1
|
Lenoir J, Badets A. Effect of spatial training on space-number mapping: a situated cognition account. PSYCHOLOGICAL RESEARCH 2025; 89:49. [PMID: 39833591 DOI: 10.1007/s00426-025-02078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
From an embodied perspective of cognition, number processing influences the spatial organization of motor responses showing faster left/right responses to small/large numbers. Recent evidence suggests that such spatial-numerical associations (SNAs) along the transverse and sagittal planes are mutually exclusive with respect to the spatial reference frames used by the participant. Specifically, in egocentric and allocentric frames, SNAs appear along the sagittal and transverse plane, respectively. The first aim of this study was to replicate previous findings. The second aim was to explore the role of switching spatial reference frames in SNAs occurrence according to the processed plane. Consequently, during a referential frame switching (RFS) training, participants were required to identify targets based on an embodied avatar's perspective. Using a random number generation (RNG) task after observing an avatar's displacement, we investigated the effect of RFS training on SNAs organization across the different planes (Experiment 1 & 2 for the egocentric and allocentric perspectives, respectively). Both experiments replicated previous results, but more importantly, RFS training enables the development of new situated cognition strategies from egocentric perspectives and the generalization of transverse SNAs to other planes from allocentric perspectives.
Collapse
Affiliation(s)
- Julie Lenoir
- Univ. Bordeaux, CNRS, INCIA - Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bâtiment Bordeaux Biologie Santé (BBS), 2, rue du Dr Hoffmann Martinot, 33000, Bordeaux, France
| | - Arnaud Badets
- Univ. Bordeaux, CNRS, INCIA - Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bâtiment Bordeaux Biologie Santé (BBS), 2, rue du Dr Hoffmann Martinot, 33000, Bordeaux, France.
| |
Collapse
|
2
|
Lenoir J, Badets A. Effect of egocentric and allocentric reference frames on spatial-numerical associations. Q J Exp Psychol (Hove) 2024; 77:1967-1977. [PMID: 37953262 DOI: 10.1177/17470218231216269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
From an embodied view of cognition, sensorimotor mechanisms are strongly involved in abstract processing, such as Arabic number meanings. For example, spatial cognition can influence number processing. These spatial-numerical associations (SNAs) have been deeply explored since the seminal SNAs of response code (SNARC) effect (i.e., faster left/right sided responses to small/large magnitude numbers, respectively). Although these SNAs along the transverse plane (left-to-right axis) have been extensively studied in cognitive sciences, no systematic assessment of other planes of the tridimensional space has been afforded. Moreover, there is no evidence of how SNAs organise themselves throughout the changes in spatial body-reference frames (egocentric and allocentric). Hence, this study aimed to explore how SNAs organise themselves along the transverse and sagittal planes when egocentric and allocentric changes are processed during body displacements in the environment. In the first experiment, the results revealed that, when the participants used an egocentric reference, SNAs were observed only along the sagittal plane. In a second experiment that used an allocentric reference, the reversed pattern of results was observed: SNAs were present only along the transverse plane of the body. Overall, these findings suggest that, depending on the spatial reference frames of the body, SNAs are strongly flexible.
Collapse
Affiliation(s)
- Julie Lenoir
- INCIA-UMR 5287-CNRS, Université de Bordeaux, Bordeaux, France
| | - Arnaud Badets
- INCIA-UMR 5287-CNRS, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
3
|
Sabaghypour S, Farkhondeh Tale Navi F, Kulkova E, Abaduz P, Zirak N, Nazari MA. The dark and bright side of the numbers: how emotions influence mental number line accuracy and bias. Cogn Emot 2024; 38:661-674. [PMID: 39137915 DOI: 10.1080/02699931.2023.2285834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 08/15/2024]
Abstract
The traditional view of cognition as detached from emotions is recently being questioned. This study aimed to investigate the influence of emotional valence on the accuracy and bias in the representation of numbers on the mental number line (MNL). The study included 164 participants who were randomly assigned into two groups with induced positive and negative emotional valence using matched arousal film clips. Participants performed a computerised number-to-position (CNP) task to estimate the position of numbers on a horizontal line. The results showed that participants in the positive valence group exhibited a rightward bias, while those in the negative valence group showed an opposite pattern. The analysis of mean absolute error revealed that the negative valence group had higher error rates compared to the positive valence group. Furthermore, the MNL estimation pattern analysis indicated that a two-cycle cyclic power model (CPM) best explained the data for both groups. These findings suggest that emotional valence influences the spatial representation of numbers on the MNL and affects accuracy in numerical estimations. Our findings are finally discussed in terms of body-specificity and the Brain's Asymmetric Frequency Tuning (BAFT) theories. The study provides new insights into the interplay between emotions and numerical cognition.
