1
|
Yang B, Ma D, Zhu X, Wu Z, An Q, Zhao J, Gao X, Zhang L. Roles of TRP and PIEZO receptors in autoimmune diseases. Expert Rev Mol Med 2024; 26:e10. [PMID: 38659380 PMCID: PMC11140548 DOI: 10.1017/erm.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 08/21/2023] [Indexed: 04/26/2024]
Abstract
Autoimmune diseases are pathological autoimmune reactions in the body caused by various factors, which can lead to tissue damage and organ dysfunction. They can be divided into organ-specific and systemic autoimmune diseases. These diseases usually involve various body systems, including the blood, muscles, bones, joints and soft tissues. The transient receptor potential (TRP) and PIEZO receptors, which resulted in David Julius and Ardem Patapoutian winning the Nobel Prize in Physiology or Medicine in 2021, attracted people's attention. Most current studies on TRP and PIEZO receptors in autoimmune diseases have been carried out on animal model, only few clinical studies have been conducted. Therefore, this study aimed to review existing studies on TRP and PIEZO to understand the roles of these receptors in autoimmune diseases, which may help elucidate novel treatment strategies.
Collapse
Affiliation(s)
- Baoqi Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xueqing Zhu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
2
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
3
|
Ji MJ, Hong JH. An overview of carbonic anhydrases and membrane channels of synoviocytes in inflamed joints. J Enzyme Inhib Med Chem 2020; 34:1615-1622. [PMID: 31480869 PMCID: PMC6735303 DOI: 10.1080/14756366.2019.1659791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The highly aggressive fibroblast-like synoviocytes (FLSs) are inflammatory mediators involved in synovial joint destruction. Membrane channels and transporters are essential components of the cell migration apparatus and are involved in various cellular functions. Although evidence is emerging that cell migration is a physiological/pathological process, the mechanism of highly dynamic synoviocytes linked to the membrane channels and carbonic anhydrases (CAs) in inflamed joints is only partially understood. In this review, topics covered will give a brief overview of CAs and the membrane channels of synoviocytes. We have also systematically focused on the role of FLS channels and transporters under various conditions, including rheumatoid arthritis (RA), to understand the pathophysiology of the migration of synoviocytes as inflammatory mediators in joints.
Collapse
Affiliation(s)
- Min Jeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute , Incheon , South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute , Incheon , South Korea
| |
Collapse
|
4
|
Galindo T, Reyna J, Weyer A. Evidence for Transient Receptor Potential (TRP) Channel Contribution to Arthritis Pain and Pathogenesis. Pharmaceuticals (Basel) 2018; 11:E105. [PMID: 30326593 PMCID: PMC6315622 DOI: 10.3390/ph11040105] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Based on clinical and preclinical evidence, Transient Receptor Potential (TRP) channels have emerged as potential drug targets for the treatment of osteoarthritis, rheumatoid arthritis, and gout. This review summarizes the relevant data supporting a role for various TRP channels in arthritis pain and pathogenesis, as well as the current state of pharmacological efforts to ameliorate arthritis symptoms in patient populations.
Collapse
Affiliation(s)
- Tabitha Galindo
- School of Physical Therapy and Athletic Training, Pacific University, Hillsboro, OR 97116, USA.
| | - Jose Reyna
- School of Physical Therapy and Athletic Training, Pacific University, Hillsboro, OR 97116, USA.
| | - Andy Weyer
- Biological Sciences Department, City College of San Francisco, San Francisco, CA 94112, USA.
