1
|
Lauricella M, Di Liberto D. Special Issue: "Inflammatory Signaling Pathways Involved in Gastrointestinal Diseases". Int J Mol Sci 2024; 25:1287. [PMID: 38279287 PMCID: PMC10816278 DOI: 10.3390/ijms25021287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammation is a defensive response of the innate and adaptive immune systems against injury and/or harmful microorganisms to restore homeostasis [...].
Collapse
Affiliation(s)
- Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
2
|
Scalavino V, Piccinno E, Valentini AM, Mastronardi M, Armentano R, Giannelli G, Serino G. A Novel Mechanism of Immunoproteasome Regulation via miR-369-3p in Intestinal Inflammatory Response. Int J Mol Sci 2022; 23:ijms232213771. [PMID: 36430249 PMCID: PMC9691197 DOI: 10.3390/ijms232213771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The immunoproteasome is a multi-catalytic protein complex expressed in hematopoietic cells. Increased expression of immuno-subunits followed by increased proteasome activities is associated with the pathogenesis of IBD. Therefore, the identification of molecules that could inhibit the activities of this complex has been widely studied. microRNAs are small molecules of non-coding RNA that regulate the expression of target genes. Our purpose was to demonstrate that miR-369-3p is able to reduce the expression of the PSMB9 subunit and consequently modulate the catalytic activities of immunoproteasome. After bioinformatics prediction of the gene target of miR-369-3p, we validated its modulation on PSMB9 expression in the RAW264.7 cell line in vitro. We also found that miR-369-3p indirectly reduced the expression of other immunoproteasome subunits and that this regulation reduced the catalytic functions of the immunoproteasome. Increased levels of PSMB9 were observed in colon samples of acute IBD patients compared to the remission IBD group and control group. Our data suggest that miR-369-3p may be a future alternative therapeutic approach to several compounds currently used for the treatment of inflammatory disorders including IBD.
Collapse
|
3
|
Gatekeepers of the Gut: The Roles of Proteasomes at the Gastrointestinal Barrier. Biomolecules 2021; 11:biom11070989. [PMID: 34356615 PMCID: PMC8301830 DOI: 10.3390/biom11070989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
The gut epithelial barrier provides the first line of defense protecting the internal milieu from the environment. To circumvent the exposure to constant challenges such as pathogenic infections and commensal bacteria, epithelial and immune cells at the gut barrier require rapid and efficient means to dynamically sense and respond to stimuli. Numerous studies have highlighted the importance of proteolysis in maintaining homeostasis and adapting to the dynamic changes of the conditions in the gut environment. Primarily, proteolytic activities that are involved in immune regulation and inflammation have been examined in the context of the lysosome and inflammasome activation. Yet, the key to cellular and tissue proteostasis is the ubiquitin–proteasome system, which tightly regulates fundamental aspects of inflammatory signaling and protein quality control to provide rapid responses and protect from the accumulation of proteotoxic damage. In this review, we discuss proteasome-dependent regulation of the gut and highlight the pathophysiological consequences of the disarray of proteasomal control in the gut, in the context of aberrant inflammatory disorders and tumorigenesis.
Collapse
|
4
|
Dutta D, VandeHaar P, Fritsche LG, Zöllner S, Boehnke M, Scott LJ, Lee S. A powerful subset-based method identifies gene set associations and improves interpretation in UK Biobank. Am J Hum Genet 2021; 108:669-681. [PMID: 33730541 DOI: 10.1016/j.ajhg.2021.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
Tests of association between a phenotype and a set of genes in a biological pathway can provide insights into the genetic architecture of complex phenotypes beyond those obtained from single-variant or single-gene association analysis. However, most existing gene set tests have limited power to detect gene set-phenotype association when a small fraction of the genes are associated with the phenotype and cannot identify the potentially "active" genes that might drive a gene set-based association. To address these issues, we have developed Gene set analysis Association Using Sparse Signals (GAUSS), a method for gene set association analysis that requires only GWAS summary statistics. For each significantly associated gene set, GAUSS identifies the subset of genes that have the maximal evidence of association and can best account for the gene set association. Using pre-computed correlation structure among test statistics from a reference panel, our p value calculation is substantially faster than other permutation- or simulation-based approaches. In simulations with varying proportions of causal genes, we find that GAUSS effectively controls type 1 error rate and has greater power than several existing methods, particularly when a small proportion of genes account for the gene set signal. Using GAUSS, we analyzed UK Biobank GWAS summary statistics for 10,679 gene sets and 1,403 binary phenotypes. We found that GAUSS is scalable and identified 13,466 phenotype and gene set association pairs. Within these gene sets, we identify an average of 17.2 (max = 405) genes that underlie these gene set associations.
