1
|
Ma K, Huang Y, Li M, Li Y, Fan F, Sun Z, Zhang X. Development of Highly Sensitive and Specific and Genetically Encoded Biosensors for Calcifediol and Calcitriol Detection. ACS Sens 2025; 10:3725-3736. [PMID: 40340357 DOI: 10.1021/acssensors.5c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
1α,25-Dihydroxyvitamin D3 (calcitriol) and 25-hydroxyvitamin D3 (calcifediol) are essential steroid metabolites that serve as key indicators of vitamin D3 status in the human body. However, conventional detection methods, such as high-performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA), are costly, time-consuming, and labor-intensive, limiting their accessibility for routine analysis. Here, we engineered genetically encoded biosensors by leveraging the human vitamin D receptor (VDR) and retinoid X receptor alpha (RXRA) to enable precise detection of calcitriol and calcifediol in Saccharomyces cerevisiae. The biosensors were designed as two-component modules by fusing the VDR ligand-binding domain to the S. cerevisiae GAL4 DNA-binding domain and RXRA to the VP16 activation domain, facilitating ligand-dependent transcriptional activation. To enhance sensitivity, we increased the copy number of the reporter module and incorporated a transcriptional amplifier, improving the half-maximal effective concentration (EC50) to 23.3 nM for calcitriol and 219.8 nM for calcifediol. Furthermore, biosensor specificity for calcitriol was optimized by screening VDR mutations using a URA3-mediated dual-selection system, yielding the VDRCT mutant, which exhibited no response to 10 μM calcifediol. The biosensors demonstrated high accuracy in measuring calcifediol in dietary supplements and calcitriol in pharmaceutical formulations, showing strong concordance with HPLC results. These findings suggest that the proposed biosensors may provide a cost-effective, rapid, and reliable alternative for food safety inspection and clinical diagnostics.
Collapse
Affiliation(s)
- Kang Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ying Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Mengying Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yixuan Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feiyu Fan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhe Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xueli Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
2
|
Alberts M, Laino T, Vaucher AC. Leveraging infrared spectroscopy for automated structure elucidation. Commun Chem 2024; 7:268. [PMID: 39550488 PMCID: PMC11569215 DOI: 10.1038/s42004-024-01341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
The application of machine learning models in chemistry has made remarkable strides in recent years. While analytical chemistry has received considerable interest from machine learning practitioners, its adoption into everyday use remains limited. Among the available analytical methods, Infrared (IR) spectroscopy stands out in terms of affordability, simplicity, and accessibility. However, its use has been limited to the identification of a selected few functional groups, as most peaks lie beyond human interpretation. We present a transformer model that enables chemists to leverage the complete information contained within an IR spectrum to directly predict the molecular structure. To cover a large chemical space, we pretrain the model using 634,585 simulated IR spectra and fine-tune it on 3,453 experimental spectra. Our approach achieves a top-1 accuracy of 44.4% and top-10 accuracy of 69.8% on compounds containing 6 to 13 heavy atoms. When solely predicting scaffolds, the model accurately predicts the top-1 scaffold in 84.5% and among the top-10 in 93.0% of cases.
Collapse
Affiliation(s)
- Marvin Alberts
- IBM Research Europe, Rüschlikon, Switzerland.
- University of Zürich, Department of Chemistry, Zürich, Switzerland.
- National Center for Competence in Research-Catalysis (NCCR-Catalysis), Zurich, Switzerland.
| | - Teodoro Laino
- IBM Research Europe, Rüschlikon, Switzerland
- National Center for Competence in Research-Catalysis (NCCR-Catalysis), Zurich, Switzerland
| | - Alain C Vaucher
- IBM Research Europe, Rüschlikon, Switzerland
- National Center for Competence in Research-Catalysis (NCCR-Catalysis), Zurich, Switzerland
| |
Collapse
|
3
|
El Abass SA, Wahba MEK, Draz ME. A green, fluorescent probe employing erythrosine-B for tracing the accidental administration of levamisole in milk and plasma samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4856-4864. [PMID: 38967542 DOI: 10.1039/d4ay00878b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
A simple and sensitive fluorescent probe has been developed and optimized to detect the non-intentional administration of levamisole (LVM). LVM is used as an anthelmintic therapy in cows, and hence, its residues appear in the drained milk until 60 hours after administering the drug. Meanwhile, levamisole is known to be an adulterant to cocaine and could be detected in addicts' plasma samples. Owing to its severe side effects, including agranulocytosis, which is lethal in many cases, detection and quantification of LVM in milk and plasma samples are of utmost importance. Therefore, a sensitive and selective analytical method is required for this purpose. This work develops a highly fluorescent probe obtained through the reaction between LVM and erythrosine-B in an acidic medium, where the produced ion pair complex has been measured at 553 nm after excitation at 528 nm. The proposed method provides linearity over the concentration range of 0.5-2.0 μg mL-1 for LVM, with a corresponding detection and quantitation limit of 0.5 and 0.3 μg mL-1. Full validation was performed, permitting the application of the suggested method to perform simple extraction steps. All the applied procedures followed the guidelines offered by green analytical chemistry, where the Green Analytical Procedure Index (GAPI) assessed the greenness of the proposed tool, and the yielded pictograms proved the eco-friendliness of the offered tool.
Collapse
Affiliation(s)
- Samah Abo El Abass
- Pharmaceutical Chemistry Department, College of Pharmacy, Prince Sattam Bin-Abdul Aziz University, PO Box 173, Al-Kharj 11942, Kingdom of Saudi Arabia.
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - May E K Wahba
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mohammed E Draz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
4
|
Hachem M, Ahmmed MK, Nacir-Delord H. Phospholipidomics in Clinical Trials for Brain Disorders: Advancing our Understanding and Therapeutic Potentials. Mol Neurobiol 2024; 61:3272-3295. [PMID: 37981628 PMCID: PMC11087356 DOI: 10.1007/s12035-023-03793-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Phospholipidomics is a specialized branch of lipidomics that focuses on the characterization and quantification of phospholipids. By using sensitive analytical techniques, phospholipidomics enables researchers to better understand the metabolism and activities of phospholipids in brain disorders such as Alzheimer's and Parkinson's diseases. In the brain, identifying specific phospholipid biomarkers can offer valuable insights into the underlying molecular features and biochemistry of these diseases through a variety of sensitive analytical techniques. Phospholipidomics has emerged as a promising tool in clinical studies, with immense potential to advance our knowledge of neurological diseases and enhance diagnosis and treatment options for patients. In the present review paper, we discussed numerous applications of phospholipidomics tools in clinical studies, with a particular focus on the neurological field. By exploring phospholipids' functions in neurological diseases and the potential of phospholipidomics in clinical research, we provided valuable insights that could aid researchers and clinicians in harnessing the full prospective of this innovative practice and improve patient outcomes by providing more potent treatments for neurological diseases.
