Weidong Shen
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shiming Yang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fangyuan Wang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
- The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Fangyuan Wang,
| |
Collapse
|
8
|
Bréchet L, Michel CM. EEG Microstates in Altered States of Consciousness. Front Psychol 2022; 13:856697. [PMID: 35572333 PMCID: PMC9094618 DOI: 10.3389/fpsyg.2022.856697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Conscious experiences unify distinct phenomenological experiences that seem to be continuously evolving. Yet, empirical evidence shows that conscious mental activity is discontinuous and can be parsed into a series of states of thoughts that manifest as discrete spatiotemporal patterns of global neuronal activity lasting for fractions of seconds. EEG measures the brain’s electrical activity with high temporal resolution on the scale of milliseconds and, therefore, might be used to investigate the fast spatiotemporal structure of conscious mental states. Such analyses revealed that the global scalp electric fields during spontaneous mental activity are parceled into blocks of stable topographies that last around 60–120 ms, the so-called EEG microstates. These brain states may be representing the basic building blocks of consciousness, the “atoms of thought.” Altered states of consciousness, such as sleep, anesthesia, meditation, or psychiatric diseases, influence the spatiotemporal dynamics of microstates. In this brief perspective, we suggest that it is possible to examine the underlying characteristics of self-consciousness using this EEG microstates approach. Specifically, we will summarize recent results on EEG microstate alterations in mind-wandering, meditation, sleep and anesthesia, and discuss the functional significance of microstates in altered states of consciousness.
Collapse
Affiliation(s)
- Lucie Bréchet
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland.,Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
9
|
Artoni F, Maillard J, Britz J, Seeber M, Lysakowski C, Bréchet L, Tramèr MR, Michel CM. EEG microstate dynamics indicate a U-shaped path to propofol-induced loss of consciousness. Neuroimage 2022; 256:119156. [PMID: 35364276 DOI: 10.1016/j.neuroimage.2022.119156] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
Evidence suggests that the stream of consciousness is parsed into transient brain states manifesting themselves as discrete spatiotemporal patterns of global neuronal activity. Electroencephalographical (EEG) microstates are proposed as the neurophysiological correlates of these transiently stable brain states that last for fractions of seconds. To further understand the link between EEG microstate dynamics and consciousness, we continuously recorded high-density EEG in 23 surgical patients from their awake state to unconsciousness, induced by step-wise increasing concentrations of the intravenous anesthetic propofol. Besides the conventional parameters of microstate dynamics, we introduce a new implementation of a method to estimate the complexity of microstate sequences. The brain activity under the surgical anesthesia showed a decreased sequence complexity of the stereotypical microstates, which became sparser and longer-lasting. However, we observed an initial increase in microstates' temporal dynamics and complexity with increasing depth of sedation leading to a distinctive "U-shape" that may be linked to the paradoxical excitation induced by moderate levels of propofol. Our results support the idea that the brain is in a metastable state under normal conditions, balancing between order and chaos in order to flexibly switch from one state to another. The temporal dynamics of EEG microstates indicate changes of this critical balance between stability and transition that lead to altered states of consciousness.
Collapse
Affiliation(s)
- Fiorenzo Artoni
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland.
| | - Julien Maillard
- Division of Anesthesiology, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Juliane Britz
- Department of Psychology, University of Fribourg, Fribourg, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Geneva, Switzerland
| | - Martin Seeber
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland
| | - Christopher Lysakowski
- Division of Anesthesiology, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Lucie Bréchet
- CIBM Center for Biomedical Imaging, Lausanne, Geneva, Switzerland; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland
| | - Martin R Tramèr
- Division of Anesthesiology, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Switzerland; CIBM Center for Biomedical Imaging, Lausanne, Geneva, Switzerland.
