1
|
van der Meulen NP, Strobel K, Lima TVM. New Radionuclides and Technological Advances in SPECT and PET Scanners. Cancers (Basel) 2021; 13:cancers13246183. [PMID: 34944803 PMCID: PMC8699425 DOI: 10.3390/cancers13246183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Advances in nuclear medicine are made by technological and radionuclide improvements. Throughout nuclear medicine’s history, these advances were often intertwined and complementary based on different clinical questions, availability and need. This paper covers some of these developments in radionuclides and instrumentation. Abstract Developments throughout the history of nuclear medicine have involved improvements in both instrumentation and radionuclides, which have been intertwined. Instrumentation developments always occurred during the search to improving devices’ sensitivity and included advances in detector technology (with the introduction of cadmium zinc telluride and digital Positron Emission Tomography—PET-devices with silicon photomultipliers), design (total body PET) and configuration (ring-shaped, Single-Photon Emission Computed Tomography (SPECT), Compton camera). In the field of radionuclide development, we observed the continual changing of clinically used radionuclides, which is sometimes influenced by instrumentation technology but also driven by availability, patient safety and clinical questions. Some areas, such as tumour imaging, have faced challenges when changing radionuclides based on availability, when this produced undesirable clinical findings with the introduction of unclear focal uptakes and unspecific uptakes. On the other end of spectrum, further developments of PET technology have seen a resurgence in its use in nuclear cardiology, with rubidium-82 from strontium-82/rubidium-82 generators being the radionuclide of choice, moving away from SPECT nuclides thallium-201 and technetium-99m. These continuing improvements in both instrumentation and radionuclide development have helped the growth of nuclear medicine and its importance in the ever-evolving range of patient care options.
Collapse
Affiliation(s)
- Nicholas P. van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Correspondence: (N.P.v.d.M.); (T.V.M.L.)
| | - Klaus Strobel
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, 6000 Luzern, Switzerland;
| | - Thiago Viana Miranda Lima
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, 6000 Luzern, Switzerland;
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, 1007 Lausanne, Switzerland
- Correspondence: (N.P.v.d.M.); (T.V.M.L.)
| |
Collapse
|
2
|
Comparison of Early Imaging and Imaging 60 min Post-Injection after Forced Diuresis with Furosemide in the Assessment of Local Recurrence in Prostate Cancer Patients with Biochemical Recurrence Referred for 68Ga-PSMA-11 PET/CT. Diagnostics (Basel) 2021; 11:diagnostics11071191. [PMID: 34208989 PMCID: PMC8304119 DOI: 10.3390/diagnostics11071191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Background: 68Ga-PSMA-11 PET/CT is a promising method for the assessment of local recurrence (LR) in prostate cancer (PCa) patients. The aim of this study was to evaluate the diagnostic performance of early 68Ga-PSMA-11 PET imaging in comparison to 68Ga-PSMA-11 PET imaging 60 min post-injection (p.i.) in the detection of LR in patients with biochemical recurrence (BR) of prostate carcinoma. Materials and Methods: 190 image sets of patients with BR in PCa who underwent 68Ga-PSMA-11 PET/CT were assessed retrospectively (median prostate specific antigen (PSA) value, 0.70 ng/mL (range, 0.1–105.6 ng/mL)). Patients received an early static scan of the pelvic area (median, 248 s p.i. (range, 56–923 s)) and a whole-body scan 60 min p.i. (median, 64 min p.i. (range, 45–100 min)) with intravenous administration of 20 mg furosemide i.v. at the time of tracer application, followed by intravenous hydration with 500 mL of sodium chloride (NaCl 0.9%). Assessment was based on visual analysis and calculation of the maximum standardized uptake value (SUVmax) of the pathologic lesions present in the prostate fossa found in the early PET imaging and 60 min PET scans. The scans were characterized as negative, positive, or equivocal. The results were compared, and the combination of early and 60 min p.i. imaging was evaluated. Results: Image assessment resulted in 30 (15.8%) positive, 17 (8.9%) equivocal, and 143 (75.3%) negative findings in early scans, and 28 (14.7%) positive, 25 (13.2%) equivocal, and 137 (72.1%) negative findings of LR in 60 min p.i. images. For combined image analysis, 33 (17.4%) cases were positive and 20 (10.5%) were equivocal. There was no statistical significance between the number of positive (p = 0.815), negative (p = 0.327), and equivocal (p = 0.152) findings. Furthermore, the combination of both scans showed no statistically significant differences for the positive and negative findings (p = 0.063). The median SUVmax was 4.9 (range, 2.0–55.2) for positive lesions in the early scans and 8.0 (range, 2.1–139.9) in the scans 60 min p.i. The median SUVmax for bladder activity was 2.5 (range, 0.9–12.2) in the early scans and 8.2 (range, 1.8–27.6) in the scans 60 min p.i. Conclusion: Early static imaging additional to 68Ga-PSMA-11 PET images acquired 60 min p.i. has limited value in patients prepared with furosemide and hydration, and showed no statistically significant change in the detection rate (DR) of LR and the number of equivocal findings. Based on our results, in departments following a protocol with forced diuresis, including furosemide, additional early static imaging cannot be routinely recommended for the assessment of BR in PCa patients.