Collapse
Affiliation(s)
- Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-Harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Houda Nacir-Delord
- Department of Chemistry, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Dos Reis JBA, Lorenzi AS, Pinho DB, Cortelo PC, do Vale HMM. The hidden treasures in endophytic fungi: a comprehensive review on the diversity of fungal bioactive metabolites, usual analytical methodologies, and applications. Arch Microbiol 2024; 206:185. [PMID: 38506928 DOI: 10.1007/s00203-024-03911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
This review provides a comprehensive overview of the key aspects of the natural metabolite production by endophytic fungi, which has attracted significant attention due to its diverse biological activities and wide range of applications. Synthesized by various fungal species, these metabolites encompass compounds with therapeutic, agricultural, and commercial significance. We delved into strategies and advancements aimed at optimizing fungal metabolite production. Fungal cultivation, especially by Aspergillus, Penicillium, and Fusarium, plays a pivotal role in metabolite biosynthesis, and researchers have explored both submerged and solid-state cultivation processes to harness the full potential of fungal species. Nutrient optimization, pH, and temperature control are critical factors in ensuring high yields of the targeted bioactive metabolites especially for scaling up processes. Analytical methods that includes High-Performance Liquid Chromatography (HPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), Gas Chromatography-Mass Spectrometry (GC-MS), Nuclear Magnetic Resonance (NMR), and Mass Spectrometry (MS), are indispensable for the identification and quantification of the compounds. Moreover, genetic engineering and metabolic pathway manipulation have emerged as powerful tools to enhance metabolite production and develop novel fungal strains with increased yields. Regulation and control mechanisms at the genetic, epigenetic, and metabolic levels are explored to fine-tune the biosynthesis of fungal metabolites. Ongoing research aims to overcome the complexity of the steps involved to ensure the efficient production and utilization of fungal metabolites.
Collapse
Affiliation(s)
| | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| | - Danilo Batista Pinho
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| | | | - Helson Mario Martins do Vale
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| |
Collapse
|
6
|
Yu S, Zou Y, Ma X, Wang D, Luo W, Tang Y, Mu D, Zhang R, Cheng X, Qiu L. Evolution of LC-MS/MS in clinical laboratories. Clin Chim Acta 2024; 555:117797. [PMID: 38280490 DOI: 10.1016/j.cca.2024.117797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has attracted significant attention in clinical practice owing to its numerous advantages. However, the widespread adoption of this technique is hindered by certain limitations, such as inappropriate analyte selection, low levels of automation, and a lack of specific reference intervals and quality control programs. This review comprehensively summarizes the current challenges associated with LC-MS/MS and proposes potential resolutions. The principle of utility should guide the selection of biomarkers, prioritizing their practical value over sheer quantity. To achieve full-process automation, methodological innovation is crucial for developing high-throughput equipment. Establishing reference intervals for mass spectrometry-based assays across multiple centers and diverse populations is essential for accurate result interpretation. Additionally, the development of commercial quality control materials assumes pivotal importance in ensuring assay reliability and reproducibility. Harmonization and standardization efforts should focus on the development of reference methods and materials for the clinical use of LC-MS/MS. In the future, commercial assay kits and laboratory-developed tests (LDTs) are expected to coexist in clinical laboratories, each offering distinct advantages. The collaborative efforts of diverse professionals is vital for addressing the challenges associated with the clinical application of LC-MS/MS. The anticipated advancements include simplification, increased automation, intelligence, and the standardization of LC-MS/MS, ultimately facilitating its seamless integration into clinical routines for both technicians and clinicians.
Collapse
Affiliation(s)
- Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Danchen Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Wei Luo
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yueming Tang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Danni Mu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Ruiping Zhang
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xinqi Cheng
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China.
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
7
|
Papp LA, Imre S, Bálint I, Lungu AI, Mărcutiu PE, Papp J, Ion V. Is it Time to Migrate to Liquid Chromatography Automated Platforms in the Clinical Laboratory? A Brief Point of View. J Chromatogr Sci 2024; 62:191-200. [PMID: 36715315 DOI: 10.1093/chromsci/bmad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/28/2022] [Indexed: 01/31/2023]
Abstract
Liquid chromatography coupled to mass spectrometry already started to surpass the major drawbacks in terms of sensitivity, specificity and cross-reactivity that some analytical methods used in the clinical laboratory exhibit. This hyphenated technique is already preferred for specific applications while finding its own place in the clinical laboratory setting. However, large-scale usage, high-throughput analysis and lack of automation emerge as shortcomings that liquid chromatography coupled to mass spectrometry still has to overrun in order to be used on a larger scale in the clinical laboratory. The aim of this review article is to point out the present-day position of the liquid chromatography coupled to mass spectrometry technique while trying to understand how this analytical method relates to the basic working framework of the clinical laboratory. This paper offers insights about the main regulation and traceability criteria that this coupling method has to align and comply to, automation and standardization issues and finally the critical steps in sample preparation workflows all related to the high-throughput analysis framework. Further steps are to be made toward automation, speed and easy-to-use concept; however, the current technological and quality premises are favorable for chromatographic coupled to mass spectral methods.