Collapse
Affiliation(s)
- Diptavo Dutta
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peter VandeHaar
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lars G Fritsche
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sebastian Zöllner
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael Boehnke
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura J Scott
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Seunggeun Lee
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA; Graduate School of Data Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Peruzzi L, Coppo R, Cocchi E, Loiacono E, Bergallo M, Bodria M, Vergano L, Krutova A, Russo ML, Amore A, Lundberg S, Maixerova D, Tesar V, Perkowska-Ptasińska A, Durlik M, Goumenos D, Papasotiriou M, Galesic K, Toric L, Papagianni A, Stangou M, Mizerska-Wasiak M, Gesualdo L, Montemurno E, Benozzi L, Cusinato S, Hryszko T, Klinger M, Kamińska D, Krajewska M. The switch from proteasome to immunoproteasome is increased in circulating cells of patients with fast progressive immunoglobulin A nephropathy and associated with defective CD46 expression. Nephrol Dial Transplant 2020; 36:1389-1398. [PMID: 32582935 DOI: 10.1093/ndt/gfaa092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 01/08/2023] Open
Abstract
The proteasome to immunoproteasome (iPS) switch consists of β1, β2 and β5 subunit replacement by low molecular weight protein 2 (LMP2), LMP7 and multicatalytic endopeptidase-like complex-1 (MECL1) subunits, resulting in a more efficient peptide preparation for major histocompatibility complex 1 (MHC-I) presentation. It is activated by toll-like receptor (TLR) agonists and interferons and may also be influenced by genetic variation. In a previous study we found an iPS upregulation in peripheral cells of patients with immunoglobulin A nephropathy (IgAN). We aimed to investigate in 157 IgAN patients enrolled through the multinational Validation Study of the Oxford Classification of IgAN (VALIGA) study the relationships between iPS switch and estimated glomerular filtration rate (eGFR) modifications from renal biopsy to sampling. Patients had a previous long follow-up (6.4 years in median) that allowed an accurate calculation of their slope of renal function decline. We also evaluated the effects of the PSMB8/PSMB9 locus (rs9357155) associated with IgAN in genome-wide association studies and the expression of messenger RNAs (mRNAs) encoding for TLRs and CD46, a C3 convertase inhibitor, acting also on T-regulatory cell promotion, found to have reduced expression in progressive IgAN. We detected an upregulation of LMP7/β5 and LMP2/β1 switches. We observed no genetic effect of rs9357155. TLR4 and TLR2 mRNAs were found to be significantly associated with iPS switches, particularly TLR4 and LMP7/β5 (P < 0.0001). The LMP7/β5 switch was significantly associated with the rate of eGFR loss (P = 0.026), but not with eGFR at biopsy. Fast progressors (defined as the loss of eGFR >75th centile, i.e. -1.91 mL/min/1.73 m2/year) were characterized by significantly elevated LMP7/β5 mRNA (P = 0.04) and low CD46 mRNA expression (P < 0.01). A multivariate logistic regression model, categorizing patients by different levels of kidney disease progression, showed a high prediction value for the combination of high LMP7/β5 and low CD46 expression.
Collapse
Affiliation(s)
- Licia Peruzzi
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy.,Department of Nephrology, Dialysis and Transplantation, Regina Margherita Hospital, Turin, Italy
| | - Rosanna Coppo
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy
| | - Enrico Cocchi
- Department of Nephrology, Dialysis and Transplantation, Regina Margherita Hospital, Turin, Italy
| | - Elisa Loiacono
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy
| | - Massimilano Bergallo
- Department of Nephrology, Dialysis and Transplantation, Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | | | - Luca Vergano
- Department of Nephrology, Dialysis and Transplantation, Regina Margherita Hospital, Turin, Italy
| | | | - Maria Luisa Russo
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy
| | - Alessandro Amore
- Department of Nephrology, Dialysis and Transplantation, Regina Margherita Hospital, Turin, Italy
| | - Sigrid Lundberg
- Department of Clinical Sciences, Nephrology, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Dita Maixerova
- Department of Nephrology, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Vladimir Tesar
- Department of Nephrology, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | | | - Magdalena Durlik
- Department of Transplantation Medicine and Nephrology, Warsaw Medical University, Warsaw, Poland
| | - Dimitris Goumenos
- Department of Nephrology, University Hospital of Patras, Patras, Greece
| | | | - Kresimir Galesic
- Department of Nephrology, Dubrava University Hospital, Zagreb, Croatia
| | - Luka Toric
- Department of Nephrology, Dubrava University Hospital, Zagreb, Croatia
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Stangou
- Department of Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Loreto Gesualdo
- Department of Nephrology, Emergency and Transplantation, University of Bari, Bari, Italy
| | - Eustacchio Montemurno
- Department of Nephrology, Emergency and Transplantation, University of Bari, Bari, Italy
| | - Luisa Benozzi
- Department of Nephrology, Borgomanero Hospital, Borgomanero, Italy
| | - Stefano Cusinato
- Department of Nephrology, Borgomanero Hospital, Borgomanero, Italy
| | - Tomasz Hryszko
- Department of Nephrology, Transplantation and Dialysis, Medical University of Bialystok, Bialystok, Poland