Collapse
|
3
|
Uprimny C, Bayerschmidt S, Kroiss AS, Fritz J, Nilica B, Svirydenka A, Decristoforo C, di Santo G, von Guggenberg E, Horninger W, Virgolini IJ. Impact of forced diuresis with furosemide and hydration on the halo artefact and intensity of tracer accumulation in the urinary bladder and kidneys on [ 68Ga]Ga-PSMA-11-PET/CT in the evaluation of prostate cancer patients. Eur J Nucl Med Mol Imaging 2020; 48:123-133. [PMID: 32385647 DOI: 10.1007/s00259-020-04846-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE to assess the influence of intravenous hydration and forced diuresis with furosemide in two different dosages (20 vs 40 mg) on the intensity of tracer accumulation in the urinary collection system and on the occurrence of halo artefact surrounding the urinary bladder and kidneys in [68Ga]Ga-PSMA-11-PET/CT scans. MATERIALS AND METHODS Comparison of four groups with 50 patients each, receiving different preparation prior to [68Ga]Ga-PSMA-11-PET/CT. Group one, no preparation. Group two, 500 ml sodium chloride administered immediately after tracer injection. Group three, 500 ml sodium chloride and injection of 20 mg furosemide immediately after tracer administration. Group four, 500 ml sodium chloride and injection of 40 mg furosemide immediately after tracer injection. Images were judged visually whether halo artefact was present; semiquantitative measurements were performed with standardised uptake value (SUV). RESULTS Halo artefact of the urinary bladder was present in twelve patients without preparation, in eight patients receiving only sodium chloride, in one patient injected with 20 mg furosemide/sodium chloride and in two patients receiving 40 mg furosemide/sodium chloride, showing a median SUVmean in the bladder of 45.8, 14.4, 4.6 and 5.8, respectively. Differences between patient group without preparation and the two groups with furosemide/sodium chloride were statistically significant. Patient groups receiving 20 mg furosemide and 40 mg furosemide did not differ significantly. Renal halo artefacts were observed in 15 patients of group one, in ten patients of group two, in 14 patients of group three and in 14 patients of group four, with corresponding median SUVmean values of 33.9, 32.0, 37.8 and 30.4 (no statistically significant differences). CONCLUSION Performing [68Ga]Ga-PSMA-11-PET/CT, intravenous injection of 20-mg furosemide and 500-ml sodium chloride significantly reduces the number of bladder halo artefacts and intensity of tracer accumulation in the urinary bladder. A total of 40 mg furosemide does not further improve results.