| |
Collapse
|
5
|
Ferrer VP, Moura Neto V, Mentlein R. Glioma infiltration and extracellular matrix: key players and modulators. Glia 2018; 66:1542-1565. [DOI: 10.1002/glia.23309] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Rolf Mentlein
- Department of Anatomy; University of Kiel; Kiel Germany
| |
Collapse
|
6
|
Čožíková D, Šílová T, Moravcová V, Šmejkalová D, Pepeliaev S, Velebný V, Hermannová M. Preparation and extensive characterization of hyaluronan with narrow molecular weight distribution. Carbohydr Polym 2017; 160:134-142. [DOI: 10.1016/j.carbpol.2016.12.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/06/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022]
|
7
|
Ishikawa J, Takahashi N, Matsumoto T, Yoshioka Y, Yamamoto N, Nishikawa M, Hibi H, Ishigro N, Ueda M, Furukawa K, Yamamoto A. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental rheumatoid arthritis. Bone 2016; 83:210-219. [PMID: 26603475 DOI: 10.1016/j.bone.2015.11.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/02/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial hyperplasia and chronic inflammation, which lead to the progressive destruction of cartilage and bone in the joints. Numerous studies have reported that administrations of various types of MSCs improve arthritis symptoms in animal models, by paracrine mechanisms. However, the therapeutic effects of the secreted factors alone, without the cell graft, have been uncertain. Here, we show that a single intravenous administration of serum-free conditioned medium (CM) from human deciduous dental pulp stem cells (SHED-CM) into anti-collagen type II antibody-induced arthritis (CAIA), a mouse model of rheumatoid arthritis (RA), markedly improved the arthritis symptoms and joint destruction. The therapeutic efficacy of SHED-CM was associated with an induction of anti-inflammatory M2 macrophages in the CAIA joints and the abrogation of RANKL expression. SHED-CM specifically depleted of an M2 macrophage inducer, the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (ED-Siglec-9), exhibited a reduced ability to induce M2-related gene expression and attenuate CAIA. SHED-CM also inhibited the RANKL-induced osteoclastogenesis in vitro. Collectively, our findings suggest that SHED-CM provides multifaceted therapeutic effects for treating CAIA, including the ED-Siglec-9-dependent induction of M2 macrophage polarization and inhibition of osteoclastogenesis. Thus, SHED-CM may represent a novel anti-inflammatory and reparative therapy for RA.
Collapse
Affiliation(s)
- Jun Ishikawa
- Department of Oral and Maxillofacial Surgery, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Nobunori Takahashi
- Orthopedic Surgery and Rheumatology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takuya Matsumoto
- Orthopedic Surgery and Rheumatology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yutaka Yoshioka
- Orthopedic Surgery and Rheumatology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Noriyuki Yamamoto
- Department of Oral and Maxillofacial Surgery, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masaya Nishikawa
- Department of Oral and Maxillofacial Surgery, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Naoki Ishigro
- Orthopedic Surgery and Rheumatology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Minoru Ueda
- Department of Oral and Maxillofacial Surgery, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Koichi Furukawa
- Biochemistry II of Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akihito Yamamoto
- Department of Oral and Maxillofacial Surgery, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
8
|
Yuan Y, Tang BS, Yu RL, Li K, Lv ZY, Yan XX, Guo JF. Marginal association between SNP rs2046571 of the HAS2 gene and Parkinson's disease in the Chinese female population. Neurosci Lett 2013; 552:58-61. [PMID: 23916661 DOI: 10.1016/j.neulet.2013.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/17/2013] [Accepted: 07/20/2013] [Indexed: 11/18/2022]
Abstract
Recent GWASs have implicated many novel SNPs in the development of Parkinson's disease (PD). Single nucleotide polymorphism (SNP) rs2046571 of the HSA2 (encoding hyaluronan synthase 2) was reported to have marginal association with PD. Herein, we conducted a case-control study to evaluate the possible association between SNP rs2046571 and PD in Chinese. All subjects (1043 PD patient and 1044 normal control) were successfully genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. No statistically significant difference in genotype frequency between cases and controls was observed (P=0.074), no statistically significant difference in genotype frequency between early-onset and late-onset was observed (P=0.264 and P=0.120, respectively). No statistically significant difference in genotype frequency between male cases and controls (P=0.108). But surprisingly, there was statistically marginal significant difference in genotype frequency between female cases and controls (P=0.042). Our findings suggested that rs2046571 of the HSA2 has marginal association with PD in Chinese population.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, People's Republic of China; Neurodegenerative Disorders Research Center, Central South University, Changsha, 410008 Hunan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Booth BW, Yang CC, Burg KJ. Assessment of a Chitosan/Hyaluronan Injectable Composite for Fat Reconstruction. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:2303-20. [DOI: 10.1163/156856211x615274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Brian W. Booth