| | - Marian Klinger
- Department of Internal Medicine, Opole University, Poland
| | - Dorota Kamińska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
6
|
Cellular Responses to Proteasome Inhibition: Molecular Mechanisms and Beyond. Int J Mol Sci 2019; 20:ijms20143379. [PMID: 31295808 PMCID: PMC6678303 DOI: 10.3390/ijms20143379] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Proteasome inhibitors have been actively tested as potential anticancer drugs and in the treatment of inflammatory and autoimmune diseases. Unfortunately, cells adapt to survive in the presence of proteasome inhibitors activating a variety of cell responses that explain why these therapies have not fulfilled their expected results. In addition, all proteasome inhibitors tested and approved by the FDA have caused a variety of side effects in humans. Here, we describe the different types of proteasome complexes found within cells and the variety of regulators proteins that can modulate their activities, including those that are upregulated in the context of inflammatory processes. We also summarize the adaptive cellular responses activated during proteasome inhibition with special emphasis on the activation of the Autophagic-Lysosomal Pathway (ALP), proteaphagy, p62/SQSTM1 enriched-inclusion bodies, and proteasome biogenesis dependent on Nrf1 and Nrf2 transcription factors. Moreover, we discuss the role of IRE1 and PERK sensors in ALP activation during ER stress and the involvement of two deubiquitinases, Rpn11 and USP14, in these processes. Finally, we discuss the aspects that should be currently considered in the development of novel strategies that use proteasome activity as a therapeutic target for the treatment of human diseases.
Collapse
|
7
|
Ogorevc E, Schiffrer ES, Sosič I, Gobec S. A patent review of immunoproteasome inhibitors. Expert Opin Ther Pat 2018; 28:517-540. [PMID: 29865878 DOI: 10.1080/13543776.2018.1484904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The ubiquitin-proteasome system is responsible for maintaining protein homeostasis and regulating a variety of cellular processes. The constitutive proteasome is expressed in all cells while the immunoproteasome (IP) is predominantly found in cells of hematopoietic origin. In other cells, the expression of IP can be induced under the influence of cytokines released by T cells during acute immune and stress responses. Inhibitors of IP are of significant interest, because it is expected that selective inhibition of the IP would cause fewer adverse effects. AREAS COVERED There is a considerable interest on patenting IP-specific inhibitors. Relevant patents and patent applications disclosing IP inhibitors are summarized and divided into two parts according to the chemical characteristics of compounds. We also briefly report on the biochemical methods used in the patents to profile the characteristics of IP inhibitors. EXPERT OPINION Several selective inhibitors of IP with a promising ability to address autoimmune and inflammatory diseases are being developed. Peptidic compounds are prevalent and the most advanced IP-selective compounds to date, ONX-0914 and KZR-616, are tripeptide epoxyketone-based molecules. However, some patents disclose that IP-selective inhibition is possible with compounds possessing non-peptidic scaffolds indicating countless possibilities to address inhibition of IP in the future.
Collapse
Affiliation(s)
- Eva Ogorevc
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| | | | - Izidor Sosič
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| | - Stanislav Gobec
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
8
|
Bachmann AS, Opoku-Ansah J, Ibarra-Rivera TR, Yco LP, Ambadi S, Roberts CC, Chang CEA, Pirrung MC. Syrbactin Structural Analog TIR-199 Blocks Proteasome Activity and Induces Tumor Cell Death. J Biol Chem 2016; 291:8350-62. [PMID: 26907687 DOI: 10.1074/jbc.m115.710053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 01/19/2023] Open
Abstract
Multiple myeloma is an aggressive hematopoietic cancer of plasma cells. The recent emergence of three effective FDA-approved proteasome-inhibiting drugs, bortezomib (Velcade®), carfilzomib (Kyprolis®), and ixazomib (Ninlaro®), confirms that proteasome inhibitors are therapeutically useful against neoplastic disease, in particular refractory multiple myeloma and mantle cell lymphoma. This study describes the synthesis, computational affinity assessment, and preclinical evaluation of TIR-199, a natural product-derived syrbactin structural analog. Molecular modeling and simulation suggested that TIR-199 covalently binds each of the three catalytic subunits (β1, β2, and β5) and revealed key interaction sites. In vitro and cell culture-based proteasome activity measurements confirmed that TIR-199 inhibits the proteasome in a dose-dependent manner and induces tumor cell death in multiple myeloma and neuroblastoma cells as well as other cancer types in the NCI-60 cell panel. It is particularly effective against kidney tumor cell lines, with >250-fold higher anti-tumor activities than observed with the natural product syringolin A. In vivo studies in mice revealed a maximum tolerated dose of TIR-199 at 25 mg/kg. The anti-tumor activity of TIR-199 was confirmed in hollow fiber assays in mice. Adverse drug reaction screens in a kidney panel revealed no off-targets of concern. This is the first study to examine the efficacy of a syrbactin in animals. Taken together, the results suggest that TIR-199 is a potent new proteasome inhibitor with promise for further development into a clinical drug for the treatment of multiple myeloma and other forms of cancer.