Collapse
Affiliation(s)
- Saied Sabaghypour
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Farhad Farkhondeh Tale Navi
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Elena Kulkova
- Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Potsdam, Germany
| | - Parnian Abaduz
- Faculty of Psychology and educational Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Negin Zirak
- Department of Educational Science and Psychology, University of Tabriz, Tabriz, Iran
| | - Mohammad Ali Nazari
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Sabaghypour S, Navi FFT, Basiri N, Shakibaei F, Zirak N. Differential roles of brain oscillations in numerical processing: evidence from resting-state EEG and mental number line. Front Hum Neurosci 2024; 18:1357900. [PMID: 38974482 PMCID: PMC11224460 DOI: 10.3389/fnhum.2024.1357900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Recent works point to the importance of emotions in special-numerical associations. There remains a notable gap in understanding the electrophysiological underpinnings of such associations. Exploring resting-state (rs) EEG, particularly in frontal regions, could elucidate emotional aspects, while other EEG measures might offer insights into the cognitive dimensions correlating with behavioral performance. The present work investigated the relationship between rs-EEG measures (emotional and cognitive traits) and performance in the mental number line (MNL). EEG activity in theta (3-7 Hz), alpha (8-12 Hz, further subdivided into low-alpha and high-alpha), sensorimotor rhythm (SMR, 13-15 Hz), beta (16-25 Hz), and high-beta/gamma (28-40 Hz) bands was assessed. 76 university students participated in the study, undergoing EEG recordings at rest before engaging in a computerized number-to-position (CNP) task. Analysis revealed significant associations between frontal asymmetry, specific EEG frequencies, and MNL performance metrics (i.e., mean direction bias, mean absolute error, and mean reaction time). Notably, theta and beta asymmetries correlated with direction bias, while alpha peak frequency (APF) and beta activity related to absolute errors in numerical estimation. Moreover, the study identified significant correlations between relative amplitude indices (i.e., theta/beta ratio, theta/SMR ratio) and both absolute errors and reaction times (RTs). Our findings offer novel insights into the emotional and cognitive aspects of EEG patterns and their links to MNL performance.
Collapse
Affiliation(s)
- Saied Sabaghypour
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Farhad Farkhondeh Tale Navi
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | | | - Fereshteh Shakibaei
- Behavioral Science Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negin Zirak
- Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
Sun W, Li B, Ma C. Muscimol-induced inactivation of the ventral prefrontal cortex impairs counting performance in rhesus monkeys. Sci Prog 2022; 105:368504221141660. [PMID: 36443989 PMCID: PMC10358485 DOI: 10.1177/00368504221141660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Numbers are one of the three basic concepts of human abstract thinking. When human beings count, they often point to things, one by one, and read numbers in a positive integer column. The prefrontal cortex plays a wide range of roles in executive functions, including active maintenance and achievement of goals, adaptive coding and exertion of general intelligence, and completion of time complexity events. Nonhuman animals do not use number names, such as "one, two, three," or numerals, such as "1, 2, 3" to "count" in the same way as humans do. Our previous study established an animal model of counting in monkeys. Here, we used this model to determine whether the prefrontal cortex participates in counting in monkeys. Two 5-year-old female rhesus monkeys (macaques), weighing 5.0 kg and 5.5 kg, were selected to train in a counting task, counting from 1 to 5. When their counting task performance stabilized, we performed surgery on the prefrontal cortex to implant drug delivery tubes. After allowing the monkeys' physical condition and counting performance to recover, we injected either muscimol or normal saline into their dorsal and ventral prefrontal cortex. Thereafter, we observed their counting task performance and analyzed the error types and reaction time during the counting task. The monkeys' performance in the counting task decreased significantly after muscimol injection into the ventral prefrontal cortex; however, it was not affected after saline injection into the ventral prefrontal cortex, or after muscimol or saline injection into the dorsal prefrontal cortex. The ventral prefrontal cortex of the monkey is necessary for counting performance.