| |
Collapse
|
10
|
Tomescu MI, Papasteri CC, Sofonea A, Boldasu R, Kebets V, Pistol CAD, Poalelungi C, Benescu V, Podina IR, Nedelcea CI, Berceanu AI, Carcea I. Spontaneous thought and microstate activity modulation by social imitation. Neuroimage 2022; 249:118878. [PMID: 34999201 DOI: 10.1016/j.neuroimage.2022.118878] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/05/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
The human mind wanders spontaneously and frequently, revisiting the past and imagining the future of self and of others. External and internal factors can influence wandering spontaneous thoughts, whose content predicts subsequent emotional states. We propose that social imitation, an action that increases well-being and closeness by poorly understood mechanisms, impacts behavioural states in part by modulating post-imitation mind-wandering. In 43 young subjects, we find that imitating the arm movements of an actor alters the dynamics and the content of subsequent resting-state spontaneous thoughts. Imitation-sensitive features of spontaneous thoughts correlate with behavioural states and personality traits. EEG microstate analysis reveals that global patterns of correlated neuronal activity predict imitation-induced changes in spontaneous thoughts. Exploratory analyses indicate a possible modulatory effect of social imitation via the endogenous release of oxytocin. Thus, social imitation can induce selective modulations of ongoing activity in specific neural networks to change spontaneous thought patterns as a function of personality traits, and to ultimately orchestrate behavioural states.
Collapse
Affiliation(s)
- Miralena I Tomescu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania; Department of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania; Department of Educational Sciences, University "Stefan cel Mare" of Suceava, Suceava, Romania
| | - Claudiu C Papasteri
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania; Department of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| | - Alexandra Sofonea
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
| | - Romina Boldasu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
| | - Valeria Kebets
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Constantin A D Pistol
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
| | - Catalina Poalelungi
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania; Department of Biology, University of Bucharest, Bucharest, Romania
| | - Vlad Benescu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
| | - Ioana R Podina
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania; Department of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| | - Catalin I Nedelcea
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania; Department of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| | - Alexandru I Berceanu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
| | - Ioana Carcea
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania; Department of Pharmacology, Physiology and Neuroscience, Rutgers Brain Health Institute, Rutgers, The State University of New Jersey, USA.
| |
Collapse
|
11
|
Lin Q, Li D, Hu C, Shen Z, Wang Y. Altered EEG Microstates Dynamics During Cue-Induced Methamphetamine Craving in Virtual Reality Environments. Front Psychiatry 2022; 13:891719. [PMID: 35599773 PMCID: PMC9114476 DOI: 10.3389/fpsyt.2022.891719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Cue-induced craving is widely considered to be the most important risk factor for relapse during abstinence from methamphetamine (Meth). There is limited research regarding electroencephalography (EEG) microstates of Meth-dependent patients under exposure to drug-related cues. Our objective was to investigate whether EEG microstate temporal characteristics could capture neural correlates of cue-induced Meth craving in virtual reality (VR) environments. METHODS EEG recordings of 35 Meth-dependent patients and 30 healthy controls (HCs) were collected during eyes-open state and cue-induced state, respectively. Group differences and condition differences in temporal parameters of four microstate classes were compared. RESULTS The results demonstrated the greater presence of microstate B in both Meth-dependent patients and HCs during the cue-induced condition, compared to resting state. In addition, for Meth-dependent patients, microstate C occurred significantly less frequently, along with a tendency of increased occurrence for class D during the cue-induced condition, compared to resting state. However, the change direction of class C and class D in HCs was completely opposite to that of Meth-dependent patients. The cue-induced condition also elicited different changes in transition probability between Meth-dependent patients and HCs. CONCLUSION This study explored the features of EEG microstates in Meth-dependent patients during the cue-induced condition, which can improve our understanding of Meth addiction and contribute to the development of effective assessments and intervention tools.