Collapse
Affiliation(s)
- André S Bachmann
- From the Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, the Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii, Hilo, Hawaii 96720, the Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii 96822,
| | - John Opoku-Ansah
- the Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii, Hilo, Hawaii 96720
| | | | - Lisette P Yco
- From the Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, the Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii, Hilo, Hawaii 96720, the Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii 96822
| | - Sudhakar Ambadi
- the Department of Chemistry, University of California, Riverside, California 92521, and
| | - Christopher C Roberts
- the Department of Chemistry, University of California, Riverside, California 92521, and
| | - Chia-En A Chang
- the Department of Chemistry, University of California, Riverside, California 92521, and
| | - Michael C Pirrung
- the Department of Chemistry, University of California, Riverside, California 92521, and the Department of Pharmaceutical Sciences, University of California, Irvine, California 92697
| |
Collapse
|
9
|
Miller Z, Ao L, Kim KB, Lee W. Inhibitors of the immunoproteasome: current status and future directions. Curr Pharm Des 2014. [PMID: 23181576 DOI: 10.2174/1381612811319220018] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a vital role in maintaining protein homeostasis and regulating numerous cellular processes. The proteasome, a multi-protease complex, is the key component of the UPS and has been validated as a therapeutic target by the FDA's approval of bortezomib and carfilzomib. These proteasome inhibitor drugs have substantially improved outcomes in patients with hematological malignancies and are currently being investigated for other types of cancer as well as several other diseases. These approved proteasome inhibitors target the catalytic activity of both the constitutive proteasome and the immunoproteasome indiscriminately, and their inhibitory effects on the constitutive proteasome in normal cells are believed to contribute to unwanted side effects. In addition, selective immunoproteasome inhibition has been proposed to have unique effects on other diseases, including those involving aberrant immune function. Initially recognized for its role in the adaptive immune response, the immunoproteasome is often upregulated in disease states such as inflammatory diseases and cancer, suggesting functions beyond antigen presentation. In an effort to explore the immunoproteasome as a potential therapeutic target in these diseases, the development of immunoproteasome-specific inhibitors has become the focus of recent studies. Owing to considerable efforts by both academic and industry groups, immunoproteasome-selective inhibitors have now been identified and tested against several disease models. These inhibitors also provide a valuable set of chemical tools for investigating the biological function of the immunoproteasome. In this review, we will focus on the recent efforts towards the development of immunoproteasome-selective inhibitors.
Collapse
Affiliation(s)
- Zachary Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40536-0596, USA
| | | | | | | |
Collapse
|
10
|
Ebstein F, Kloetzel PM, Krüger E, Seifert U. Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell Mol Life Sci 2012; 69:2543-58. [PMID: 22382925 PMCID: PMC11114860 DOI: 10.1007/s00018-012-0938-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 01/09/2023]
Abstract
The proteasome is a multi-catalytic protein complex whose primary function is the degradation of abnormal or foreign proteins. Upon exposure of cells to interferons (IFNs), the β1i/LMP2, β2i/MECL-1, and β5i/LMP7 subunits are induced and incorporated into newly synthesized immunoproteasomes (IP), which are thought to function solely as critical players in the optimization of the CD8(+) T-cell response. However, the observation that IP are present in several non-immune tissues under normal conditions and/or following pathological events militates against the view that its role is limited to MHC class I presentation. In support of this concept, the recent use of genetic models deficient for β1i/LMP2, β2i/MECL-1, or β5i/LMP7 has uncovered unanticipated functions for IP in innate immunity and non-immune processes. Herein, we review recent data in an attempt to clarify the role of IP beyond MHC class I epitope presentation with emphasis on its involvement in the regulation of protein homeostasis, cell proliferation, and cytokine gene expression.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
| | - Peter-Michael Kloetzel
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
| | - Elke Krüger
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
| | - Ulrike Seifert
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
- Institut für Molekulare und Klinische Immunologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
11
|
Bousquet-Dubouch MP, Fabre B, Monsarrat B, Burlet-Schiltz O. Proteomics to study the diversity and dynamics of proteasome complexes: from fundamentals to the clinic. Expert Rev Proteomics 2012; 8:459-81. [PMID: 21819302 DOI: 10.1586/epr.11.41] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This article covers the latest contributions of proteomics to the structural and functional characterization of proteasomes and their associated proteins, but also to the detection of proteasomes as clinical biomarkers in diseases. Proteasomes are highly heterogenous supramolecular complexes and constitute important cellular proteases controlling the pool of proteins involved in key cellular functions. The comprehension of the structure/function relationship of proteasomes is therefore of major interest in biology. Numerous biochemical methods have been employed to purify proteasomes, and have led to the identification of complexes of various compositions - depending on the experimental conditions and the type of strategy used. In association with protein separation and enrichment techniques, modern mass spectrometry instruments and mass spectrometry-based quantitative methods, they have led to unprecedented breakthroughs in the in-depth analysis of the diversity and dynamics of proteasome composition and localization under various stimuli or pathological contexts. Proteasome inhibitors are now used in clinics for the treatment of cancer, and recent studies propose that the proteasome should be considered as a predictive biomarker for various pathologies.
