1
|
Zhuo H, He C, Yang C, Jiang X, Li F, Yang X, Yang H, Yong T, Liu Z, Ma Y, Nie L, Liao G, Shi T. Integration of acoustic, optical, and electrical methods in picoliter droplet microfluidics for rare particles enrichment. COMMUNICATIONS ENGINEERING 2025; 4:86. [PMID: 40360828 PMCID: PMC12075572 DOI: 10.1038/s44172-025-00427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Rare particle enrichment plays a pivotal role in advancing numerous scientific research areas and industrial processes. Traditional enrichment methods encounter obstacles such as low efficiency, high cost, and complexity. Acoustic focusing, optical fiber detection, and electrical manipulation have shown potential in microfluidics for particle manipulation and analysis. This study pioneers the integration of the acoustic, optical, and electrical units to overcome the traditional limitations. The cooperative dynamics of acoustic and flow focusing are explored. The optical fibers with an enhanced detection algorithm greatly boost optical detection sensitivity. Furthermore, the droplet charging to enhance the tip charging phenomenon is complemented and validated. The detection and sorting accuracy of enriching large-size H22 cells reached 99.8% and 99.3%, respectively, with the target cell concentration increased by nearly 86-fold. Our work significantly enhances detection sensitivity and particle manipulation accuracy, ultimately offering a robust and reliable solution for generating droplets to enrich rare particles.
Collapse
Affiliation(s)
- Huasheng Zhuo
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chunhua He
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Canfeng Yang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Jiang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hai Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tuying Yong
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Yan Ma
- Joint Wuhan Blood Center-Huazhong University of Science and Technology Hematology Optical Imaging Center, Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, China
| | - Lei Nie
- School of Mechanical Engineering, Hubei University of Technology, Wuhan, China
| | - Guanglan Liao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Tielin Shi
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Shrivastava S, Trung TQ, Lee NE. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem Soc Rev 2020; 49:1812-1866. [PMID: 32100760 DOI: 10.1039/c9cs00319c] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rapid growth of research in the areas of chemical and biochemical sensors, lab-on-a-chip, mobile technology, and wearable electronics offers an unprecedented opportunity in the development of mobile and wearable point-of-care testing (POCT) systems for self-testing. Successful implementation of such POCT technologies leads to minimal user intervention during operation to reduce user errors; user-friendly, easy-to-use and simple detection platforms; high diagnostic sensitivity and specificity; immediate clinical assessment; and low manufacturing and consumables costs. In this review, we discuss recent developments in the field of highly integrated mobile and wearable POCT systems. In particular, aspects of sample handling platforms, recognition elements and sensing methods, and new materials for signal transducers and powering devices for integration into mobile or wearable POCT systems will be highlighted. We also summarize current challenges and future prospects for providing personal healthcare with sample-in result-out mobile and wearable POCT.
Collapse
Affiliation(s)
- Sajal Shrivastava
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | | | | |
Collapse
|
3
|
Stephens A, Nidetz R, Mesyngier N, Chung MT, Song Y, Fu J, Kurabayashi K. Mass-producible microporous silicon membranes for specific leukocyte subset isolation, immunophenotyping, and personalized immunomodulatory drug screening in vitro. LAB ON A CHIP 2019; 19:3065-3076. [PMID: 31389447 PMCID: PMC6736731 DOI: 10.1039/c9lc00315k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Widespread commercial and clinical adaptation of biomedical microfluidic technology has been limited in large part due to the lack of mass producibility of polydimethylsiloxane (PDMS) and glass-based devices commonly as reported in the literature. Here, we present a batch-fabricated, robust, and mass-producible immunophenotyping microfluidic device using silicon micromachining processes. Our Si and glass-based microfluidic device, named the silicon microfluidic immunophenotyping assay (SiMIPA), consists of a highly porous (∼40%) silicon membrane that can selectively separate microparticles below a certain size threshold. The device is capable of isolating and stimulating specific leukocyte populations, and allows for measuring their secretion of cell signaling proteins by means of a no-wash homogeneous chemiluminescence-based immunoassay. The high manufacturing throughput (∼170 devices per wafer) makes a large quantity of SiMIPA chips readily available for clinically relevant applications, which normally require large dataset acquisitions for statistical accuracy. With 30 SiMIPA chips, we performed in vitro immunomodulatory drug screening on isolated leukocyte subsets, yielding 5 data points at 6 drug concentrations. Furthermore, the excellent structural integrity of the device allowed for samples and reagents to be loaded using a micropipette, greatly simplifying the experimental protocol.
Collapse
Affiliation(s)
- Andrew Stephens
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|