Collapse
Affiliation(s)
- Qianqian Lin
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongxu Li
- Anhui Psychiatric Medical Center, Anhui Medical University, Hefei, China
| | - Cheng Hu
- Shiliping Compulsory Rehabilitation Center, Zhejiang, China
| | - Zhihua Shen
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongguang Wang
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Anhui Psychiatric Medical Center, Anhui Medical University, Hefei, China.,Zhejiang Provincial Institute of Drug Abuse Research, Hangzhou, China
| |
Collapse
|
12
|
Relationship between Spatiotemporal Dynamics of the Brain at Rest and Self-Reported Spontaneous Thoughts: An EEG Microstate Approach. J Pers Med 2021; 11:jpm11111216. [PMID: 34834568 PMCID: PMC8625384 DOI: 10.3390/jpm11111216] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
Rationale: The resting-state paradigm is frequently applied in electroencephalography (EEG) research; however, it is associated with the inability to control participants’ thoughts. To quantify subjects’ subjective experiences at rest, the Amsterdam Resting-State Questionnaire (ARSQ) was introduced covering ten dimensions of mind wandering. We aimed to estimate associations between subjective experiences and resting-state microstates of EEG. Methods: 5 min resting-state EEG data of 197 subjects was used to evaluate temporal properties of seven microstate classes. Bayesian correlation approach was implemented to assess associations between ARSQ domains assessed after resting and parameters of microstates. Results: Several associations between Comfort, Self and Somatic Awareness domains and temporal properties of neuroelectric microstates were revealed. The positive correlation between Comfort and duration of microstates E showed the strongest evidence (BF10 > 10); remaining correlations showed substantial evidence (10 > BF10 > 3). Conclusion: Our study indicates the relevance of assessments of spontaneous thought occurring during the resting-state for the understanding of the intrinsic brain activity reflected in microstates.
Collapse
|
13
|
Si X, Han S, Zhang K, Zhang L, Sun Y, Yu J, Ming D. The Temporal Dynamics of EEG Microstate Reveals the Neuromodulation Effect of Acupuncture With Deqi. Front Neurosci 2021; 15:715512. [PMID: 34720853 PMCID: PMC8549605 DOI: 10.3389/fnins.2021.715512] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 02/01/2023] Open
Abstract
The electroencephalography (EEG) microstate has recently emerged as a new whole-brain mapping tool for studying the temporal dynamics of the human brain. Meanwhile, the neuromodulation effect of external stimulation on the human brain is of increasing interest to neuroscientists. Acupuncture, which originated in ancient China, is recognized as an external neuromodulation method with therapeutic effects. Effective acupuncture could elicit the deqi effect, which is a combination of multiple sensations. However, whether the EEG microstate could be used to reveal the neuromodulation effect of acupuncture with deqi remains largely unclear. In this study, multichannel EEG data were recorded from 16 healthy subjects during acupuncture manipulation, as well as during pre- and post-manipulation tactile controls and pre- and post-acupuncture rest controls. As the basic acupuncture unit for regulating the central nervous system, the Hegu acupoint was used in this study, and each subject’s acupuncture deqi behavior scores were collected. To reveal the neuroimaging evidence of acupuncture with deqi, EEG microstate analysis was conducted to obtain the microstate maps and microstate parameters for different conditions. Furthermore, Pearson’s correlation was analyzed to investigate the correlation relationship between microstate parameters and deqi behavioral scores. Results showed that: (1) compared with tactile controls, acupuncture manipulation caused significantly increased deqi behavioral scores. (2) Acupuncture manipulation significantly increased the duration, occurrence, and contribution parameters of microstate C, whereas it decreased those parameters of microstate D. (3) Microstate C’s duration parameter showed a significantly positive correlation with acupuncture deqi behavior scores. (4) Acupuncture manipulation significantly increased the transition probabilities with microstate C as node, whereas it reduced the transition probabilities with microstate D as node. (5) Microstate B→C’s transition probability also showed a significantly positive correlation with acupuncture deqi behavior scores. Taken together, the temporal dynamic feature of EEG microstate could be used as objective neuroimaging evidence to reveal the neuromodulation effect of acupuncture with deqi.