Collapse
|
12
|
Huber EM, Groll M. Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development. Angew Chem Int Ed Engl 2012; 51:8708-20. [PMID: 22711561 DOI: 10.1002/anie.201201616] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Indexed: 01/30/2023]
Abstract
Proteolytic degradation is an essential cellular process which is primarily carried out by the 20S proteasome core particle (CP), a protease of 720 kDa and 28 individual subunits. As a result of its central functional role, the proteasome represents an attractive drug target that has been extensively investigated during the last decade and validated by the approval of bortezomib by the US Food and Drug Administration (FDA). Currently, several optimized second-generation proteasome inhibitors are being explored as anticancer drugs in clinical trials, and most of them target both constitutive proteasomes (cCPs) and immunoproteasomes (iCPs). However, selective inhibition of the iCPs, a distinct class of proteasomes predominantly expressed in immune cells, appears to be a promising therapeutic rationale for the treatment of autoimmune disorders. Although a few selective agents have already been identified, the recently determined crystal structure of the iCP will further promote the development and optimization of iCP-selective compounds.
Collapse
Affiliation(s)
- Eva Maria Huber
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | | |
Collapse
|
13
|
Huber EM, Groll M. Inhibitoren für das konstitutive Proteasom und das Immunoproteasom: aktuelle und zukünftige Tendenzen in der Medikamentenentwicklung. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201616] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
A selective inhibitor of the immunoproteasome subunit LMP2 induces apoptosis in PC-3 cells and suppresses tumour growth in nude mice. Br J Cancer 2012; 107:53-62. [PMID: 22677907 PMCID: PMC3389428 DOI: 10.1038/bjc.2012.243] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although the proteasome is a validated anticancer target, the clinical application of its inhibitors has been limited because of inherent systemic toxicity. To broaden clinical utility of proteasome inhibitors as anticancer agents, it is critical to develop strategies to selectively target proteasomes in cancer cells. The immunoproteasome is an alternative form of the constitutive proteasome that is expressed at high levels in cancer tissues, but not in most normal cells in the body. METHODS To validate the immunoproteasome as a chemotherapeutic target, an immunoproteasome catalytic subunit LMP2-targeting inhibitor and siRNA were used. The sensitivity of PC-3 prostate cancer cells to these reagents was investigated using viability assays. Further, a xenograft model of prostate cancer was studied to test the in vivo effects of LMP2 inhibition. RESULTS A small molecule inhibitor of the immunoproteasome subunit LMP2, UK-101, induced apoptosis of PC-3 cells and resulted in significant inhibition (~50-60%) of tumour growth in vivo. Interestingly, UK-101 did not block degradation of IκBα in PC-3 cells treated with TNF-α, suggesting that its mode of action may be different from that of general proteasome inhibitors, such as bortezomib, which block IκBα degradation. CONCLUSION These results strongly suggest that the immunoproteasome has important roles in cancer cell growth and thus provide a rationale for targeting the immunoproteasome in the treatment of prostate cancer.
Collapse
|
15
|
Novel Pharmacological Approaches for Inflammatory Bowel Disease: Targeting Key Intracellular Pathways and the IL-23/IL-17 Axis. Int J Inflam 2012; 2012:389404. [PMID: 22506136 PMCID: PMC3312283 DOI: 10.1155/2012/389404] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/28/2011] [Indexed: 12/13/2022] Open
Abstract
This review identifies possible pharmacological targets for inflammatory bowel disease (IBD) within the IL-23/IL-17 axis. Specifically, there are several targets within the IL-23/IL-17 pathways for potential pharmacological intervention with antibodies or small molecule inhibitors. These targets include TL1A (tumor necrosis factor-like molecule), DR3 (death receptor 3), IL-23, IL-17 and the receptors for IL-23 and IL-17. As related to IBD, there are also other novel pharmacological targets. These targets include inhibiting specific immunoproteasome subunits, blocking a key enzyme in sphingolipid metabolism (sphingosine kinase), and modulating NF-κB/STAT3 interactions. Several good approaches exist for pharmacological inhibition of key components in the IL-23 and IL-17 pathways. These approaches include specific monoclonal antibodies to TL1A, IL-17 receptor, Fc fusion proteins, specific antibodies to IL-17F, and small molecule inhibitors of IL-17 like Vidofludimus. Also, other potential approaches for targeted drug development in IBD include specific chemical inhibitors of SK, specific small molecule inhibitors directed against catalytic subunits of the immunoproteasome, and dual inhibitors of the STAT3 and NF-κB signal transduction systems. In the future, well-designed preclinical studies are still needed to determine which of these pharmacological approaches will provide drugs with the best efficacy and safety profiles for entrance into clinical trials.