Collapse
Affiliation(s)
- Lajos-Attila Papp
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Public Health Department Mures, Gheorghe Marinescu street 40, 540136 Targu Mures, Romania
| | - Silvia Imre
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
| | - István Bálint
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Public Health Department Mures, Gheorghe Marinescu street 40, 540136 Targu Mures, Romania
| | - Andreea-Ioana Lungu
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Public Health Department Mures, Gheorghe Marinescu street 40, 540136 Targu Mures, Romania
| | - Petra-Edina Mărcutiu
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Public Health Department Mures, Gheorghe Marinescu street 40, 540136 Targu Mures, Romania
| | - Júlia Papp
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Public Health Department Mures, Gheorghe Marinescu street 40, 540136 Targu Mures, Romania
| | - Valentin Ion
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology from Targu Mures, Gheorghe Marinescu street 38, 540142 Targu Mures, Romania
| |
Collapse
|
8
|
Shewaiter MA, Selim AA, Rashed HM, Moustafa YM, Gad S. Niosomal formulation of mefenamic acid for enhanced cancer targeting; preparation, characterization and biodistribution study using radiolabeling technique. J Cancer Res Clin Oncol 2023; 149:18065-18080. [PMID: 37982828 PMCID: PMC10725351 DOI: 10.1007/s00432-023-05482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND This work aimed to prepare niosomal formulations of an anticancer agent [mefenamic acid (MEF)] to enhance its cancer targeting. 131I was utilized as a radiolabeling isotope to study the radio-kinetics of MEF niosomes. METHODS niosomal formulations were prepared by the ether injection method and assessed for entrapment efficiency (EE%), zeta potential (ZP), polydispersity index (PDI) and particle size (PS). MEF was labeled with 131I by direct electrophilic substitution reaction through optimization of radiolabeling-related parameters. In the radio-kinetic study, the optimal 131I-MEF niosomal formula was administered intravenously (I.V.) to solid tumor-bearing mice and compared to I.V. 131I-MEF solution as a control. RESULTS the average PS and ZP values of the optimal formulation were 247.23 ± 2.32 nm and - 28.3 ± 1.21, respectively. The highest 131I-MEF labeling yield was 98.7 ± 0.8%. The biodistribution study revealed that the highest tumor uptake of 131I-MEF niosomal formula and 131I-MEF solution at 60 min post-injection were 2.73 and 1.94% ID/g, respectively. CONCLUSION MEF-loaded niosomes could be a hopeful candidate in cancer treatment due to their potent tumor uptake. Such high targeting was attributed to passive targeting of the nanosized niosomes and confirmed by radiokinetic evaluation.
Collapse
Affiliation(s)
- Mona A Shewaiter
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Kantara, Egypt
| | - Adli A Selim
- Labeled Compounds Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hassan M Rashed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Kantara, Egypt.
- Labeled Compounds Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Yasser M Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
9
|
Phipps WS, Kilgore MR, Kennedy JJ, Whiteaker JR, Hoofnagle AN, Paulovich AG. Clinical Proteomics for Solid Organ Tissues. Mol Cell Proteomics 2023; 22:100648. [PMID: 37730181 PMCID: PMC10692389 DOI: 10.1016/j.mcpro.2023.100648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
The evaluation of biopsied solid organ tissue has long relied on visual examination using a microscope. Immunohistochemistry is critical in this process, labeling and detecting cell lineage markers and therapeutic targets. However, while the practice of immunohistochemistry has reshaped diagnostic pathology and facilitated improvements in cancer treatment, it has also been subject to pervasive challenges with respect to standardization and reproducibility. Efforts are ongoing to improve immunohistochemistry, but for some applications, the benefit of such initiatives could be impeded by its reliance on monospecific antibody-protein reagents and limited multiplexing capacity. This perspective surveys the relevant challenges facing traditional immunohistochemistry and describes how mass spectrometry, particularly liquid chromatography-tandem mass spectrometry, could help alleviate problems. In particular, targeted mass spectrometry assays could facilitate measurements of individual proteins or analyte panels, using internal standards for more robust quantification and improved interlaboratory reproducibility. Meanwhile, untargeted mass spectrometry, showcased to date clinically in the form of amyloid typing, is inherently multiplexed, facilitating the detection and crude quantification of 100s to 1000s of proteins in a single analysis. Further, data-independent acquisition has yet to be applied in clinical practice, but offers particular strengths that could appeal to clinical users. Finally, we discuss the guidance that is needed to facilitate broader utilization in clinical environments and achieve standardization.
Collapse
Affiliation(s)
- William S Phipps
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mark R Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
10
|
Gqamana PP, Militello L, McMaster JM, Daley SJ, Zhang YV. Analytical Concordance of Total Vitamin D on a Fully Automated Random-Access LC-MS/MS Platform. J Appl Lab Med 2023; 8:940-951. [PMID: 37473445 DOI: 10.1093/jalm/jfad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/05/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND The adoption of LC-MS/MS laboratory developed tests in the clinical laboratory is limited by many factors including the lack of automation. Recently, the Cascadion™ clinical analyzer was introduced as a fully automated random-access LC-MS/MS platform. Here, the analytical concordance between the platform and a Roche immunoassay analyzer was investigated for vitamin D analysis in human serum, including samples selected for high triglyceride levels. METHODS Analytical precision was evaluated on 3 levels of QC samples (10, 30, and 90 ng/mL) within days (n = 4, 5 days) and between days (20 days). Assay comparison to the Roche was performed using reference samples from the CDC and CAP programs for accuracy. Concordance was also monitored using routine patient samples, as well as samples selected for elevated triglyceride levels (>250 mg/dL). RESULTS Precision met manufacturer specifications (<10% CV and <15% bias), whereas the accuracy evaluations showed a linear fit (y = 0.97x - 1.1, r = 0.995) with 1:1 correlation to reference samples, independent of C-3-epi-vitamin D levels. A mean positive bias (11%) was observed for the Roche measurements in normal patient samples, whereas a mean negative bias (-8%) was observed in samples selected for elevated triglyceride levels. CONCLUSIONS Cascadion measurements of total vitamin D compared favorably with Roche results in our laboratory, although discordance was observed in the analysis of patient serum, which could be explained in terms of known differences between the 2 assays. However, operational issues need to be addressed to effect clinical adoption.
Collapse
Affiliation(s)
- Putuma P Gqamana
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Leah Militello
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Jeffrey M McMaster
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Stacy J Daley
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Y Victoria Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
11
|
Bounegru AV, Bounegru I. Chitosan-Based Electrochemical Sensors for Pharmaceuticals and Clinical Applications. Polymers (Basel) 2023; 15:3539. [PMID: 37688165 PMCID: PMC10490380 DOI: 10.3390/polym15173539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Chitosan (CTS), a biocompatible and multifunctional material derived from chitin, has caught researchers' attention in electrochemical detection due to its unique properties. This review paper provides a comprehensive overview of the recent progress and applications of CTS-based electrochemical sensors in the analysis of pharmaceutical products and other types of samples, with a particular focus on the detection of medicinal substances. The review covers studies and developments from 2003 to 2023, highlighting the remarkable properties of CTS, such as biocompatibility, chemical versatility, and large surface area, that make it an excellent candidate for sensor modification. Combining CTS with various nanomaterials significantly enhances the detection capabilities of electrochemical sensors. Various types of CTS-based sensors are analyzed, including those utilizing carbon nanomaterials, metallic nanoparticles, conducting polymers, and molecularly imprinted CTS. These sensors exhibit excellent sensitivity, selectivity, and stability, enabling the precise and reliable detection of medications. The manufacturing strategies used for the preparation of CTS-based sensors are described, the underlying detection mechanisms are elucidated, and the integration of CTS sensors with transducer systems is highlighted. The prospects of CTS-based electrochemical sensors are promising, with opportunities for miniaturization, simultaneous detection, and real-time monitoring applications.
