1
|
Saulescu I, Ionescu R, Opris-Belinski D. Interferon in systemic lupus erythematosus-A halfway between monogenic autoinflammatory and autoimmune disease. Heliyon 2022; 8:e11741. [PMID: 36468094 PMCID: PMC9708627 DOI: 10.1016/j.heliyon.2022.e11741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/20/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Although perceived as an adaptative immune disorder, mainly related to Lymphocyte B and T, last years focus on Systemic Lupus Erythematosus (SLE) pathogeny emphasised the important role of innate immunity. This should not take us by surprise since the lupus cell described by Hargraves and colleagues in 1948 was a neutrophil or macrophage with specific aspect after coloration with haematoxylin related to cell detritus engulfment (Hargraves et al., 1948) [1] (Presentation of two bone marrow elements; the tart. Hargraves M, Ricmond H, Morton R. 1948, Proc Staff Meet Mayo Clinic, pp. 23:25-28). Normal immune system maintains homeostasis through innate and adaptative response that are working together to prevent both infection and autoimmunity. Failure of the immune mechanisms to preserve the balance between these two will initiate and propagate autoinflammation and/or autoimmunity. It is well known now that autoinflammation and autoimmunity are the two extremes of different pathologic conditions marked with multiple overlaps in many diseases. Recent findings in SLE demonstrated that innate immune system initiates the abnormal autoimmunity and starts the continuous inflammatory reaction after that, interferon being one of the key cytokines in innate immunity and SLE. Understanding this mechanism might offer a better clue for an efficient treatment in SLE patients. The purpose of this review is to highlight the enormous impact of innate immunity and mostly interferons in SLE.
Collapse
Affiliation(s)
- Ioana Saulescu
- University of Medicine and Pharmacy Carol Davila, Dionisie Lupu Street, Number 37, Postal Code 020021, Bucharest, Romania
- Sfanta Maria Hospital, Internal Medicine and Rheumatology Department, Ion Mihalache Boulevard, Number 37-39, Postal Code 011172, Bucharest, Romania
| | - Ruxandra Ionescu
- University of Medicine and Pharmacy Carol Davila, Dionisie Lupu Street, Number 37, Postal Code 020021, Bucharest, Romania
- Sfanta Maria Hospital, Internal Medicine and Rheumatology Department, Ion Mihalache Boulevard, Number 37-39, Postal Code 011172, Bucharest, Romania
| | - Daniela Opris-Belinski
- University of Medicine and Pharmacy Carol Davila, Dionisie Lupu Street, Number 37, Postal Code 020021, Bucharest, Romania
- Sfanta Maria Hospital, Internal Medicine and Rheumatology Department, Ion Mihalache Boulevard, Number 37-39, Postal Code 011172, Bucharest, Romania
| |
Collapse
|
2
|
Marcuzzi A, Melloni E, Zauli G, Romani A, Secchiero P, Maximova N, Rimondi E. Autoinflammatory Diseases and Cytokine Storms-Imbalances of Innate and Adaptative Immunity. Int J Mol Sci 2021; 22:11241. [PMID: 34681901 PMCID: PMC8541037 DOI: 10.3390/ijms222011241] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Innate and adaptive immune responses have a well-known link and represent the distinctive origins of several diseases, many of which may be the consequence of the loss of balance between these two responses. Indeed, autoinflammation and autoimmunity represent the two extremes of a continuous spectrum of pathologic conditions with numerous overlaps in different pathologies. A common characteristic of these dysregulations is represented by hyperinflammation, which is an exaggerated response of the immune system, especially involving white blood cells, macrophages, and inflammasome activation with the hyperproduction of cytokines in response to various triggering stimuli. Moreover, hyperinflammation is of great interest, as it is one of the main manifestations of COVID-19 infection, and the cytokine storm and its most important components are the targets of the pharmacological treatments used to combat COVID-19 damage. In this context, the purpose of our review is to provide a focus on the pathogenesis of autoinflammation and, in particular, of hyperinflammation in order to generate insights for the identification of new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (G.Z.); (A.R.)
| | - Elisabetta Melloni
- LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (E.R.)
| | - Giorgio Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (G.Z.); (A.R.)
| | - Arianna Romani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (G.Z.); (A.R.)
| | - Paola Secchiero
- LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (E.R.)
| | - Natalia Maximova
- Bone Marrow Transplant Unit, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Erika Rimondi
- LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (E.R.)
| |
Collapse
|
3
|
Gratton R, Tricarico PM, d’Adamo AP, Bianco AM, Moura R, Agrelli A, Brandão L, Zupin L, Crovella S. Notch Signaling Regulation in Autoinflammatory Diseases. Int J Mol Sci 2020; 21:E8847. [PMID: 33238371 PMCID: PMC7700323 DOI: 10.3390/ijms21228847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 12/22/2022] Open
Abstract
Notch pathway is a highly conserved intracellular signaling route that modulates a vast variety of cellular processes including proliferation, differentiation, migration, cell fate and death. Recently, the presence of a strict crosstalk between Notch signaling and inflammation has been described, although the precise molecular mechanisms underlying this interplay have not yet been fully unravelled. Disruptions in Notch cascade, due both to direct mutations and/or to an altered regulation in the core components of Notch signaling, might lead to hypo- or hyperactivation of Notch target genes and signaling molecules, ultimately contributing to the onset of autoinflammatory diseases. To date, alterations in Notch signaling have been reported as associated with three autoinflammatory disorders, therefore, suggesting a possible role of Notch in the pathogenesis of the following diseases: hidradenitis suppurativa (HS), Behçet disease (BD), and giant cell arteritis (GCA). In this review, we aim at better characterizing the interplay between Notch and autoinflammatory diseases, trying to identify the role of this signaling route in the context of these disorders.