Collapse
Affiliation(s)
- Weiming Sun
- School of Life Science, Nanchang University, Nanchang, China
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| | - Baoming Li
- School of Life Science, Nanchang University, Nanchang, China
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| | - Chaolin Ma
- School of Life Science, Nanchang University, Nanchang, China
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Behzadifard B, Sabaghypour S, Farkhondeh Tale Navi F, Nazari MA. Training the brain to time: the effect of neurofeedback of SMR-Beta1 rhythm on time perception in healthy adults. Exp Brain Res 2022; 240:2027-2038. [PMID: 35576072 DOI: 10.1007/s00221-022-06380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/25/2022] [Indexed: 11/04/2022]
Abstract
The timing ability plays an important role in everyday activities and is influenced by several factors such as the attention and arousal levels of the individuals. The effects of these factors on time perception have been interpreted through psychological models of time, including Attentional Gate Model (AGM). On the other hand, research has indicated that neurofeedback (NFB) training improves attention and increases arousal levels in the clinical and healthy population. Regarding the link between attentional processing and arousal levels and NFB and their relation to time perception, this study is a pilot demonstration of the influence of SMR-Beta1 (12-18 Hz) NFB training on time production and reproduction performance in healthy adults. To this end, 12 (9 female and 3 males; M = 26.3, SD = 3.8) and 12 participants (7 female and 5 males; M = 26.9, SD = 3.1) were randomly assigned into the experimental (with SMR-Beta1 NFB) and control groups (without any NFB training), respectively. The experimental group underwent intensive 10 sessions (3 days a week) of the 12-18 Hz up-training. Time production and reproduction performance were assessed pre and post NFB training for all participants. Three-way mixed ANOVA was carried out on T-corrected scores of reproduction and production tasks. Correlation analysis was also performed between SMR-Beta1 and time perception. While NFB training significantly influenced time production (P < 0.01), no such effect was observed for the time reproduction task. The results of the study are finally discussed within the frameworks of AGM, dual-process and cognitive aspects of time perception. Overall, our results contribute to disentangling the underlying mechanisms of temporal performance in healthy individuals.
Collapse
Affiliation(s)
- Behnoush Behzadifard
- Department of Psychology, Kish International Branch, Islamic Azad University, Kish Island, Iran
| | - Saied Sabaghypour
- Department of Cognitive Neuroscience, University of Tabriz, Tabriz, Iran
| | | | - Mohammad Ali Nazari
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Exp.way, Tehran, Iran.
| |
Collapse
|
7
|
Malyshevskaya A, Gallо F, Pokhoday M, Kotrelev P, Shtyrov Y, Myachykov A. Spatial conceptual mapping of words with temporal semantics. СОВРЕМЕННАЯ ЗАРУБЕЖНАЯ ПСИХОЛОГИЯ 2022. [DOI: 10.17759/jmfp.2022110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Unlike concrete words related to sensory perception (e.g., hear, sun), abstract words (including the words with temporal semantics, e.g., year, tomorrow) do not have direct embodied sensory correlates. Nevertheless, existing research indicates that abstract concepts’ representations make regular reference to sensorimotor processes, e.g., visual perception. For example, regular expressions such as “the future is ahead” or “the flow of time” are common in different languages reflecting a relatively universal nature of space-time correspondences. Moreover, these regular correspondences are commonly demonstrated in experimental studies; for example — by registering attentional displacement during processing of past and future related words. Here, the main theoretical approaches as well as existing experimental data documenting neurocognitive foundations of space-time representations are reviewed. A detailed overview of research on spatial-conceptual mapping of time concepts in three-dimensional visual space is offered. We also consider features of space-time associations that reflect linguistic and socio-cultural differences. In conclusion, the main areas of current and future that will allow an integration of the existing data within a common theoretical framework are defined.
Collapse
Affiliation(s)
| | - F. Gallо
- National Research University Higher School of Economics
| | - M.Y. Pokhoday
- National Research University Higher School of Economics
| | - P.V. Kotrelev
- National Research University Higher School of Economics
| | | | | |
Collapse
|
8
|
Nazari MA, Sabaghypour S, Pezhmanfard M, Azizi K, Vahedi S. The influence of children's mathematical competence on performance in mental number line, time knowledge and time perception. PSYCHOLOGICAL RESEARCH 2021; 85:2023-2035. [PMID: 32623512 DOI: 10.1007/s00426-020-01380-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/26/2020] [Indexed: 11/28/2022]
Abstract
A growing body of research suggests that space, time and number are represented within a common system. Other studies have shown this relationship is related to the mathematical competency. Here we examined the influence of the mathematical capacities of 8-12 years old children, grouped into high (n = 63) and low (n = 58) on performance in mental number line, time knowledge and time perception. The results revealed that mathematical competency influences mental number line and time knowledge, but with regard to time perception the effects were only observed in time production task. In addition, the results of correlation analysis revealed interaction between time knowledge, time production (but not reproduction) and mental number line. Finally, the findings are discussed within the framework of the recent theories regarding representation of space, time and number.
Collapse
Affiliation(s)
- Mohammad Ali Nazari
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Exp. way, Tehran, Iran.
- Division of Cognitive Neuroscience, University of Tabriz, Tabriz, Iran.
| | - Saied Sabaghypour
- Division of Cognitive Neuroscience, University of Tabriz, Tabriz, Iran
| | - Mina Pezhmanfard
- Department of Educational Psychology, University of Tabriz, Tabriz, Iran
| | - Kiana Azizi
- Department of Psychology, University of Tabriz, Tabriz, Iran
| | - Shahram Vahedi
- Department of Educational Psychology, University of Tabriz, Tabriz, Iran
| |
Collapse
|