Collapse
Affiliation(s)
- Alexandra Virginia Bounegru
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Iulian Bounegru
- Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
- Faculty of Medicine and Pharmacy, "Dunărea de Jos" University of Galati, 35 Al. I. Cuza Street, 800010 Galati, Romania
| |
Collapse
|
12
|
Henkel L, Jehn U, Thölking G, Reuter S. Tacrolimus-why pharmacokinetics matter in the clinic. FRONTIERS IN TRANSPLANTATION 2023; 2:1160752. [PMID: 38993881 PMCID: PMC11235362 DOI: 10.3389/frtra.2023.1160752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/07/2023] [Indexed: 07/13/2024]
Abstract
The calcineurin inhibitor (CNI) Tacrolimus (Tac) is the most prescribed immunosuppressant drug after solid organ transplantation. After renal transplantation (RTx) approximately 95% of recipients are discharged with a Tac-based immunosuppressive regime. Despite the high immunosuppressive efficacy, its adverse effects, narrow therapeutic window and high intra- and interpatient variability (IPV) in pharmacokinetics require therapeutic drug monitoring (TDM), which makes treatment with Tac a major challenge for physicians. The C/D ratio (full blood trough level normalized by daily dose) is able to classify patients receiving Tac into two major metabolism groups, which were significantly associated with the clinical outcomes of patients after renal or liver transplantation. Therefore, the C/D ratio is a simple but effective tool to identify patients at risk of an unfavorable outcome. This review highlights the challenges of Tac-based immunosuppressive therapy faced by transplant physicians in their daily routine, the underlying causes and pharmacokinetics (including genetics, interactions, and differences between available Tac formulations), and the latest data on potential solutions to optimize treatment of high-risk patients.
Collapse
Affiliation(s)
- Lino Henkel
- Department of Medicine D, University of Münster, Münster, Germany
| | - Ulrich Jehn
- Department of Medicine D, University of Münster, Münster, Germany
| | - Gerold Thölking
- Department of Medicine D, University of Münster, Münster, Germany
- Department of Internal Medicine and Nephrology, University Hospital of Münster Marienhospital Steinfurt, Steinfurt, Germany
| | - Stefan Reuter
- Department of Medicine D, University of Münster, Münster, Germany
| |
Collapse
|
13
|
Sun CK, Tsai TH. Pharmacokinetic and pharmacodynamic herb-drug interactions of common over-the-counter pain medications. Biomed Chromatogr 2023:e5591. [PMID: 36710381 DOI: 10.1002/bmc.5591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/31/2023]
Abstract
Pain is one of the most common reasons for seeking medical intervention, and self-medication with over-the-counter medications and/or traditional herbal remedies has become increasingly popular. In this review, original articles on understanding possible herb-drug interactions between traditional herbs and four major pain medications-acetaminophen, aspirin, ibuprofen and naproxen-are compiled and analyzed. In terms of analytical methods, high-performance liquid chromatography using an isocratic eluent system coupled to biological sample clean-up is the most common, while a wide variety of detectors have been observed, including a photodiode array, variable wavelength detector, electrochemical detector and tandem mass spectrometer. Both synergistic and anti-synergistic effects were observed for acetaminophen and aspirin, while only synergistic effects have been found for naproxen. Currently, no interactions have been reported for ibuprofen.
Collapse
Affiliation(s)
- Chung-Kai Sun
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan.,School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Dai X, Shen L. Advances and Trends in Omics Technology Development. Front Med (Lausanne) 2022; 9:911861. [PMID: 35860739 PMCID: PMC9289742 DOI: 10.3389/fmed.2022.911861] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
The human history has witnessed the rapid development of technologies such as high-throughput sequencing and mass spectrometry that led to the concept of “omics” and methodological advancement in systematically interrogating a cellular system. Yet, the ever-growing types of molecules and regulatory mechanisms being discovered have been persistently transforming our understandings on the cellular machinery. This renders cell omics seemingly, like the universe, expand with no limit and our goal toward the complete harness of the cellular system merely impossible. Therefore, it is imperative to review what has been done and is being done to predict what can be done toward the translation of omics information to disease control with minimal cell perturbation. With a focus on the “four big omics,” i.e., genomics, transcriptomics, proteomics, metabolomics, we delineate hierarchies of these omics together with their epiomics and interactomics, and review technologies developed for interrogation. We predict, among others, redoxomics as an emerging omics layer that views cell decision toward the physiological or pathological state as a fine-tuned redox balance.
Collapse
|
15
|
Potentiometric Sensors for the Selective Determination of Benzodiazepine Drug Residues in Real Wastewater Effluents. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The application of ion-selective electrodes (ISEs) in the detection and determination of environmental pollutants has become a very important mission in the last few years. Two selective and sensitive membrane electrodes were fabricated in the laboratory and intended to evaluate the electrochemical response of bromazepam (BRZ) using phosphotungstic acid (PTA) and sodium tetraphenylborate (TPB) as ion pairing agents. The linearity range of the fabricated electrodes was between 1 × 10−6 M to 1 × 10−3 M. Nernstian slopes of 54 mV/decade and 57 mV/decade were obtained for the BRZ-PTA and BRZ-TPB membrane electrodes, respectively. The performance of the fabricated membranes was optimum in the pH range of 3–6. Optimum electrochemical response was attained through the careful adjustment of all assay settings. The cited method was successfully applied for the selective determination of BRZ in either its pure form or real wastewater samples obtained from a pharmaceutical industrial plant. The main core of novelty in the suggested method lies in the application of the membranes for the sensitive, selective, and economic determination of BRZ in real wastewater effluents without the tedious sample pretreatment procedures. This can make the suggested method considered an eco-friendly method, as it minimizes the use of organic solvents and chemicals used in the pretreatment process.
