1
|
Sharavin DY, Belyaeva PG. Biotechnological potential of psychrotolerant methylobacteria isolated from biotopes of Antarctic oases. Arch Microbiol 2024; 206:323. [PMID: 38907777 DOI: 10.1007/s00203-024-04056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Ten strains of psychrotolerant methylotrophic bacteria were isolated from the samples collected in Larsemann and Bunger Hills (Antarctica). Most of the isolates are assigned to the genus Pseudomonas, representatives of the genera Janthinobacterium, Massilia, Methylotenera and Flavobacterium were also found. Majority of isolates were able to grow on a wide range of sugars, methylamines and other substrates. Optimal growth temperatures for the isolated strains varied from 6 °C to 28 °C. The optimal concentration of NaCl was 0.5-2.0%. The optimal pH values of the medium were 6-7. It was found that three strains synthesized indole-3-acetic acid on a medium with L-tryptophan reaching 11-12 μg/ml. The values of intracellular carbohydrates in several strains exceeded 50 μg/ml. Presence of calcium-dependent and lanthanum-dependent methanol dehydrogenase have been shown for some isolates. Strains xBan7, xBan20, xBan37, xBan49, xPrg27, xPrg48, xPrg51 showed the presence of free amino acids. Bioprospection of Earth cryosphere for such microorganisms has a potential in biotechnology.
Collapse
Affiliation(s)
- Dmitry Yuryevich Sharavin
- Laboratory of Cellular Immunology and Nanobiotechnology, Institute of Ecology and Genetics of Microorganisms (IEGM), 13, Golev st., Perm, 614081, Russia.
| | - Polina Gennadievna Belyaeva
- Laboratory of Cellular Immunology and Nanobiotechnology, Institute of Ecology and Genetics of Microorganisms (IEGM), 13, Golev st., Perm, 614081, Russia
| |
Collapse
|
2
|
Jo SY, Son J, Sohn YJ, Lim SH, Lee JY, Yoo JI, Park SY, Na JG, Park SJ. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources. Int J Biol Macromol 2021; 192:978-998. [PMID: 34656544 DOI: 10.1016/j.ijbiomac.2021.10.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022]
Abstract
Since the 20th century, plastics that are widely being used in general life and industries are causing enormous plastic waste problems since improperly discarded plastics barely degrade and decompose. Thus, the demand for polyhydroxyalkanoates (PHAs), biodegradable polymers with material properties similar to conventional petroleum-based plastics, has been increased so far. The microbial production of PHAs is an environment-friendly solution for the current plastic crisis, however, the carbon sources for the microbial PHA production is a crucial factor to be considered in terms of carbon-neutrality. One‑carbon (C1) resources, such as methane, carbon monoxide, and carbon dioxide, are greenhouse gases and are abundantly found in nature and industry. C1 resources as the carbon sources for PHA production have a completely closed carbon loop with much advances; i) fast carbon circulation with direct bioconversion process and ii) simple fermentation procedure without sterilization as non-preferable nutrients. This review discusses the biosynthesis of PHAs based on C1 resource utilization by wild-type and metabolically engineered microbial host strains via biorefinery processes.
