1
|
Chen S, Lu C, Lin S, Sun C, Wen Z, Ge Z, Chen W, Li Y, Zhang P, Wu Y, Wang W, Zhou H, Li X, Lai Y, Li H. A panel based on three-miRNAs as diagnostic biomarker for prostate cancer. Front Genet 2024; 15:1371441. [PMID: 38818039 PMCID: PMC11137311 DOI: 10.3389/fgene.2024.1371441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Background: Prostate cancer (PCa) is one of the most prevalent malignancies affecting the male life cycle. The incidence and mortality of prostate cancer are also increasing every year. Detection of MicroRNA expression in serum to diagnose prostate cancer and determine prognosis is a very promising non-invasive modality. Materials and method: A total of 224 study participants were included in our study, including 112 prostate cancer patients and 112 healthy adults. The experiment consisted of three main phases, namely, the screening phase, the testing phase, and the validation phase. The expression levels of serum miRNAs in patients and healthy adults were detected using quantitative reverse transcription-polymerase chain reaction. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were used to evaluate the diagnostic ability, specificity, and sensitivity of the candidate miRNAs. Result: Eventually, three miRNAs most relevant to prostate cancer diagnosis were selected, namely, miR-106b-5p, miR-129-1-3p and miR-381-3p. We used these three miRNAs to construct a diagnostic panel with very high diagnostic potential for prostate cancer, which had an AUC of 0.912 [95% confidence interval (CI): 0.858 to 0.950; p < 0.001; sensitivity = 91.67%; specificity = 79.76%]. In addition, the three target genes (DTNA, GJB1, and TRPC4) we searched for are also expected to be used for prostate cancer diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen University Health Science Center, Shenzhen, China
| | - Chong Lu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Shengjie Lin
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Chen Sun
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Zhenyu Wen
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Zhenjian Ge
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Wenkang Chen
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Yingqi Li
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen University Health Science Center, Shenzhen, China
| | - Pengwu Zhang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Peking University Health Science Center, Beijing, China
| | - Yutong Wu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Wuping Wang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen University Health Science Center, Shenzhen, China
| | - Huimei Zhou
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xutai Li
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Shantou University Medical College, Shantou, China
- Peking University Health Science Center, Beijing, China
| | - Hang Li
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
2
|
Wei QY, Jin F, Wang ZY, Li BJ, Cao WB, Sun ZY, Mo SJ. MicroRNAs: A novel signature in the metastasis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:1497-1523. [PMID: 38617454 PMCID: PMC11008420 DOI: 10.3748/wjg.v30.i11.1497] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.
Collapse
Affiliation(s)
- Qi-Ying Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhong-Yu Wang
- Department of Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing-Jie Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wen-Bo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Yan Sun
- Division of Special Service, Department of Basic Oncology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sai-Jun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
3
|
Shi C, Li Y, Wan E, Zhang E, Sun L. Construction of an lncRNA model for prognostic prediction of bladder cancer. BMC Med Genomics 2022; 15:257. [PMID: 36514150 DOI: 10.1186/s12920-022-01414-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE We aimed to investigate the role and potential mechanisms of long non-coding RNAs (lncRNAs) in bladder cancer (BC), as well as determine their prognostic value. METHODS LncRNA expression data and clinical data from BC patients were downloaded from The Cancer Genome Atlas (TCGA) database. R software was used to carry out principal component analysis (PCA), differential analysis, and prognostic analysis. Lasso regression and multivariate Cox regression analyses were performed to identify potential prognostic genes. The expression of five identified genes and their correlation with prognosis were verified using TCGA and GSE13507 datasets. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) was used to confirm the expression of these five genes in cell lines (two human BC cell lines and one human bladder epithelial cell line) and tissues (84 pairs of BC tissues and the corresponding paracancerous tissues). Risk scores that had been generated from the five genes and their prognostic ability were assessed by receiver operating characteristic (ROC) and Kaplan-Meier (KM) curves. Co-expressed genes were screened by WGCNA and analyzed by GO and KEGG, while functional enrichment and immune infiltration analyses were performed using STRING ( https://cn.string-db.org/ ) and TIMER2.0 ( http://timer.cistrome.org/ ) online tools, respectively. RESULTS CYP4F8, FAR2P1, LINC01518, LINC01764, and DTNA were identified as potential prognostic genes. We found that these five genes were differentially expressed in BC tissue, as well as in BC cell lines, and were significantly correlated with the prognosis of BC patients. KM analysis considering risk scores as independent parameters revealed differences in overall survival (OS) by subgroups. The ROC curve revealed that a combined model consisting of all five genes had good predictive ability at 1, 3, and 5 years. GO and KEGG analyses of 567 co-expressed genes revealed that these genes were significantly associated with muscle function. CONCLUSION LncRNAs can be good predictors of BC development and prognosis, and may act as potential tumor markers and therapeutic targets that may be beneficial in helping clinicians decide the most effective treatment strategies.