Collapse
|
16
|
Functional Nanomaterials Based Opto-Electrochemical Sensors for the Detection of Gonadal Steroid Hormones. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Lassabe G, Pírez-Schirmer M, González-Sapienza G. Functionalization of Magnetic Beads with Biotinylated Nanobodies for MALDI-TOF/MS-Based Quantitation of Small Analytes. Methods Mol Biol 2022; 2446:531-546. [PMID: 35157292 DOI: 10.1007/978-1-0716-2075-5_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last two decades, the variable domains from heavy chain-only antibodies in camelids (nanobodies) have emerged as valuable immunoreagents for analytical and diagnostic applications. One prominent use of nanobodies is for the detection of small molecules due to their ease of production, resistance to solvents used in sample extraction, facile genetic manipulation, and small size. These last two properties make it possible to produce biotinylated nanobodies in vivo, which can be loaded in an orientated manner on magnetic beads covered with avidin, creating high-density immunoadsorbenpi twbch ""ts. The method described here details the use of nanobody-based adsorbents to concentrate small molecular weight analytes for subsequent quantitative analysis by MALDI-TOF mass spectrometry. Quantitation requires the inclusion of an internal standard (IS), a compound with properties similar to those of the analyte, enabling compensation for uneven distribution during crystallization of the MALDI-TOF matrix. Since nanobody generation against small compounds requires conjugation to carrier proteins, the same conjugation chemistry can be used to synthesize the IS. By design the IS cross reacts with the capture nanobody and can be preloaded in the immunoadsorbent, facilitating quantitative detection of the target compound.
Collapse
Affiliation(s)
- Gabriel Lassabe
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, UdelaR, Montevideo, Uruguay.
| | - Macarena Pírez-Schirmer
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, UdelaR, Montevideo, Uruguay
| | | |
Collapse
|
18
|
Diauudin FN, Rashid JIA, Knight VF, Wan Yunus WMZ, Ong KK, Kasim NAM, Abdul Halim N, Noor SAM. A review of current advances in the detection of organophosphorus chemical warfare agents based biosensor approaches. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2019.100305] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
19
|
Darwish IA, AlRabiah H, Hamidaddin MA. Development of two different formats of heterogeneous fluorescence immunoassay for bioanalysis of afatinib by employing fluorescence plate reader and KinExA 3200 immunosensor. Sci Rep 2019; 9:14742. [PMID: 31611565 PMCID: PMC6791937 DOI: 10.1038/s41598-019-51288-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/26/2019] [Indexed: 01/05/2023] Open
Abstract
Afatinib (AFT) is a potent and highly selective drug used to treat various solid tumors including non-small cell lung cancer (NSCLC). To ensure safe and effective treatment of cancer patients with AFT, its plasma concentrations should be monitored. Thus, sensitive immunoassays are required for measuring AFT concentrations in plasma samples. In this study, two different formats of heterogeneous fluorescent immunoassays were developed and validated for AFT bioanalysis. These assays were microwell-based fluorescence immunoassay (FIA) using fluorescence plate reader and kinetic exclusion assay (KinExA) using KinExA 3200 immunosensor. Both FIA and KinExA were developed using the same reagents: mouse anti-AFT antibody, solid-phase immobilized AFT conjugated with bovine serum albumin protein (AFT-BSA), and goat anti-mouse IgG labelled with fluorescein isothiocyanate (FITC-IgG) for signal generation. The analytical performances of both assays were comparatively evaluated, and the results revealed that although both assays had comparable accuracies, KinExA was superior to FIA in terms of sensitivity and precisions. Moreover, both FIA and KinExA were better alternatives to the existing chromatographic methods for bioanalysis of AFT. The proposed FIA and KinExA are anticipated to effectively contribute in ensuring safe and effective treatment with AFT in clinical settings.
Collapse
Affiliation(s)
- Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Haitham AlRabiah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohammed A Hamidaddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.,Department of Medicinal and Analytical Chemistry, Faculty of Pharmacy, Sana'a University, Sana'a, Yemen
| |
Collapse
|
20
|
Boseila AA, Rashed HM, Sakr TM, Abdel-Reheem AY, Basalious EB. Superiority of DEAE-Dx-Stabilized Cationic Bile-Based Vesicles over Conventional Vesicles for Enhanced Hepatic Delivery of Daclatasvir. Mol Pharm 2019; 16:4190-4199. [DOI: 10.1021/acs.molpharmaceut.9b00517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Amira A. Boseila
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR), 12611 Cairo, Egypt
| | - Hassan M. Rashed
- Labeled Compounds Department, Hot Labs Center, Atomic Energy Authority, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Kantara, Egypt
| | - Tamer M. Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Atomic Energy Authority, Cairo, Egypt
| | - Amal Y. Abdel-Reheem
- Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR), 12611 Cairo, Egypt
| | - Emad B. Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| |
Collapse
|
21
|
Kim KH, Kim JY, Yoo JS. Mass spectrometry analysis of glycoprotein biomarkers in human blood of hepatocellular carcinoma. Expert Rev Proteomics 2019; 16:553-568. [PMID: 31145639 DOI: 10.1080/14789450.2019.1626235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kwang Hoe Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jong Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
22
|
Development and validation of an ELISA with high sensitivity for therapeutic monitoring of afatinib. Bioanalysis 2018; 10:1511-1523. [PMID: 30117333 DOI: 10.4155/bio-2018-0095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To support the therapeutic drug monitoring of afatinib (AFT), an ELISA was required. RESULTS A hapten for AFT was prepared and linked to each of BSA and KLH proteins by diazotization/coupling reaction. A polyclonal antibody recognizing AFT with high affinity (IC50 = 40 ng ml-1) was generated and used in the development of a competitive ELISA for quantitation of AFT in plasma samples. The assay limit of detection was 2 ng ml-1. The assay accuracy and precision were proved. CONCLUSION The assay is an appropriate alternative to the existing LC-MS/MS assays for AFT and it is anticipated to effectively contribute to the therapeutic drug monitoring of AFT in clinical settings.