Collapse
Affiliation(s)
- Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Se Young Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
3
|
Alkylphenols and Chlorophenols Remediation in Vertical Flow Constructed Wetlands: Removal Efficiency and Microbial Community Response. WATER 2021. [DOI: 10.3390/w13050715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study aims to investigate the effect of two different groups of phenolic compounds (the alkylphenols nonylphenol (NP) and octylphenol (OP), and the chlorophenol pentachlorophenol (PCP)) on constructed wetlands (CWs) performance, including on organic matter, nutrients and contaminants removal efficiency, and on microbial community structure in the plant bed substrate. CWs were assembled at lab scale simulating a vertical flow configuration and irrigated along eight weeks with Ribeira de Joane (an urban stream) water not doped (control) or doped with a mixture of NP and OP or with PCP (at a 100 μg·L−1 concentration each). The presence of the phenolic contaminants did not interfere in the removal of organic matter or nutrients in CWs in the long term. Removals of NP and OP were >99%, whereas PCP removals varied between 87% and 98%, mainly due to biodegradation. Microbial richness, diversity and dominance in CWs substrate were generally not affected by phenolic compounds, with only PCP decreasing diversity. Microbial community structure, however, showed that there was an adaptation of the microbial community to the presence of each contaminant, with several specialist genera being enriched following exposure. The three more abundant specialist genera were Methylotenera and Methylophilus (methylophilaceae family) and Hyphomicrobium (hyphomicrobiaceae family) when the systems were exposed to a mixture of NP and OP. When exposed to PCP, the three more abundant genera were Denitromonas (Rhodocyclaceae family), Xenococcus_PCC_7305 (Xenococcaceae family) and Rhodocyclaceae_uncultured (Rhodocyclaceae family). To increase CWs efficiency in the elimination of phenolic compounds, namely PCP which was not totally removed, strategies to stimulate (namely biostimulation) or increase (namely bioaugmentation) the presence of these bacteria should be explore. This study clearly shows the potential of vertical flow CWs for the removal of phenolic compounds, a still little explored subject, contributing to promote the use of CWs as nature-based solutions to remediate water contaminated with different families of persistent and/or emergent contaminants.
Collapse
|
4
|
Mohamed AMHA, Sorokin VV, Skladnev DA, Shevlyagina NV, Zhukhovitsky VG, Pshenichnikova AB. Biosynthesis of Silver Nanoparticles by Methylophilus quaylei, Characterization and Its Impact on Established Biofilms. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00780-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Liu Y, He X, Zhu P, Cheng M, Hong Q, Yan X. pheS AG Based Rapid and Efficient Markerless Mutagenesis in Methylotuvimicrobium. Front Microbiol 2020; 11:441. [PMID: 32296398 PMCID: PMC7136838 DOI: 10.3389/fmicb.2020.00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/02/2020] [Indexed: 01/05/2023] Open
Abstract
Due to their fast growth rate and robustness, some haloalkalitolerant methanotrophs from the genus Methylotuvimicrobium have recently become not only promising biocatalysts for methane conversion but also favorable materials for obtaining fundamental knowledge on methanotrophs. Here, to realize unmarked genome modification in Methylotuvimicrobium bacteria, a counterselectable marker (CSM) was developed based on pheS, which encodes the α-subunit of phenylalanyl-tRNA synthetase. Two-point mutations (T252A and A306G) were introduced into PheS in Methylotuvimicrobium buryatense 5GB1C, generating PheS AG , which can recognize p-chloro-phenylalanine (p-Cl-Phe) as a substrate. Theoretically, the expression of PheS AG in a cell will result in the incorporation of p-Cl-Phe into proteins, leading to cell death. The P tac promoter and the ribosome-binding site region of mmoX were employed to control pheS AG , producing the pheS AG -3 CSM. M. buryatense 5GB1C harboring pheS AG -3 was extremely sensitive to 0.5 mM p-Cl-Phe. Then, a positive and counterselection cassette, PZ (only 1.5 kb in length), was constructed by combining pheS AG -3 and the zeocin resistance gene. A PZ- and PCR-based strategy was used to create the unmarked deletion of glgA1 or the whole smmo operon in M. buryatense 5GB1C and Methylotuvimicrobium alcaliphilum 20Z. The positive rates were over 92%, and the process could be accomplished in as few as eight days.