Collapse
|
16
|
Carmony KC, Lee DM, Wu Y, Lee NR, Wehenkel M, Lee J, Lei B, Zhan CG, Kim KB. A bright approach to the immunoproteasome: development of LMP2/β1i-specific imaging probes. Bioorg Med Chem 2012; 20:607-13. [PMID: 21741845 PMCID: PMC3193892 DOI: 10.1016/j.bmc.2011.06.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/31/2011] [Accepted: 06/14/2011] [Indexed: 01/01/2023]
Abstract
While the constitutive, 26S proteasome plays an important role in regulating many important cellular processes, a variant form known as the immunoproteasome is thought to primarily function in adaptive immune responses. However, recent studies indicate an association of immunoproteasomes with many physiological disorders such as cancer, neurodegenerative, and inflammatory diseases. Despite this, the detailed functions of the immunoproteasome remain poorly understood. Immunoproteasome-specific probes are essential to gain insight into immunoproteasome function. Here, we describe for the first time the development of cell-permeable activity-based fluorescent probes, UK101-Fluor and UK101-B660, which selectively target the catalytically active LMP2/β1i subunit of the immunoproteasome. These probes facilitate rapid detection of the cellular localization of catalytically active immunoproteasomes in living cells, providing a valuable tool to analyze immunoproteasome functions. Additionally, as LMP2/β1i may serve as a potential tumor biomarker, an LMP2/β1i-targeting fluorescent imaging probe may be applicable to a rapid readout assay to determine tumor LMP2/β1i levels.
Collapse
Affiliation(s)
- Kimberly Cornish Carmony
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tennoune N, Bertrand J, Goichon A, Déchelotte P, Coëffier M. Régulation du métabolisme protéique intestinal par les nutriments. NUTR CLIN METAB 2011. [DOI: 10.1016/j.nupar.2011.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Henry L, Le Gallic L, Garcin G, Coux O, Jumez N, Roger P, Lavabre-Bertrand T, Martinez J, Meunier L, Stoebner P. Proteolytic activity and expression of the 20S proteasome are increased in psoriasis lesional skin. Br J Dermatol 2011; 165:311-20. [DOI: 10.1111/j.1365-2133.2011.10447.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Singh AV, Bandi M, Aujay MA, Kirk CJ, Hark DE, Raje N, Chauhan D, Anderson KC. PR-924, a selective inhibitor of the immunoproteasome subunit LMP-7, blocks multiple myeloma cell growth both in vitro and in vivo. Br J Haematol 2010; 152:155-63. [PMID: 21114484 DOI: 10.1111/j.1365-2141.2010.08491.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PR-924 is an LMP-7-selective tripeptide epoxyketone proteasome inhibitor that covalently modifies proteasomal N-terminal threonine active sites. In the present study, we show that PR-924 inhibits growth and triggers apoptosis in multiple myeloma (MM) cell lines and primary patient MM cells, without significantly affecting normal peripheral blood mononuclear cells. PR-924-induced apoptosis in MM cells is associated with activation of caspase-3, caspase-8, caspase-9, BID, PARP and cytochrome-c release. In vivo administration of PR-924 inhibits tumour growth in human plasmacytoma xenografts. Results from SCID-hu model show a significant reduction in the shIL-6R levels in mice treated with PR-924 versus vehicle-control. PR-924 treatment was well tolerated as evidenced by the lack of weight loss. Importantly, treatment of tumour-bearing mice with PR-924, but not vehicle alone, prolonged survival. Our preclinical findings therefore validate immunoproteasome LMP-7 subunit as a novel therapeutic target in MM.