Collapse
Affiliation(s)
- Christian Uprimny
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Steffen Bayerschmidt
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alexander Stephan Kroiss
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Josef Fritz
- Department of Medical Statistics, Informatics and Health Economics, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard Nilica
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Anna Svirydenka
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Gianpaolo di Santo
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Elisabeth von Guggenberg
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | | | - Irene Johanna Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
4
|
Uprimny C, Kroiss AS, Nilica B, di Santo G, Virgolini IJ. Visualization of malignant infiltration of the thoracic duct on 68Ga PSMA-11 PET/CT in a prostate cancer patient with biochemical recurrence. Eur J Nucl Med Mol Imaging 2019; 47:2042-2043. [PMID: 31838582 DOI: 10.1007/s00259-019-04637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Christian Uprimny
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Alexander Stephan Kroiss
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Bernhard Nilica
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Gianpaolo di Santo
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Irene Johanna Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
5
|
Vornov JJ, Peters D, Nedelcovych M, Hollinger K, Rais R, Slusher BS. Looking for Drugs in All the Wrong Places: Use of GCPII Inhibitors Outside the Brain. Neurochem Res 2019; 45:1256-1267. [PMID: 31749072 DOI: 10.1007/s11064-019-02909-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
In tribute to our friend and colleague Michael Robinson, we review his involvement in the identification, characterization and localization of the metallopeptidase glutamate carboxypeptidase II (GCPII), originally called NAALADase. While Mike was characterizing NAALADase in the brain, the protein was independently identified by other laboratories in human prostate where it was termed prostate specific membrane antigen (PSMA) and in the intestines where it was named Folate Hydrolase 1 (FOLH1). It was almost a decade to establish that NAALADase, PSMA, and FOLH1 are encoded by the same gene. The enzyme has emerged as a therapeutic target outside of the brain, with the most notable progress made in the treatment of prostate cancer and inflammatory bowel disease (IBD). PSMA-PET imaging with high affinity ligands is proving useful for the clinical diagnosis and staging of prostate cancer. A molecular radiotherapy based on similar ligands is in trials for metastatic castration-resistant prostate cancer. New PSMA inhibitor prodrugs that preferentially block kidney and salivary gland versus prostate tumor enzyme may improve the clinical safety of this radiotherapy. The wide clinical use of PSMA-PET imaging in prostate cancer has coincidentally led to clinical documentation of GCPII upregulation in a wide variety of tumors and inflammatory diseases, likely associated with angiogenesis. In IBD, expression of the FOLH1 gene that codes for GCPII is strongly upregulated, as is the enzymatic activity in diseased patient biopsies. In animal models of IBD, GCPII inhibitors show substantial efficacy, suggesting potential theranostic use of GCPII ligands for IBD.
Collapse
Affiliation(s)
- James J Vornov
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Medpace, Cincinnati, OH, USA
| | - Diane Peters
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Mike Nedelcovych
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kristen Hollinger
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Comparison of DOTA and NODAGA as chelates for 68Ga-labelled CDP1 as novel infection PET imaging agents. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Kuten J, Fahoum I, Savin Z, Shamni O, Gitstein G, Hershkovitz D, Mabjeesh NJ, Yossepowitch O, Mishani E, Even-Sapir E. Head-to-Head Comparison of 68Ga-PSMA-11 with 18F-PSMA-1007 PET/CT in Staging Prostate Cancer Using Histopathology and Immunohistochemical Analysis as a Reference Standard. J Nucl Med 2019; 61:527-532. [DOI: 10.2967/jnumed.119.234187] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022] Open
|
8
|
Maintaining radiochemical purity of [177Lu]Lu-DOTA-PSMA-617 for PRRT by reducing radiolysis. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06573-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Abstract
PURPOSE OF REVIEW In recent years, a large number of reports have been published on prostate-specific membrane antigen (PSMA)/PET in prostate cancer (PCa). This review highlights advances in PSMA PET in PCa during the past year. RECENT FINDINGS PSMA PET/computed tomography (CT) is useful in detection of biochemical recurrence, especially at low prostate-specific antigen (PSA) values. The detection rate of PSMA PET is influenced by PSA level. For primary PCa, PSMA PET/CT shows promise for tumour localization in the prostate, especially in combination with multiparametric MRI (mpMRI). For primary staging, PSMA PET/CT can be used in intermediate and high-risk PCa. Intraoperative PSMA radioligand guidance seems promising for detection of malignant lymph nodes. While the use of PSMA PET/MRI in primary localized disease is limited to high and intermediate-risk patients and localized staging, in the recurrence setting, PET/MRI can be particularly helpful when the lesions are subtle. PSMA PET/CT is superior to choline PET/CT and other conventional imaging modalities. SUMMARY Molecular imaging with PSMA PET continues to pave the way for personalized medicine in PCa.However, large prospective clinical studies are still needed to fully evaluate the role of PSMA PET/CT and PET/MRI in the clinical workflow of PCa.