Collapse
Affiliation(s)
- Yongchuang Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiangrong He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Pingping Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Minggen Cheng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Kuźniar A, Furtak K, Włodarczyk K, Stępniewska Z, Wolińska A. Methanotrophic Bacterial Biomass as Potential Mineral Feed Ingredients for Animals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152674. [PMID: 31357395 PMCID: PMC6696423 DOI: 10.3390/ijerph16152674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
Microorganisms play an important role in animal nutrition, as they can be used as a source of food or feed. The aim of the study was to determine the nutritional elements and fatty acids contained in the biomass of methanotrophic bacteria. Four bacterial consortia composed of Methylocystis and Methylosinus originating from Sphagnum flexuosum (Sp1), S. magellanicum (Sp2), S. fallax II (Sp3), S. magellanicum IV (Sp4), and one composed of Methylocaldum, Methylosinus, and Methylocystis that originated from coalbed rock (Sk108) were studied. Nutritional elements were determined using the flame atomic absorption spectroscopy technique after a biomass mineralization stage, whereas the fatty acid content was analyzed with the GC technique. Additionally, the growth of biomass and dynamics of methane consumption were monitored. It was found that the methanotrophic biomass contained high concentrations of K, Mg, and Fe, i.e., approx. 9.6–19.1, 2.2–7.6, and 2.4–6.6 g kg−1, respectively. Consequently, the biomass can be viewed as an appropriate feed and/or feed additive for supplementation with macroelements and certain microelements. Moreover, all consortia demonstrated higher content of unsaturated acids than saturated ones. Thus, methanotrophic bacteria seem to be a good solution, in natural supplementation of animal diets.
Collapse
Affiliation(s)
- Agnieszka Kuźniar
- Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów St. 1 I, 20-708 Lublin, Poland.
| | - Karolina Furtak
- Department of Agriculture Microbiology, Institute of Soil Sciences and Plant Cultivation State Research Institute, Czartoryskich St. 8, 24-100 Puławy, Poland
| | - Kinga Włodarczyk
- Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów St. 1 I, 20-708 Lublin, Poland
| | - Zofia Stępniewska
- Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów St. 1 I, 20-708 Lublin, Poland
| | - Agnieszka Wolińska
- Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów St. 1 I, 20-708 Lublin, Poland
| |
Collapse
|
7
|
Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane. Metab Eng 2018; 47:323-333. [DOI: 10.1016/j.ymben.2018.04.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 11/23/2022]
|
8
|
Zhang B, Xu X, Zhu L. Structure and function of the microbial consortia of activated sludge in typical municipal wastewater treatment plants in winter. Sci Rep 2017; 7:17930. [PMID: 29263391 PMCID: PMC5738398 DOI: 10.1038/s41598-017-17743-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/29/2017] [Indexed: 12/01/2022] Open
Abstract
To better understand the relationship between the environmental variables and microbial communities of activated sludge, we took winter samples from different biological treatment units (anaerobic, oxic, etc) from the WWTP's of a number of Chinese cities. Differences in influent organic components and activated sludge microbial communities were identified by gas chromatography-mass spectrometry and high-throughput sequencing technology, respectively. Liquid nitrogen grinding pretreatment of samples was found to aid in the obtaining of a more bio-diversified sample. Influent type and dissolved oxygen concentration influenced the activated sludge microbial community structure. Nitrospira, Caldilineaceae and Anaerolineaceae were highly related to domestic wastewater treatment systems, whereas Thauera was the most abundant putative refractory aromatic hydrocarbon decomposer found in industrial wastewater treatment systems. Within the influent composition, we speculate that Thauera, Macellibacteroides and Desulfomicrobium are the key functional genera of the anaerobic environment of the textile dyeing industry wastewater treatment systems, whilst Thauera and Thiobacillus are key functional microbes in fine chemical wastewater treatment systems.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Xiangyang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, P.R. China
| | - Liang Zhu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, P.R. China.