Collapse
|
23
|
El Hawari K, Al Iskandarani M, Mompelat S, Hurtaud-Pessel D, Verdon E. Design for the transfer of a validated liquid chromatography/tandem mass spectrometry analytical method for the determination of antimicrobial residues in honey from low-resolution to high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1103-1110. [PMID: 28488287 DOI: 10.1002/rcm.7899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/24/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE This paper investigates the validity of the transfer of a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the determination of veterinary medicinal products in honey and compares it with an LC/linear ion trap/Orbitrap mass spectrometry method. A descriptive statistical approach was used in order to assess whether such a transfer would succeed or fail. This approach is based on the simultaneous evaluation of the trueness and of the intermediate precision for each compound at a 95% interval of confidence of both analytical techniques. METHODS Two grams of honey were placed in a centrifuge tube and diluted with 2.5 mL of ultra-pure water and 2.5 mL of acidified methanol with hydrochloric acid at 2 mol.mL-1 . The extract was purified with 50 mg of primary secondary amine and then analyzed using LC/MS/MS in multiple reaction monitoring (MRM) mode and LC/orbitrap high-resolution mass spectrometry in full scan mode. Both analytical techniques were compared by using the descriptive statistical approach for the determination of antimicrobial residues in honey. RESULTS The transfer of the method showed that the Orbitrap system provides the same accurate analytical results compared with the LC/MS/MS method except for 4-epitetracycline, anhydroerythromycin A, erythromycin A enol ether, and dihydrostreptomycin. Furthermore, the LC/LTQ-Orbitrap system is capable of successfully competing with the LC/MS/MS method by additional provision of high mass resolution and mass accuracy even though it shows less sensitivity compared with the LC/MS/MS instrument. CCα levels for most analytes were 1.3 times higher by LC/MS/MS than those observed by LC/LTQ-Orbitrap. The method was assessed in terms of relative bias through analysis of a reference material provided by FAPAS (Food Analysis Performance and Assessment Scheme) and also through the control of several contaminated honey samples from local Lebanese markets. Satisfactory relative bias was below 22% except for tetracycline found in one sample that showed a higher bias at 29%. CONCLUSIONS The LC/LTQ-Orbitrap method offers adequate performance in comparison with previously validated method on a LC/MS/MS system resulting in acceptance of the transfer of the method from LC/MS/MS to LC/LTQ-Orbitrap. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Khaled El Hawari
- CNRSL, Lebanese Atomic Energy Commission (LAEC), Laboratory for Analysis of Organic Compounds (LAOC), Airport Road, PO Box 11-8281, Beirut, Lebanon
- French Agency for Safety of Food, Environment and Occupational Health, Laboratory of Fougères, French National and European Union Reference Laboratory for Residues of Antimicrobial Veterinary Medicinal Products in Food from Animal Origin, 10B rue Claude Bourgelat, Bioagropolis, Javené, F-35306, Fougères, France
| | - Mohamad Al Iskandarani
- CNRSL, Lebanese Atomic Energy Commission (LAEC), Laboratory for Analysis of Organic Compounds (LAOC), Airport Road, PO Box 11-8281, Beirut, Lebanon
| | - Sophie Mompelat
- French Agency for Safety of Food, Environment and Occupational Health, Laboratory of Fougères, French National and European Union Reference Laboratory for Residues of Antimicrobial Veterinary Medicinal Products in Food from Animal Origin, 10B rue Claude Bourgelat, Bioagropolis, Javené, F-35306, Fougères, France
| | - Dominique Hurtaud-Pessel
- French Agency for Safety of Food, Environment and Occupational Health, Laboratory of Fougères, French National and European Union Reference Laboratory for Residues of Antimicrobial Veterinary Medicinal Products in Food from Animal Origin, 10B rue Claude Bourgelat, Bioagropolis, Javené, F-35306, Fougères, France
| | - Eric Verdon
- French Agency for Safety of Food, Environment and Occupational Health, Laboratory of Fougères, French National and European Union Reference Laboratory for Residues of Antimicrobial Veterinary Medicinal Products in Food from Animal Origin, 10B rue Claude Bourgelat, Bioagropolis, Javené, F-35306, Fougères, France
| |
Collapse
|
24
|
Lee J, Wen B, Carter EA, Combes V, Grau GER, Lay PA. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation. FASEB J 2017; 31:2817-2827. [PMID: 28314769 DOI: 10.1096/fj.201601272r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 02/26/2017] [Indexed: 12/28/2022]
Abstract
Microvesicles (MVs) are involved in cell-cell interactions, including disease pathogenesis. Nondestructive Fourier-transform infrared (FTIR) spectra from MVs were assessed as a technique to provide new biochemical insights into a LPS-induced monocyte model of septic shock. FTIR spectroscopy provided a quick method to investigate relative differences in biomolecular content of different MV populations that was complementary to traditional semiquantitative omics approaches, with which it is difficult to provide information on relative changes between classes (proteins, lipids, nucleic acids, carbohydrates) or protein conformations. Time-dependent changes were detected in biomolecular contents of MVs and in the monocytes from which they were released. Differences in phosphatidylcholine and phosphatidylserine contents were observed in MVs released under stimulation, and higher relative concentrations of RNA and α-helical structured proteins were present in stimulated MVs compared with MVs from resting cells. FTIR spectra of stimulated monocytes displayed changes that were consistent with those observed in the corresponding MVs they released. LPS-stimulated monocytes had reduced concentrations of nucleic acids, α-helical structured proteins, and phosphatidylcholine compared with resting monocytes but had an increase in total lipids. FTIR spectra of MV biomolecular content will be important in shedding new light on the mechanisms of MVs and the different roles they play in physiology and disease pathogenesis.-Lee, J., Wen, B., Carter, E. A., Combes, V., Grau, G. E. R., Lay, P. A. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation.