- a Institute for Biological Interfaces of Engineering, Clemson University , Clemson , SC , 29634 , USA
| | - Chih-Chao Yang
- a Institute for Biological Interfaces of Engineering, Clemson University , Clemson , SC , 29634 , USA
| | - Karen J.L. Burg
- a Institute for Biological Interfaces of Engineering, Clemson University , Clemson , SC , 29634 , USA
- b Department of Bioengineering , Clemson University , Clemson , SC , 29634 , USA
| |
Collapse
|
10
|
Monteiro DS, Nobre TM, Zaniquelli MED. Hyaluronidase Behavior at the Air/Liquid and Air/Lipid Interfaces and Improved Enzymatic Activity by Its Immobilization in a Biomembrane Model. J Phys Chem B 2011; 115:4801-9. [DOI: 10.1021/jp110795d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Douglas Santos Monteiro
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Thatyane Morimoto Nobre
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Maria Elisabete Darbello Zaniquelli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
The potency of hyaluronan of different molecular weights in the stimulation of blood phagocytes. Mediators Inflamm 2011; 2010:380948. [PMID: 21403830 PMCID: PMC3042665 DOI: 10.1155/2010/380948] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/20/2010] [Indexed: 11/20/2022] Open
Abstract
The regulatory functions of glycosaminoglycan hyaluronan (HA) are suggested to be dependent on its molecular weight (MW). Proinflammatory and stimulatory effects are proposed mainly for the low MW HA. However, the complex response of blood phagocytes to HA of different MW is unclear. Herein, the effects of highly purified HA of precisely defined MW (52, 250, and 970 kDa) on human blood phagocytes were tested. All MW HA activated blood phagocytes, including the spontaneous production of ROS, degranulation, and the production of tumor necrosis factor alpha, with low MW HA 52 kDa having the highest potency and high MW HA 970 kDa having the lowest potency. Interestingly, HA inhibited ROS production stimulated by opsonized zymosan particles and, in contrast, potentiated starch-activated ROS production, mostly independent of MW. Data showed a significant effect of HA of different MW on blood phagocytes, including high MW HA.
Collapse
|
12
|
Ciurtin C, Majeed Y, Naylor J, Sukumar P, English AA, Emery P, Beech DJ. TRPM3 channel stimulated by pregnenolone sulphate in synovial fibroblasts and negatively coupled to hyaluronan. BMC Musculoskelet Disord 2010; 11:111. [PMID: 20525329 PMCID: PMC2893450 DOI: 10.1186/1471-2474-11-111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 06/04/2010] [Indexed: 01/19/2023] Open
Abstract
Background Calcium-permeable channels are known to have roles in many mammalian cell types but the expression and contribution of such ion channels in synovial cells is mostly unknown. The objective of this study was to investigate the potential relevance of Transient Receptor Potential Melastatin 3 (TRPM3) channel to fibroblast-like synoviocytes (FLSs) of patients with rheumatoid arthritis. Methods The study used RT-PCR and immunofluorescence to detect mRNA and protein. Intracellular calcium measurement detected channel activity in a FLS cell-line and primary cultures of FLSs from patients with rheumatoid arthritis. Enzyme-linked immunosorbent assays measured hyaluronan. Results Endogenous expression of TRPM3 was detected. Previously reported stimulators of TRPM3 sphingosine and pregnenolone sulphate evoked sustained elevation of intracellular calcium in FLSs. The FLS cell-line showed an initial transient response to sphingosine which may be explained by TRPV4 channels but was not observed in FLSs from patients. Blocking antibody targeted to TRPM3 inhibited sustained sphingosine and pregnenolone sulphate responses. Secretion of hyaluronan, which contributes adversely in rheumatoid arthritis, was suppressed by pregnenolone sulphate in FLSs from patients and the effect was blocked by anti-TRPM3 antibody. Conclusions The data suggest that FLSs of patients with rheumatoid arthritis express TRPM3-containing ion channels that couple negatively to hyaluronan secretion and can be stimulated by pharmacological concentrations of pregnenolone sulphate.
Collapse
Affiliation(s)
- Coziana Ciurtin
- Institute of Membrane & Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Karousou E, Kamiryo M, Skandalis SS, Ruusala A, Asteriou T, Passi A, Yamashita H, Hellman U, Heldin CH, Heldin P. The activity of hyaluronan synthase 2 is regulated by dimerization and ubiquitination. J Biol Chem 2010; 285:23647-54. [PMID: 20507985 DOI: 10.1074/jbc.m110.127050] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hyaluronan is a component of the extracellular matrix, which affects tissue homeostasis. In this study, we investigated the regulatory mechanisms of one of the hyaluronan-synthesizing enzymes, HAS2. Ectopic expression of Flag- and 6myc-HAS2 in COS-1 cells followed by immunoprecipitation and immunoblotting revealed homodimers; after co-transfection with Flag-HAS3, also heterodimers were seen. Furthermore, the expressed HAS2 was ubiquitinated. We identified one acceptor site for ubiquitin on lysine residue 190. Mutation of this residue led to inactivation of the enzymatic activity of HAS2. Interestingly, K190R-mutated HAS2 formed dimers with wt HAS2 and quenched the activity of wt HAS2, thus demonstrating a functional role of the dimeric configuration.