Collapse
Affiliation(s)
- Ajita V Singh
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wagner J, Sim WH, Ellis JA, Ong EK, Catto-Smith AG, Cameron DJS, Bishop RF, Kirkwood CD. Interaction of Crohn's disease susceptibility genes in an Australian paediatric cohort. PLoS One 2010; 5:e15376. [PMID: 21079743 PMCID: PMC2975706 DOI: 10.1371/journal.pone.0015376] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/24/2010] [Indexed: 11/30/2022] Open
Abstract
Genetic susceptibility is an important contributor to the pathogenesis of Crohn's disease (CD). We investigated multiple CD susceptibility genes in an Australian paediatric onset CD cohort. Newly diagnosed paediatric onset CD patients (n = 72) and controls (n = 98) were genotyped for 34 single nucleotide polymorphisms (SNPs) in 18 genetic loci. Gene-gene interaction analysis, gene-disease phenotype analysis and genetic risk profiling were performed for all SNPs and all genes. Of the 34 SNPs analysed, four polymorphisms on three genes (NOD2, IL23R, and region 3p21) were significantly associated with CD status (p<0.05). All three CD specific paediatric polymorphisms on PSMG1 and TNFRSF6B showed a trend of association with p<0.1. An additive gene-gene interaction involving TLR4, PSMG1, TNFRSF6B and IRGM was identified with CD. Genes involved in microbial processing (TLR4, PSMG1, NOD2) were significantly associated either at the individual level or in gene-gene interactive roles. Colonic disease was significantly associated with disease SNP rs7517847 (IL23R) (p<0.05) and colonic and ileal/colonic disease was significantly associated with disease SNP rs125221868 (IBD5) and SLC22A4 & SLC22A4/5 variants (p<0.05). We were able to demonstrate genetic association of several genes to CD in a paediatric onset cohort. Several of the observed associations have not been reported previously in association with paediatric CD patients. Our findings demonstrate that CD genetic susceptibility in paediatric patients presents as a complex interaction between numerous genes.
Collapse
Affiliation(s)
- Josef Wagner
- Enteric Virus Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Fitzpatrick LR, Deml L, Hofmann C, Small JS, Groeppel M, Hamm S, Lemstra S, Leban J, Ammendola A. 4SC-101, a novel immunosuppressive drug, inhibits IL-17 and attenuates colitis in two murine models of inflammatory bowel disease. Inflamm Bowel Dis 2010; 16:1763-77. [PMID: 20310011 DOI: 10.1002/ibd.21264] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Dihydroorotate dehydrogenase (DHODH) is a key enzyme involved in pyrimidine biosynthesis. DHODH is a known target for the treatment of autoimmune diseases. 4SC-101 is a novel immunosuppressive drug that inhibits DHODH. A goal of our study was to examine the in vitro effects of 4SC-101 on IL-17 production by mononuclear cells. In addition, we evaluated the efficacy of 4SC-101 against acute TNBS (2,4,6-tritrobenzene sulfonic acid) and chronic dextran sodium sulfate (DSS)-induced colitis in mice. METHODS Peripheral blood mononuclear cells (PBMCs) from healthy human donors were used to evaluate cellular proliferation and cytokine (IL-17, TNF-α) production. The oral effects of 4SC-101 (100 or 200 mg/kg) were examined following induction of chronic colitis by the administration of 3% DSS (4 cycles) to Balb/c mice. Morphometric and histological indices of colitis were evaluated as indicators of drug efficacy. 4SC-101 was also administered for 6 days after the intracolonic administration of TNBS (20 mg in 50% ethanol) to female Balb/c mice. The colons were analyzed for overall macroscopic damage, ulceration, total length, distal segment weight, MPO activity, and histological pathology as indicators for the effectiveness of 4SC-101. RESULTS In vitro, 4SC-101 is a potent inhibitor of human DHODH, inhibits lymphocyte proliferation, and uniquely blocks phytohemagglutinin-stimulated IL-17 production by lymphocytes. In vivo, oral administration of 4SC-101 effectively improved both chronic DSS and acute TNBS colitis in mice. In these colitis models the overall efficacy profile of 4SC-101 was similar to that of dexamethasone. CONCLUSIONS 4SC-101 is a novel immunosuppressive drug with excellent potential for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Leo R Fitzpatrick
- Penn State College of Medicine, Hummelstown, Pennsylvania 17042, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Alamir I, Boukhettala N, Aziz M, Breuillé D, Déchelotte P, Coëffier M. Beneficial effects of cathepsin inhibition to prevent chemotherapy-induced intestinal mucositis. Clin Exp Immunol 2010; 162:298-305. [PMID: 20731673 DOI: 10.1111/j.1365-2249.2010.04220.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
One of the main secondary toxic side effects of anti-mitotic agents used to treat cancer patients is intestinal mucositis. Previous data showed that cathepsin D activity, contributing to the proteolytic lysosomal pathway, is up-regulated during intestinal mucositis in rats. At the same time, cathepsin inhibition limits intestinal damage in animal models of inflammatory bowel diseases. The aim of this study was to evaluate the effects of cathepsin inhibition on methotrexate-induced mucositis in rats. Male Sprague-Dawley rats received saline solution subcutaneously as the control group or 2·5 mg/kg of methotrexate for 3 days (D0-D2). From D0 to D3 methotrexate-treated rats also received intraperitoneal injections of pepstatin A, a specific inhibitor of cathepsin D or E64, an inhibitor of cathepsins B, H and L, or vehicle. Rats were euthanized at D4 and jejunal samples were collected. Body weight and food intake were partially preserved in rats receiving E64 compared with rats receiving vehicle or pepstatin A. Cathepsin D activity, used as a marker of lysosomal pathway, was reduced both in E64 and pepstatin-treated rats. However, villus atrophy and intestinal damage observed in methotrexate-treated rats were restored in rats receiving E64 but not in rats receiving pepstatin A. The intramucosal concentration of proinflammatory cytokines, interleukin-1β and cytokine-induced neutrophil chemoattractant (CINC)-2, was markedly increased in methotrexate-treated rats receiving vehicle or pepstatin A but not after E64 treatment. In conclusion, a large broad inhibition of cathepsins could represent a new potential target to limit the severity of chemotherapy-induced mucositis as opposed to the inhibition of cathepsin D alone.