Collapse
Affiliation(s)
- Joonsup Lee
- School of Chemistry and Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales, Australia
| | - Beryl Wen
- Vascular Immunopathology Unit, Bosch Institute-School of Medical Sciences, and
| | - Elizabeth A Carter
- School of Chemistry and Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales, Australia
| | - Valery Combes
- Vascular Immunopathology Unit, Bosch Institute-School of Medical Sciences, and.,Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Georges E R Grau
- Vascular Immunopathology Unit, Bosch Institute-School of Medical Sciences, and.,Australian Institute of Nanoscale Science and Technology (AINST), The University of Sydney, Sydney, New South Wales, Australia
| | - Peter A Lay
- School of Chemistry and Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales, Australia; .,Australian Institute of Nanoscale Science and Technology (AINST), The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Minooee S, Ramezani Tehrani F, Tohidi M, Azizi F. Role of androgen ratios in the prediction of the metabolic phenotype in polycystic ovary syndrome. Int J Gynaecol Obstet 2017; 137:110-115. [PMID: 28244213 DOI: 10.1002/ijgo.12107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/20/2016] [Accepted: 01/30/2017] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To identify the androgen ratio that best predicts insulin resistance and metabolic syndrome among women with polycystic ovary syndrome (PCOS). METHODS Data for 180 women with PCOS and 180 healthy controls were extracted from two previous studies in Iran (conducted during 2008-2010 and 2011-2013). The diagnosis of PCOS was based on the Rotterdam criteria. The serum concentration of different androgens was measured. Receiver operating characteristic curve analysis was used to assess the ability of various androgen ratios to predict insulin resistance and metabolic syndrome. RESULTS Among women with PCOS, the testosterone-to-androstenedione ratio was the best predictor of insulin resistance (sensitivity 0.83, specificity 0.42) and metabolic syndrome (sensitivity 0.85, specificity 0.70). Among healthy controls, the ratio of free androgen index to testosterone was the best predictor of insulin resistance (sensitivity 0.84, specificity 0.33) and metabolic syndrome (sensitivity 0.91, specificity 0.17). CONCLUSION The prediction of insulin resistance and metabolic syndrome among women with PCOS was best accomplished with the testosterone-to-androstenedione ratio.
Collapse
Affiliation(s)
- Sonia Minooee
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tohidi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Shipkova M, Valbuena H. Liquid chromatography tandem mass spectrometry for therapeutic drug monitoring of immunosuppressive drugs: Achievements, lessons and open issues. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
|
28
|
Abstract
Medical diagnostics and treatment has advanced from a one size fits all science to treatment of the patient as a unique individual. Currently, this is limited solely to genetic analysis. However, epigenetic, transcriptional, proteomic, posttranslational modifications, metabolic, and environmental factors influence a patient’s response to disease and treatment. As more analytical and diagnostic techniques are incorporated into medical practice, the personalized medicine initiative transitions to precision medicine giving a holistic view of the patient’s condition. The high accuracy and sensitivity of mass spectrometric analysis of proteomes is well suited for the incorporation of proteomics into precision medicine. This review begins with an overview of the advance to precision medicine and the current state of the art in technology and instrumentation for mass spectrometry analysis. Thereafter, it focuses on the benefits and potential uses for personalized proteomic analysis in the diagnostic and treatment of individual patients. In conclusion, it calls for a synthesis between basic science and clinical researchers with practicing clinicians to design proteomic studies to generate meaningful and applicable translational medicine. As clinical proteomics is just beginning to come out of its infancy, this overview is provided for the new initiate.
Collapse
|
29
|
Yang D, Song SA, Jun KR, Rim H, Lee W. Falsely Elevated Tacrolimus Concentrations Using Chemiluminescence Microparticle Immunoassay in Kidney Transplant Patient. KOREAN JOURNAL OF TRANSPLANTATION 2016. [DOI: 10.4285/jkstn.2016.30.3.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Dahae Yang
- Department of Laboratory Medicine, Kosin University College of Medicine, Busan, Korea
| | - Sae Am Song
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Korea
| | - Kyung Ran Jun
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Korea
| | - Hak Rim
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Woonhyoung Lee
- Department of Laboratory Medicine, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
30
|
Review: The Application of Liquid Chromatography Electrochemical Detection for the Determination of Drugs of Abuse. SEPARATIONS 2016. [DOI: 10.3390/separations3040028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
The clinical utility of mass spectrometry based protein assays. Clin Chim Acta 2016; 459:155-161. [DOI: 10.1016/j.cca.2016.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 11/22/2022]
|
32
|
Louveau B, Fernandez C, Zahr N, Sauvageon-Martre H, Maslanka P, Faure P, Mourah S, Goldwirt L. Determination of rifampicin in human plasma by high-performance liquid chromatography coupled with ultraviolet detection after automatized solid-liquid extraction. Biomed Chromatogr 2016; 30:2009-2015. [PMID: 27280327 DOI: 10.1002/bmc.3778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/15/2016] [Accepted: 06/06/2016] [Indexed: 11/11/2022]
Abstract
A precise and accurate high-performance liquid chromatography (HPLC) quantification method of rifampicin in human plasma was developed and validated using ultraviolet detection after an automatized solid-phase extraction. The method was validated with respect to selectivity, extraction recovery, linearity, intra- and inter-day precision, accuracy, lower limit of quantification and stability. Chromatographic separation was performed on a Chromolith RP8 column using a mixture of 0.05 m acetate buffer pH 5.7-acetonitrile (35:65, v/v) as mobile phase. The compounds were detected at a wavelength of 335 nm with a lower limit of quantification of 0.05 mg/L in human plasma. Retention times for rifampicin and 6,7-dimethyl-2,3-di(2-pyridyl) quinoxaline used as internal standard were respectively 3.77 and 4.81 min. This robust and exact method was successfully applied in routine for therapeutic drug monitoring in patients treated with rifampicin.