Collapse
Affiliation(s)
- Rossella Gratton
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (A.P.d.); (A.M.B.); (R.M.); (L.B.); (L.Z.)
| | - Paola Maura Tricarico
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (A.P.d.); (A.M.B.); (R.M.); (L.B.); (L.Z.)
| | - Adamo Pio d’Adamo
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (A.P.d.); (A.M.B.); (R.M.); (L.B.); (L.Z.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Anna Monica Bianco
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (A.P.d.); (A.M.B.); (R.M.); (L.B.); (L.Z.)
| | - Ronald Moura
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (A.P.d.); (A.M.B.); (R.M.); (L.B.); (L.Z.)
| | - Almerinda Agrelli
- Department of Pathology, Federal University of Pernambuco, Recife 50670-901, Brazil;
| | - Lucas Brandão
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (A.P.d.); (A.M.B.); (R.M.); (L.B.); (L.Z.)
| | - Luisa Zupin
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (A.P.d.); (A.M.B.); (R.M.); (L.B.); (L.Z.)
| | - Sergio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha 2713, Qatar;
| |
Collapse
|
4
|
Kanazawa N. Designation of Autoinflammatory Skin Manifestations With Specific Genetic Backgrounds. Front Immunol 2020; 11:475. [PMID: 32256502 PMCID: PMC7093487 DOI: 10.3389/fimmu.2020.00475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 11/20/2022] Open
Abstract
“Autoinflammatory disease (AiD)” has first been introduced in 1999 when the responsible gene for the familial Hibernean fever or autosomal dominant-type familial Mediterranean fever-like periodic fever syndrome was reportedly identified as tumor necrosis factor receptor superfamily 1. Linked with the rapid research progress in the field of innate immunity, “autoinflammation” has been designated for dysregulated innate immunity in contrast to “autoimmunity” with dysregulated acquired immunity. As hereditary periodic fever syndromes represent the prototype of AiD, monogenic systemic diseases are the main members of AiD. However, skin manifestations provide important clinical information and there are even some AiDs originating from skin diseases. Recently, AiD showing psoriasis and related keratinization diseases have specifically been designated as “autoinflammatory keratinization diseases (AiKD)” and CARD14-associated psoriasis and deficiency of interleukin-36 receptor antagonist previously called as generalized pustular psoriasis are included. Similarly, a number of autoinflammatory skin diseases can be proposed; autoinflamatory urticarial dermatosis (AiUD) such as cryopyrin-associated periodic syndrome; autoinflammatory neutrophilic dermatosis (AiND) such as pyogenic sterile arthritis, pyoderma gangrenosm, and acne syndrome; autoinflammatory granulomatosis (AiG) such as Blau syndrome; autoinflammatory chilblain lupus (AiCL) such as Aicardi-Goutieres syndrome; autoinflammatory lipoatrophy (AiL) such as Nakajo-Nishimura syndrome; autoinflammatory angioedema (AiAE) such as hereditary angioedema; and probable autoinflammatory bullous disease (AiBD) such as granular C3 dermatosis. With these designations, skin manifestations in AiD can easily be recognized and, even more importantly, autoinflammatory pathogenesis of common skin diseases are expected to be more comprehensive.
Collapse
Affiliation(s)
- Nobuo Kanazawa
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
5
|
Gawda A, Majka G, Nowak B, Marcinkiewicz J. Air pollution, oxidative stress, and exacerbation of autoimmune diseases. Cent Eur J Immunol 2017; 42:305-312. [PMID: 29204097 PMCID: PMC5708213 DOI: 10.5114/ceji.2017.70975] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
A number of epidemiological studies have shown a strong association between exposure to ambient airborne particulate matter (PM 2.5, PM < 1.0) and lung or cardiovascular diseases characterised by high mortality and morbidity. However, much less is known about the role of air pollution in the pathogenesis of autoimmune diseases, which constitutes a significant problem in modern society. This paper summarises the state of current research regarding the influence of PM on the development and/or progression of autoimmune diseases. A brief review of the great body of research concerning pathogenesis of autoimmune disorders is presented. Then, the scope of our review is narrowed to the research related to the impact of particulate matter on oxidative and nitrosative stress, as well as exacerbation of chronic inflammation, because they can contribute to the development of autoimmune diseases. Moreover, we discuss the impact of various components of PM (metal, organic compounds) on PM toxicity and the ability to generate oxidants.
Collapse
Affiliation(s)
- Anna Gawda
- Chair of Immunology, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Grzegorz Majka
- Chair of Immunology, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Bernadeta Nowak
- Chair of Immunology, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | | |
Collapse
|