Collapse
Affiliation(s)
- I Alamir
- Institute for Biomedical Research and European Institute for Peptide Research, Rouen University, France
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
AIM AND OBJECTIVE : Chronic models of inflammatory bowel disease are lacking in preadult rodents. The primary goal of our study was to develop a chronic model of hapten-induced intestinal inflammation and fibrosis in young rats. Second, we aimed to determine the profiles of key Th-1, Th-2, and Th-17 proinflammatory and profibrotic cytokines, during the progression of colitis in young rats. MATERIALS AND METHODS Chronic hapten-induced colitis was induced by the administration of intracolonic 2,4,6-trinitrobenzene sulfonic acid (TNBS) in young Wistar rats (postnatal days 23, 35, 48, and 59). After 1, 3, or 4 cycles of TNBS, rats were euthanized and the colons were removed for the measurement of macroscopic, histologic, and biochemical parameters of colitis. RESULTS Young rats developed moderate to severe colitis in the distal colon, without significant morbidity or mortality. Macroscopic severity, histologic pathology, and colonic weights increased progressively with repeated TNBS administration. Cobblestone-like ulceration and fibrosis was evident in the colon, particularly after 4 cycles of TNBS. There was a unique cytokine pattern associated with colitis in young rats. Interleukin (IL)-12 and tumor necrosis factor (TNF)-alpha peaked during the earlier postnatal time points (days 28 and 54) and then declined after repetitive administration of the hapten (day 67). In contrast, IL-13 and IL-17 were consistently elevated after administration of TNBS to the colon of young rats. CONCLUSIONS A new model of colitis was established in young rats, which has a unique pattern of Th-1, Th-2, and Th-17 cytokine induction. This chronic TNBS model may be useful for studying the development of inflammation and fibrosis in preadult animals.
Collapse
|
24
|
Efficacy of a novel sphingosine kinase inhibitor in experimental Crohn’s disease. Inflammopharmacology 2010; 18:73-85. [DOI: 10.1007/s10787-010-0032-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 01/20/2010] [Indexed: 12/23/2022]
|
25
|
Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 2008; 113:4667-76. [PMID: 19050304 DOI: 10.1182/blood-2008-07-171637] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proteasome inhibition is a validated strategy for therapy of multiple myeloma, but this disease remains challenging as relapses are common, and often associated with increasing chemoresistance. Moreover, nonspecific proteasome inhibitors such as bortezomib can induce peripheral neuropathy and other toxicities that may compromise the ability to deliver therapy at full doses, thereby decreasing efficacy. One novel approach may be to target the immunoproteasome, a proteasomal variant found predominantly in cells of hematopoietic origin that differs from the constitutive proteasome found in most other cell types. Using purified preparations of constitutive and immunoproteasomes, we screened a rationally designed series of peptidyl-aldehydes and identified several with relative specificity for the immunoproteasome. The most potent immunoproteasome-specific inhibitor, IPSI-001, preferentially targeted the beta1(i) subunit of the immunoproteasome in vitro and in cellulo in a dose-dependent manner. This agent induced accumulation of ubiquitin-protein conjugates, proapoptotic proteins, and activated caspase-mediated apoptosis. IPSI-001 potently inhibited proliferation in myeloma patient samples and other hematologic malignancies. Importantly, IPSI-001 was able to overcome conventional and novel drug resistance, including resistance to bortezomib. These findings provide a rationale for the translation of IPSIs to the clinic, where they may provide antimyeloma activity with greater specificity and less toxicity than current inhibitors.
Collapse
|
26
|
Wehenkel M, Hong JT, Kim KB. Proteasome modulators: essential chemical genetic tools for understanding human diseases. MOLECULAR BIOSYSTEMS 2008; 4:280-6. [DOI: 10.1039/b716221a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|