Collapse
Affiliation(s)
- Xiaopeng Si
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China.,Tianjin International Engineering Institute, Tianjin University, Tianjin, China.,Institute of Applied Psychology, Tianjin University, Tianjin, China
| | - Shunli Han
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Kuo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Ludan Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Yulin Sun
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Jiayue Yu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China.,Tianjin International Engineering Institute, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
14
|
Zanesco AP, Skwara AC, King BG, Powers C, Wineberg K, Saron CD. Meditation training modulates brain electric microstates and felt states of awareness. Hum Brain Mapp 2021; 42:3228-3252. [PMID: 33783922 PMCID: PMC8193519 DOI: 10.1002/hbm.25430] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
Meditation practice is believed to foster states of mindful awareness and mental quiescence in everyday life. If so, then the cultivation of these qualities with training ought to leave its imprint on the activity of intrinsic functional brain networks. In an intensive longitudinal study, we investigated associations between meditation practitioners' experiences of felt mindful awareness and changes in the spontaneous electrophysiological dynamics of functional brain networks. Experienced meditators were randomly assigned to complete 3 months of full‐time training in focused‐attention meditation (during an initial intervention) or to serve as waiting‐list controls and receive training second (during a later intervention). We collected broadband electroencephalogram (EEG) during rest at the beginning, middle, and end of the two training periods. Using a data‐driven approach, we segmented the EEG into a time series of transient microstate intervals based on clustering of topographic voltage patterns. Participants also provided daily reports of felt mindful awareness and mental quiescence, and reported daily on four experiential qualities of their meditation practice during training. We found that meditation training led to increases in mindful qualities of awareness, which corroborate contemplative accounts of deepening mental calm and attentional focus. We also observed reductions in the strength and duration of EEG microstates across both interventions. Importantly, changes in the dynamic sequencing of microstates were associated with daily increases in felt attentiveness and serenity during training. Our results connect shifts in subjective qualities of meditative experience with the large‐scale dynamics of whole brain functional EEG networks at rest.
Collapse
Affiliation(s)
| | - Alea C Skwara
- Department of Psychology, University of California, Davis, California, USA.,Center for Mind and Brain, University of California, Davis, California, USA
| | - Brandon G King
- Center for Mind and Brain, University of California, Davis, California, USA
| | - Chivon Powers
- Center for Mind and Brain, University of California, Davis, California, USA
| | - Kezia Wineberg
- Center for Mind and Brain, University of California, Davis, California, USA
| | - Clifford D Saron
- Center for Mind and Brain, University of California, Davis, California, USA.,The MIND Institute, University of California, Davis, California, USA
| |
Collapse
|
15
|
Bréchet L, Ziegler DA, Simon AJ, Brunet D, Gazzaley A, Michel CM. Reconfiguration of Electroencephalography Microstate Networks after Breath-Focused, Digital Meditation Training. Brain Connect 2021; 11:146-155. [PMID: 33403921 PMCID: PMC7984939 DOI: 10.1089/brain.2020.0848] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Sustained attention and working memory were improved in young adults after they engaged in a recently developed, closed-loop, digital meditation practice. Whether this type of meditation also has a sustained effect on dominant resting-state networks is currently unknown. In this study, we examined the resting brain states before and after a period of breath-focused, digital meditation training versus placebo using an electroencephalography (EEG) microstate approach. We found topographical changes in postmeditation rest, compared with baseline rest, selectively for participants who were actively involved in the meditation training and not in participants who engaged with an active, expectancy-match, placebo control paradigm. Our results suggest a reorganization of brain network connectivity after 6 weeks of intensive meditation training in brain areas, mainly including the right insula, the superior temporal gyrus, the superior parietal lobule, and the superior frontal gyrus bilaterally. These findings provide an opening for the development of a novel noninvasive treatment of neuropathological states by low-cost, breath-focused, digital meditation practice, which can be monitored by the EEG microstate approach.