Collapse
|
10
|
Wang M, McNitt CD, Wang H, Ma X, Scarry SM, Wu Z, Popik VV, Li Z. The efficiency of 18F labelling of a prostate specific membrane antigen ligand via strain-promoted azide-alkyne reaction: reaction speed versus hydrophilicity. Chem Commun (Camb) 2018; 54:7810-7813. [PMID: 29946609 DOI: 10.1039/c8cc03999b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here we report the 18F labeling of a prostate specific membrane antigen (PSMA) ligand via a strain promoted oxa-dibenzocyclooctyne (ODIBO)- or bicyclo[6.1.0]nonyne (BCN)-azide reaction. Although ODIBO reacts with azide 20 fold faster than BCN, in vivo PET imaging suggests that 18F-BCN-azide-PSMA demonstrated much higher tumor uptake and a much higher tumor to background contrast.
Collapse
Affiliation(s)
- Mengzhe Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Umbricht CA, Benešová M, Schibli R, Müller C. Preclinical Development of Novel PSMA-Targeting Radioligands: Modulation of Albumin-Binding Properties To Improve Prostate Cancer Therapy. Mol Pharm 2018; 15:2297-2306. [PMID: 29684274 DOI: 10.1021/acs.molpharmaceut.8b00152] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The treatment of metastatic castration-resistant prostate cancer (mCRPC) remains challenging with current treatment options. The development of more effective therapies is, therefore, urgently needed. Targeted radionuclide therapy with prostate-specific membrane antigen (PSMA)-targeting ligands has revealed promising clinical results. In an effort to optimize this concept, it was the aim of this study to design and investigate PSMA ligands comprising different types of albumin binders. PSMA-ALB-53 and PSMA-ALB-56 were designed by combining the glutamate-urea-based PSMA-binding entity, a DOTA chelator and an albumin binder based on the 4-( p-iodophenyl)-moiety or p-(tolyl)-moiety. The compounds were labeled with 177Lu (50 MBq/nmol) resulting in radioligands of high radiochemical purity (≥98%). Both radioligands were stable (≥98%) over 24 h in the presence of l-ascorbic acid. The uptake into PSMA-positive PC-3 PIP tumor cells in vitro was in the same range (54-58%) for both radioligands; however, 177Lu-PSMA-ALB-53 showed a 15-fold enhanced binding to human plasma proteins. Biodistribution studies performed in PC-3 PIP/flu tumor-bearing mice revealed high tumor uptake of 177Lu-PSMA-ALB-53 and 177Lu-PSMA-ALB-56, respectively, demonstrated by equal areas under the curves (AUCs) for both radioligands. The increased retention of 177Lu-PSMA-ALB-53 in the blood resulted in almost 5-fold lower tumor-to-blood AUC ratios when compared to 177Lu-PSMA-ALB-56. Kidney clearance of 177Lu-PSMA-ALB-56 was faster, and hence, the tumor-to-kidney AUC ratio was 3-fold higher than in the case of 177Lu-PSMA-ALB-53. Due to the more favorable tissue distribution profile, 177Lu-PSMA-ALB-56 was selected for a preclinical therapy study in PC-3 PIP tumor-bearing mice. The tumor growth delay after application of 177Lu-PSMA-ALB-56 and 177Lu-PSMA-617 applied at the same activities (2 or 5 MBq per mouse) revealed better antitumor effects in the case of 177Lu-PSMA-ALB-56. As a consequence, the survival of mice treated with 177Lu-PSMA-ALB-56 was prolonged when compared to the mice, which received the same activity of 177Lu-PSMA-617. Our results demonstrated the superiority of 177Lu-PSMA-ALB-56 over 177Lu-PSMA-ALB-53 indicating that the p-(tolyl)-moiety was more suited as an albumin binder to optimize the tissue distribution profile. 177Lu-PSMA-ALB-56 was more effective to treat tumors than 177Lu-PSMA-617 resulting in complete tumor remission in four out of six mice. This promising results warrant further investigations to assess the potential for clinical application of 177Lu-PSMA-ALB-56.