Collapse
Affiliation(s)
- Changlong Shi
- Department of Urology, Huishan District People's Hospital, Wuxi City, Jiangsu, China
| | - Yifei Li
- Department of Urology, Huishan District People's Hospital, Wuxi City, Jiangsu, China
| | - Enming Wan
- Department of Urology, Huishan District People's Hospital, Wuxi City, Jiangsu, China
| | - Enchong Zhang
- Department of Second Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Li Sun
- Department of Breast Surgery, Huishan District People's Hospital, Wuxi City, Jiangsu, China.
| |
Collapse
|
4
|
Tang L, Yu S, Zhang Q, Cai Y, Li W, Yao S, Cheng H. Identification of hub genes related to CD4 + memory T cell infiltration with gene co-expression network predicts prognosis and immunotherapy effect in colon adenocarcinoma. Front Genet 2022; 13:915282. [PMID: 36105107 PMCID: PMC9465611 DOI: 10.3389/fgene.2022.915282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background: CD4+ memory T cells (CD4+ MTCs), as an important part of the microenvironment affecting tumorigenesis and progression, have rarely been systematically analyzed. Our purpose was to comprehensively analyze the effect of CD4+ MTC infiltration on the prognosis of colon adenocarcinoma (COAD). Methods: Based on RNA-Seq data, weighted gene co-expression network analysis (WGCNA) was used to screen the CD4+ MTC infiltration genes most associated with colon cancer and then identify hub genes and construct a prognostic model using the least absolute shrinkage and selection operator algorithm (LASSO). Finally, survival analysis, immune efficacy analysis, and drug sensitivity analysis were performed to evaluate the role of the prognostic model in COAD. Results: We identified 929 differentially expressed genes (DEGs) associated with CD4+ MTCs and constructed a prognosis model based on five hub genes (F2RL2, TGFB2, DTNA, S1PR5, and MPP2) to predict overall survival (OS) in COAD. Kaplan-Meier analysis showed poor prognosis in the high-risk group, and the analysis of the hub gene showed that overexpression of TGFB2, DTNA, S1PR5, or MPP2 was associated with poor prognosis. Clinical prediction nomograms combining CD4+ MTC-related DEGs and clinical features were constructed to accurately predict OS and had high clinical application value. Immune efficacy and drug sensitivity analysis provide new insights for individualized treatment. Conclusion: We constructed a prognostic risk model to predict OS in COAD and analyzed the effects of risk score on immunotherapy efficacy or drug sensitivity. These studies have important clinical significance for individualized targeted therapy and prognosis.
Collapse
Affiliation(s)
- Lingxue Tang
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Sheng Yu
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Qianqian Zhang
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Yinlian Cai
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Wen Li
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Senbang Yao
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Huaidong Cheng
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Oncology, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Di Y, Jiang Y, Shen X, Liu J, Gao Y, Cai H, Sun X, Ning D, Liu B, Lei J, Jin S. Downregulation of miR-135b-5p Suppresses Progression of Esophageal Cancer and Contributes to the Effect of Cisplatin. Front Oncol 2021; 11:679348. [PMID: 34277424 PMCID: PMC8281352 DOI: 10.3389/fonc.2021.679348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/03/2021] [Indexed: 01/02/2023] Open
Abstract
Esophageal cancer (EC) is one of the commonest human cancers, which accompany high morbidity. MicroRNAs (miRNAs) play a pivotal role in various cancers, including EC. Our research aimed to reveal the function and mechanism of miR-135b-5p. Our research identified that miR-135b-5p was elevated in EC samples from TCGA database. Correspondingly real-time PCR assay also showed the miR-135b-5p is also higher expressed in Eca109, EC9706, KYSE150 cells than normal esophageal epithelial cells (Het-1A). CCK8, Edu, wound healing, Transwell assay, and western blot demonstrated miR-135b-5p inhibition suppresses proliferation, invasion, migration and promoted the apoptosis in Eca109 and EC9706 cells. Moreover, the miR-135b-5p inhibition also inhibited xenograft lump growth. We then predicted the complementary gene of miR-135b-5p using miRTarBase, TargetScan, and DIANA-microT. TXNIP was estimated as a complementary gene for miR-135b-5p. Luciferase report assay verified the direct binding site for miR-135b-5p and TXNIP. Real-time PCR and western blot assays showed that the inhibition of miR-135b-5p remarkably enhanced the levels of TXNIP in Eca109 and EC9706 cells. Furthermore, cisplatin (cis-diamminedichloroplatinum II, DDP) decreased miR-135b-5p expression and increased TXNIP expression. Enhanced expression of miR-135b-5p attenuated the inhibitory ability of cisplatin (cis-diamminedichloroplatinum II, DDP) in Eca109 cells, accompanied by TXNIP downregulation. In conclusion, the downregulation of miR-135b-5p suppresses the progression of EC through targeting TXNIP. MiR-135b-5p/TXNIP pathway contributes to the anti-tumor effect of DDP. These findings may provide new insight into the treatment of EC.
Collapse
Affiliation(s)
- Yuzhu Di
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xiuyun Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jing Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huimin Cai
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoli Sun
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dandan Ning
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Liu
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jiaji Lei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|