Collapse
Affiliation(s)
- Lucie Bréchet
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - David A. Ziegler
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
- Neuroscape, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| | - Alexander J. Simon
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
- Neuroscape, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| | - Denis Brunet
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Adam Gazzaley
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, California, USA
- Department of Physiology, University of California San Francisco, San Francisco, California, USA
- Neuroscape, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| | - Christoph M. Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
16
|
Deolindo CS, Ribeiro MW, Aratanha MA, Afonso RF, Irrmischer M, Kozasa EH. A Critical Analysis on Characterizing the Meditation Experience Through the Electroencephalogram. Front Syst Neurosci 2020; 14:53. [PMID: 32848645 PMCID: PMC7427581 DOI: 10.3389/fnsys.2020.00053] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
Meditation practices, originated from ancient traditions, have increasingly received attention due to their potential benefits to mental and physical health. The scientific community invests efforts into scrutinizing and quantifying the effects of these practices, especially on the brain. There are methodological challenges in describing the neural correlates of the subjective experience of meditation. We noticed, however, that technical considerations on signal processing also don't follow standardized approaches, which may hinder generalizations. Therefore, in this article, we discuss the usage of the electroencephalogram (EEG) as a tool to study meditation experiences in healthy individuals. We describe the main EEG signal processing techniques and how they have been translated to the meditation field until April 2020. Moreover, we examine in detail the limitations/assumptions of these techniques and highlight some good practices, further discussing how technical specifications may impact the interpretation of the outcomes. By shedding light on technical features, this article contributes to more rigorous approaches to evaluate the construct of meditation.
Collapse
Affiliation(s)
| | | | | | | | - Mona Irrmischer
- Department of Integrative Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
17
|
Woods TJ, Windt JM, Carter O. Silence in Shamatha, Transcendental, and Stillness Meditation: An Evidence Synthesis Based on Expert Texts. Front Psychol 2020; 11:1259. [PMID: 32733305 PMCID: PMC7360996 DOI: 10.3389/fpsyg.2020.01259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/14/2020] [Indexed: 11/13/2022] Open
Abstract
Shamatha, Transcendental, and Stillness Meditation are said to aim for "contentless" experiences, where mental content such as thoughts, perceptions, and mental images is absent. Silence is understood to be a central feature of those experiences. The main source of information about the experiences is texts by experts from within the three traditions. Previous research has tended not to use an explicit scientific method for selecting and reviewing expert texts on meditation. We have identified evidence synthesis as a robust and transparent method that is suitable for this purpose. In this paper we use evidence synthesis based on expert texts to examine silence/quietness as a feature of the contentless experiences in the three practices. Objective criteria were used to select a sample of 135 expert texts. A database containing the expert descriptions of the meditation techniques and experiences was produced by extracting the relevant material from the publications and coding that material to differentiate individual features. The database, which forms part of the Supplementary Material for this paper, identifies each feature of the contentless experiences referred to in the expert texts, including silence/quietness. Our key finding is that the experts indicate silence/quietness has a particular connection with stillness, and the absence of concepts, mental activity/noise, thoughts, and disturbance. Further analysis leads to the following insights. The silence/quietness reflects the absence of thoughts and sounds, and this fits neatly with a conception of silence/quietness as the absence of internal and external noise. In some cases the terms silence and quietness may also reflect the absence of other disturbances such as non-auditory perceptions, mental images, and negative feelings. That would fit with a conception of silence/quietness as complete calm or absence of disturbance. It is not clear from the expert texts how silence/quietness is distinct from other features such as stillness that also reflect the absence of disturbances. As a separate matter, silence/quietness has connections with all the other features of the contentless experiences, but the closeness of the connections varies. Our work uncovers fine distinctions and ambiguities which lead to new research questions that can be explored in future studies.