Collapse
Affiliation(s)
- B Louveau
- AP-HP, Pharmacy Department, Saint-Louis Hospital, Paris, F-75010, France.,AP-HP, Pharmacology Department, Saint-Louis Hospital, Paris, F-75010, France
| | - C Fernandez
- AP-HP, Pharmacy Department, Saint-Louis Hospital, Paris, F-75010, France.,AP-HP, Pharmacology Department, Saint-Louis Hospital, Paris, F-75010, France
| | - N Zahr
- AP-HP, Pharmacology Department, Pitie-Salpetriere Hospital, Paris, F-75013, France
| | - H Sauvageon-Martre
- AP-HP, Pharmacy Department, Saint-Louis Hospital, Paris, F-75010, France.,AP-HP, Pharmacology Department, Saint-Louis Hospital, Paris, F-75010, France
| | - P Maslanka
- AP-HP, Pharmacology Department, Saint-Louis Hospital, Paris, F-75010, France
| | - P Faure
- AP-HP, Pharmacy Department, Saint-Louis Hospital, Paris, F-75010, France
| | - S Mourah
- AP-HP, Pharmacology Department, Saint-Louis Hospital, Paris, F-75010, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 1165 and INSERM U976, F-75010, Paris, France
| | - L Goldwirt
- AP-HP, Pharmacology Department, Saint-Louis Hospital, Paris, F-75010, France
| |
Collapse
|
33
|
Agoston R, Izake EL, Sivanesan A, Lott WB, Sillence M, Steel R. Rapid isolation and detection of erythropoietin in blood plasma by magnetic core gold nanoparticles and portable Raman spectroscopy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:633-641. [PMID: 26656628 DOI: 10.1016/j.nano.2015.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/24/2015] [Accepted: 11/07/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED Isolating, purifying, and identifying proteins in complex biological matrices are often difficult, time consuming, and unreliable. Herein we describe a rapid screening technique for proteins in biological matrices that combines selective protein isolation with direct surface enhanced Raman spectroscopy (SERS) detection. Magnetic core gold nanoparticles were synthesized, characterized, and subsequently functionalized with recombinant human erythropoietin (rHuEPO)-specific antibody. The functionalized nanoparticles were used to capture rHuEPO from horse blood plasma within 15 min. The selective binding between the protein and the functionalized nanoparticles was monitored by SERS. The purified protein was then released from the nanoparticles' surface and directly spectroscopically identified on a commercial nanopillar SERS substrate. ELISA independently confirmed the SERS identification and quantified the released rHuEPO. Finally, the direct SERS detection of the extracted protein was successfully demonstrated for in-field screening by a handheld Raman spectrometer within 1 min sample measurement time. FROM THE CLINICAL EDITOR The rapid detection of recombinant human erythropoietin (rHuEPO) is important in competitive sports to screen for doping offences. In this article, the authors reported their technique of direct surface enhanced Raman spectroscopy (SERS) detection using magnetic core gold nanoparticles functionalized with recombinant human erythropoietin-specific antibody. The findings should open a new way for future detection of other proteins.
Collapse
Affiliation(s)
- Roland Agoston
- Nanotechnology and Molecular Sciences Discipline, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Australia
| | - Emad L Izake
- Nanotechnology and Molecular Sciences Discipline, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Australia.
| | - Arumugam Sivanesan
- Nanotechnology and Molecular Sciences Discipline, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Australia.
| | - William B Lott
- Nanotechnology and Molecular Sciences Discipline, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Australia
| | - Martin Sillence
- Nanotechnology and Molecular Sciences Discipline, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Australia
| | - Rohan Steel
- Biological Research Unit, Racing Analytical Services Ltd., Melbourne, VIC, Australia
| |
Collapse
|
34
|
Giovagnoli S, Cassano T, Pace L, Magini A, Polchi A, Tancini B, Perluigi M, De Marco F, Emiliani C, Dolcetta D. Evaluation of a LC–MS method for everolimus preclinical determination in brain by using [13C2D4]RAD001 internal standard. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 985:155-63. [DOI: 10.1016/j.jchromb.2015.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/20/2015] [Accepted: 01/24/2015] [Indexed: 12/15/2022]
|
35
|
Yuan C, Chen D, Wang S. Drug confirmation by mass spectrometry: Identification criteria and complicating factors. Clin Chim Acta 2014; 438:119-25. [PMID: 25182671 DOI: 10.1016/j.cca.2014.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/06/2014] [Accepted: 08/19/2014] [Indexed: 11/27/2022]
Abstract
Drug confirmation by mass spectrometry coupled with chromatography is essential to toxicology, doping control, pain management, and workplace drug testing. High confidence in this technology is due to its superior specificity and sensitivity. However, there are challenges associated with drug confirmation, and proper setup and validation of these assays are important in assuring high-quality results. In this article, assay parameters required for drug confirmation are summarized based on recent scientific publications, various established guidelines, and our own practical experience. Factors affecting the result quality and correct results interpretation are critically reviewed. Several emerging technologies and their potential applications are briefly explored.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Derrick Chen
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sihe Wang
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
36
|
Ketha H, Kaur S, Grebe SK, Singh RJ. Clinical applications of LC-MS sex steroid assays: evolution of methodologies in the 21st century. Curr Opin Endocrinol Diabetes Obes 2014; 21:217-26. [PMID: 24739314 DOI: 10.1097/med.0000000000000068] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize why and how liquid chromatography tandem mass spectrometry (LC-MS/MS) is increasingly replacing other methodologies for the measurement of sex steroids. RECENT FINDINGS Measurement of sex steroids, particularly testosterone and estradiol, is important for diagnosis or management of a host of conditions (e.g. disorders of puberty, hypogonadism, polycystic ovary syndrome, amenorrhea, and tumors of ovary, testes, breast and prostate). Historically, metabolites of testosterone and estradiol were measured as ketosteroids in urine using colorimetric assays that lacked sensitivity and specificity due to endogenous and exogenous interferences. Extracted competitive manual radio-immunoassays provided improved, but still imperfect, specificity, and offered increased sensitivity. As testing demand increased, they were displaced by automated immunoassays. These offered better throughput and precision, but suffered worse specificity problems. Moreover, agreement between different immunoassays has often been poor and they are all compromised by a limited dynamic measurement range. To overcome these problems, LC-MS/MS methods have been developed and validated for quantitation of sex steroids. These methods reduce interferences, provide better specificity, improve dynamic range, and reduce between-method bias. SUMMARY Endocrine Society and Urology Society guidelines have highlighted the limitations of the immunoassays for sex steroids and have provided convincing evidence that mass spectrometric methods are preferable for measurement of sex steroid hormones. In this review, we describe LC-MS/MS methods for measurement of testosterone and estradiol.
Collapse
Affiliation(s)
- Hemamalini Ketha
- aDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA bDepartment of Pathology, Heartlands Hospital, Heart of England NHS Foundation Trust, Birmingham, UK
| | | | | | | |
Collapse
|
37
|
Abstract
Currently, chromatography (GC but more commonly HPLC) is the analytical method of choice for several hormones, either because the immunoassays suffer from extensive crossreactivity or because chromatography permits simultaneous measurements of hormones. However, sometimes the conventional detection systems with HPLC methods do not meet desired specificity. With the increase of robust and affordable LC–MS/MS systems, the next step forward in specificity was taken. LC–MS/MS is rapidly being incorporated in the endocrine laboratories. To be useful in the clinical diagnostic practice, it is of utmost importance that methods are both analytically and clinically vaidated, as until now, the majority of applications of LC–MS/MS in the clinical laboratories are ‘home-made’ methods, therefore special case must be taken. This review aims to focus on Clinical and Laboratory Standards Institute or comparable validated LC–MS/MS methods for targeted hormone analysis used for diagnostic purposes in human samples, published in the last 5 years.
Collapse
|