Collapse
Affiliation(s)
- Christoph A Umbricht
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ , Paul Scherrer Institut , 5232 Villigen-PSI , Switzerland
| | - Martina Benešová
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ , Paul Scherrer Institut , 5232 Villigen-PSI , Switzerland
- Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 Zurich , Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ , Paul Scherrer Institut , 5232 Villigen-PSI , Switzerland
- Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 Zurich , Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ , Paul Scherrer Institut , 5232 Villigen-PSI , Switzerland
- Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|
12
|
Benešová M, Umbricht CA, Schibli R, Müller C. Albumin-Binding PSMA Ligands: Optimization of the Tissue Distribution Profile. Mol Pharm 2018; 15:934-946. [PMID: 29400475 DOI: 10.1021/acs.molpharmaceut.7b00877] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The prostate-specific membrane antigen (PSMA) has emerged as an attractive prostate cancer associated target for radiotheragnostic application using PSMA-specific radioligands. The aim of this study was to design new PSMA ligands modified with an albumin-binding moiety in order to optimize their tissue distribution profile. The compounds were prepared by conjugation of a urea-based PSMA-binding entity, a DOTA chelator, and 4-( p-iodophenyl)butyric acid using multistep solid phase synthesis. The three ligands (PSMA-ALB-02, PSMA-ALB-05, and PSMA-ALB-07) were designed with varying linker entities. Radiolabeling with 177Lu was performed at a specific activity of up to 50 MBq/nmol resulting in radioligands of >98% radiochemical purity and high stability. In vitro investigations revealed high binding of all three PSMA radioligands to mouse (>64%) and human plasma proteins (>94%). Uptake and internalization into PSMA-positive PC-3 PIP tumor cells was equally high for all radioligands. Negligible accumulation was found in PSMA-negative PC-3 flu cells, indicating PSMA-specific binding of all radioligands. Biodistribution and imaging studies performed in PC-3 PIP/flu tumor-bearing mice showed enhanced blood circulation of the new radioligands when compared to the clinically employed 177Lu-PSMA-617. The PC-3 PIP tumor uptake of all three radioligands was very high (76.4 ± 2.5% IA/g, 79.4 ± 11.1% IA/g, and 84.6 ± 14.2% IA/g, respectively) at 24 h post injection (p.i.) resulting in tumor-to-blood ratios of ∼176, ∼48, and ∼107, respectively, whereas uptake into PC-3 flu tumors was negligible. Kidney uptake at 24 h p.i. was lowest for 177Lu-PSMA-ALB-02 (10.7 ± 0.92% IA/g), while 177Lu-PSMA-ALB-05 and 177Lu-PSMA-ALB-07 showed higher renal retention (23.9 ± 4.02% IA/g and 51.9 ± 6.34% IA/g, respectively). Tumor-to-background ratios calculated from values of the area under the curve (AUC) of time-dependent biodistribution data were in favor of 177Lu-PSMA-ALB-02 (tumor-to-blood, 46; tumor-to-kidney, 5.9) when compared to 177Lu-PSMA-ALB-05 (17 and 3.7, respectively) and 177Lu-PSMA-ALB-07 (39 and 2.1, respectively). The high accumulation of the radioligands in PC-3 PIP tumors was visualized on SPECT/CT images demonstrating increasing tumor-to-kidney ratios over time. Taking all of the characteristics into account, 177Lu-PSMA-ALB-02 emerged as the most promising candidate. The applied concept may be attractive for future clinical translation potentially enabling more potent and convenient prostate cancer radionuclide therapy.
Collapse
Affiliation(s)
- Martina Benešová
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ , Paul Scherrer Institut , 5232 Villigen-PSI , Switzerland.,Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 Zurich , Switzerland
| | - Christoph A Umbricht
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ , Paul Scherrer Institut , 5232 Villigen-PSI , Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ , Paul Scherrer Institut , 5232 Villigen-PSI , Switzerland.,Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 Zurich , Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ , Paul Scherrer Institut , 5232 Villigen-PSI , Switzerland.,Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|