Collapse
Affiliation(s)
- Toby J Woods
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer M Windt
- Department of Philosophy, Monash University, Melbourne, VIC, Australia
| | - Olivia Carter
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
18
|
EEG microstates associated with intra- and inter-subject alpha variability. Sci Rep 2020; 10:2469. [PMID: 32051420 PMCID: PMC7015936 DOI: 10.1038/s41598-020-58787-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/16/2020] [Indexed: 11/08/2022] Open
Abstract
Variation of the magnitude of posterior alpha rhythm (8-12 Hz) has functional and behavioural effects in sensory processing and cognitive performances. Electrical brain activity, as revealed by electroencephalography (EEG), can be represented by a sequence of microstates of about 40-120 ms duration, in which distributed neural pools are synchronously active and generate stable spatial potential topographies on the scalp. Microstate dynamics may reflect transitions between global states characterized by selective inhibition of specific intra-cortical regions, mediated by alpha activity. We investigated the intra-subject and inter-subject relationship between microstate features and alpha band. High-density EEG signals were acquired in 29 healthy subjects during ten minutes of eyes closed rest. Individual EEG signal epochs were classified into four groups depending on the amount of occipital alpha power, and microstate metrics (duration, coverage and frequency of occurrence) were calculated and compared across groups. Correlations between alpha power and microstate metrics between individuals were also performed. To assess if microstate parameter variations are specific for the alpha band, the same analysis was also performed for theta and beta bands, as well as for global field power. We observed an increase in the metrics of microstate, previously associated to the visual system, with the level of intra-subject amplitude alpha oscillations, together with lower coverage of microstate associated with executive attention network and a higher frequency of microstate associated with task negative network. Other modulation effects of broad-band EEG power level on microstate metrics were observed. These effects are not specific for the alpha band, since they can equally be attributed to fluctuations in other frequency bands. We can interpret our results as a regulation mechanism mediated by posterior alpha level, dynamically interacting with other frequency bands, responsible for the switching between active areas.
Collapse
|
19
|
Shaw SB, Dhindsa K, Reilly JP, Becker S. Capturing the Forest but Missing the Trees: Microstates Inadequate for Characterizing Shorter-Scale EEG Dynamics. Neural Comput 2019; 31:2177-2211. [DOI: 10.1162/neco_a_01229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The brain is known to be active even when not performing any overt cognitive tasks, and often it engages in involuntary mind wandering. This resting state has been extensively characterized in terms of fMRI-derived brain networks. However, an alternate method has recently gained popularity: EEG microstate analysis. Proponents of microstates postulate that the brain discontinuously switches between four quasi-stable states defined by specific EEG scalp topologies at peaks in the global field potential (GFP). These microstates are thought to be “atoms of thought,” involved with visual, auditory, salience, and attention processing. However, this method makes some major assumptions by excluding EEG data outside the GFP peaks and then clustering the EEG scalp topologies at the GFP peaks, assuming that only one microstate is active at any given time. This study explores the evidence surrounding these assumptions by studying the temporal dynamics of microstates and its clustering space using tools from dynamical systems analysis, fractal, and chaos theory to highlight the shortcomings in microstate analysis. The results show evidence of complex and chaotic EEG dynamics outside the GFP peaks, which is being missed by microstate analysis. Furthermore, the winner-takes-all approach of only one microstate being active at a time is found to be inadequate since the dynamic EEG scalp topology does not always resemble that of the assigned microstate, and there is competition among the different microstate classes. Finally, clustering space analysis shows that the four microstates do not cluster into four distinct and separable clusters. Taken collectively, these results show that the discontinuous description of EEG microstates is inadequate when looking at nonstationary short-scale EEG dynamics.
Collapse
Affiliation(s)
- Saurabh Bhaskar Shaw
- Neuroscience Graduate Program, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kiret Dhindsa
- Research and High Performance Computing, McMaster University, Hamilton, ON L8S 4L8, Canada, and Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada
| | - James P. Reilly
- Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada, and Department of Electrical and Computer Engineering and McMaster School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Suzanna Becker
- Department of Psychology Neuroscience and Behaviour, McMaster University, Hamilton, ON L8S 4L8, Canada, and Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada
| |
Collapse
|