Collapse
Affiliation(s)
- Eugenia Karousou
- Ludwig Institute for Cancer Research, Uppsala University Biomedical Center, SE-75124 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jagannath S, Ramachandran K. Influence of competing metabolic processes on the molecular weight of hyaluronic acid synthesized by Streptococcus zooepidemicus. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.09.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular Matrix Molecules: Potential Targets in Pharmacotherapy. Pharmacol Rev 2009. [DOI: 10.1124/pr.109.001289 doi:dx.doi.org] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
16
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 2009; 61:198-223. [PMID: 19549927 PMCID: PMC2830117 DOI: 10.1124/pr.109.001289] [Citation(s) in RCA: 351] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) consists of numerous macromolecules classified traditionally into collagens, elastin, and microfibrillar proteins, proteoglycans including hyaluronan, and noncollagenous glycoproteins. In addition to being necessary structural components, ECM molecules exhibit important functional roles in the control of key cellular events such as adhesion, migration, proliferation, differentiation, and survival. Any structural inherited or acquired defect and/or metabolic disturbance in the ECM may cause cellular and tissue alterations that can lead to the development or progression of disease. Consequently, ECM molecules are important targets for pharmacotherapy. Specific agents that prevent the excess accumulation of ECM molecules in the vascular system, liver, kidney, skin, and lung; alternatively, agents that inhibit the degradation of the ECM in degenerative diseases such as osteoarthritis would be clinically beneficial. Unfortunately, until recently, the ECM in drug discovery has been largely ignored. However, several of today's drugs that act on various primary targets affect the ECM as a byproduct of the drugs' actions, and this activity may in part be beneficial to the drugs' disease-modifying properties. In the future, agents and compounds targeting directly the ECM will significantly advance the treatment of various human diseases, even those for which efficient therapies are not yet available.
Collapse
Affiliation(s)
- Hannu Järveläinen
- Department of Medicine, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
17
|
Allison D, Braun K, Wight T, Grande-Allen K. Differential effects of exogenous and endogenous hyaluronan on contraction and strength of collagen gels. Acta Biomater 2009; 5:1019-26. [PMID: 19109082 DOI: 10.1016/j.actbio.2008.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 10/18/2008] [Accepted: 11/19/2008] [Indexed: 12/11/2022]
Abstract
The addition of exogenous hyaluronan to biomaterial scaffolds has been an important area of investigation for many decades. The ability to manipulate endogenous production of hyaluronan via the hyaluronan syntheses has offered another mechanism to study the effect of hyaluronan. While the literature suggests that exogenously added hyaluronan and endogenously produced hyaluronan will have varying impacts on extracellular matrix organization and function, no studies have directly shown this phenomenon. In this investigation, we demonstrate that the addition of exogenous high molecular weight (approximately 1 MDa) hyaluronan and hyaluronan oligosaccharides have a distinct impact on both contraction and strength of smooth muscle cell-seeded collagen gels when compared to the effects of hyaluronan that is endogenously produced by the hyaluronan synthases. More specifically, the addition of exogenous high molecular weight hyaluronan resulted in more compact collagen gels with a higher ultimate tensile strength, whereas the endogenous overproduction of hyaluronan resulted in the opposite effect. We suggest that the addition of exogenous HA to collagen gels represents a model for the therapeutic administration of HA, whereas the addition of excess HA to a tissue via the endogenous overexpression of has represents a model for the pathological accumulation of HA.
Collapse
|
18
|
Exogenous N-acetylglucosamine increases hyaluronan production in cultured human dermal fibroblasts. Arch Dermatol Res 2009; 301:549-51. [PMID: 19247681 DOI: 10.1007/s00403-009-0932-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 01/25/2009] [Accepted: 02/05/2009] [Indexed: 11/27/2022]
Abstract
Application of hyaluronan (HA) containing cosmetic products to the skin is reported to moisturize and restore elasticity thereby achieving an antiwrinkle effect. In the skin, HA can be synthesized by dermal fibroblasts and N-acetylglucosamine (NAG) is a precursor for HA biosynthesis in the body. To study the effects of exogenous NAG on HA production in human dermal fibroblasts, HA production and HA-synthesizing enzymes 1, 2 and 3 mRNA expression in cultured human dermal fibroblasts were measured by ELISA and RT-PCR, respectively. The results showed that NAG promoted HA production while had no effect on the expression of HA-synthesizing enzymes 1, 2 and 3 mRNA in human dermal fibroblasts.
Collapse
|
19
|
Wu Y, Hu Y, Cai J, Ma S, Wang X. Coagulation property of hyaluronic acid-collagen/chitosan complex film. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:3621-3629. [PMID: 18642062 DOI: 10.1007/s10856-008-3477-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Accepted: 05/15/2008] [Indexed: 05/26/2023]
Abstract
Biomacromolecule has been widely used as biomedical material. Because different biomacromolecules possess different properties, how to exhibit the respective advantages of different components on one type of biomaterial becomes the hot spot in the field of biomaterial studying. This work reported a type of complex film that consisted of hyaluronic acid (HA), type I collagen (Col-I), and chitosan (CS) (HA-Col-I/CS, HCC). Then, a series of experiments were performed, such as inverted microscopic observation, atomic force microscopic (AFM) imaging, flow cytometry (FCM) measurement, MTT assay, and MIC assay. In the present work, we observed the growing condition of 3T3 fibroblasts on the surface of the HCC complex film, visualized the morphological changes of platelets during the coagulation process, and discovered microparticles on the platelet membrane. Moreover, we confirmed the microparticles are the platelet-derived microparticles (PMPs) using the FCM. In addition, the minimal inhibitory concentration (MIC) of HCC against Escherichia coli (E. coli) 8099 was 0.025 mg/ml, against Staphylococcus aureus (S. aureus) ATCC 6538 was 0.1 mg/ml. The results together indicated that the HCC film possessed promising coagulation property, cell compatibility and anti-bacteria property, and the potential in future clinical application such as wound healing and bandage.
Collapse
Affiliation(s)
- Yangzhe Wu
- Department of Chemistry, Jinan University, Guangzhou, 510632, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
Abstract
Gliomas are the most common primary intracranial tumors. Their distinct ability to infiltrate into the extracellular matrix (ECM) of the brain makes it impossible to treat these tumors using surgery and radiation therapy. A number of different studies have suggested that hyaluronan (HA), the principal glycosaminoglycan (GAG) in the ECM of the brain, is the critical factor for glioma invasion. HA-induced glioma invasion was driven by two important molecular events: matrix metalloproteinase (MMP) secretion and up-regulation of cell migration. MMP secretion was triggered by HA-induced focal adhesion kinase (FAK) activation, which transmits its signal through ERK activation and nuclear factor kappa B (NF-kappaB) translocation. Another important molecular event is osteopontin (OPN) expression. OPN expression by AKT activation triggers cell migration. These results suggest that HA-induced glioma invasion is tightly regulated by signaling mechanisms, and a detailed understanding of this molecular mechanism will provide important clues for glioma treatment.
Collapse
Affiliation(s)
- Jong Bae Park
- Research Institute and Hospital, National Cancer Center, Goyang Gyeonggi, Korea
| | | | | |
Collapse
|
21
|
Brown JR, Crawford BE, Esko JD. Glycan antagonists and inhibitors: a fount for drug discovery. Crit Rev Biochem Mol Biol 2008; 42:481-515. [PMID: 18066955 DOI: 10.1080/10409230701751611] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycans, the carbohydrate chains of glycoproteins, proteoglycans, and glycolipids, represent a relatively unexploited area for drug development compared with other macromolecules. This review describes the major classes of glycans synthesized by animal cells, their mode of assembly, and available inhibitors for blocking their biosynthesis and function. Many of these agents have proven useful for studying the biological activities of glycans in isolated cells, during embryological development, and in physiology. Some are being used to develop drugs for treating metabolic disorders, cancer, and infection, suggesting that glycans are excellent targets for future drug development.
Collapse
|