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, P.R. China.
| |
Collapse
|
9
|
Stone KA, Hilliard MV, He QP, Wang J. A mini review on bioreactor configurations and gas transfer enhancements for biochemical methane conversion. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Zamakhaeva SA, Fedorov DN, Trotsenko YA. Methylotrophic producers of bioplastics (Review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817040147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Liu Z, Oyetunde T, Hollinshead WD, Hermanns A, Tang YJ, Liao W, Liu Y. Exploring eukaryotic formate metabolisms to enhance microbial growth and lipid accumulation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:22. [PMID: 28149324 PMCID: PMC5267366 DOI: 10.1186/s13068-017-0708-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND C1 substrates (such as formate and methanol) are promising feedstock for biochemical/biofuel production. Numerous studies have been focusing on engineering heterologous pathways to incorporate C1 substrates into biomass, while the engineered microbial hosts often demonstrate inferior fermentation performance due to substrate toxicity, metabolic burdens from engineered pathways, and poor enzyme activities. Alternatively, exploring native C1 pathways in non-model microbes could be a better solution to address these challenges. RESULTS An oleaginous fungus, Umbelopsis isabellina, demonstrates an excellent capability of metabolizing formate to promote growth and lipid accumulation. By co-feeding formate with glucose at a mole ratio of 3.9:1, biomass and lipid productivities of the culture in 7.5 L bioreactors were improved by 20 and 70%, respectively. 13C-metabolite analysis, genome annotations, and enzyme assay further discovered that formate not only provides an auxiliary energy source [promoting NAD(P)H and ATP] for cell anabolism, but also contributes carbon backbones via folate-mediated C1 pathways. More interestingly, formate addition can tune fatty acid profile and increase the portion of medium-chain fatty acids, which would benefit conversion of fungal lipids for high-quality biofuel production. Flux balance analysis further indicates that formate co-utilization can power microbial metabolism to improve biosynthesis, particularly on glucose-limited cultures. CONCLUSION This study demonstrates Umbelopsis isabellina's strong capability for co-utilizing formate to produce biomass and enhance fatty acid production. It is a promising non-model platform that can be potentially integrated with photochemical/electrochemical processes to efficiently convert carbon dioxide into biofuels and value-added chemicals.
Collapse
Affiliation(s)
- Zhiguo Liu
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824-1323 USA
| | - Tolutola Oyetunde
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Whitney D. Hollinshead
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Anna Hermanns
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824-1323 USA
- Department of Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Yinjie J. Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Wei Liao
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824-1323 USA
| | - Yan Liu
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824-1323 USA
| |
Collapse
|
12
|
Cantera S, Lebrero R, Sadornil L, García-Encina PA, Muñoz R. Valorization of CH4 emissions into high-added-value products: Assessing the production of ectoine coupled with CH4 abatement. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 182:160-165. [PMID: 27472052 DOI: 10.1016/j.jenvman.2016.07.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
This study assessed an innovative strategy for the valorization of dilute methane emissions based on the bio-conversion of CH4 (the second most important greenhouse gas (GHG)) into ectoine by the methanotrophic ectoine-producing strain Methylomicrobium alcaliphilum 20 Z. The influence of CH4 (2-20%), Cu(2+) (0.05-50 μM) and NaCl (0-9%) concentration as well as temperature (25-35 °C) on ectoine synthesis and specific CH4 biodegradation rate was evaluated for the first time. Concentrations of 20% CH4 (at 3% NaCl, 0.05 μM Cu(2+), 25 °C) and 6% NaCl (at 4% CH4, 0.05 μM Cu(2+), 25 °C) supported the maximum intra-cellular ectoine production yield (31.0 ±1.7 and 66.9 ±4.2 mg g biomass(-1), respectively). On the other hand, extra-cellular ectoine concentrations of up to 4.7 ± 0.1 mg L(-1) were detected at high Cu(2+)concentrations (50 μM), despite this methanotroph has not been previously classified as an ectoine-excreting strain. This research demonstrated the feasibility of the bio-conversion of dilute emissions of methane into high-added value products in an attempt to develop a sustainable GHG bioeconomy.
Collapse
Affiliation(s)
- Sara Cantera
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain
| | - Lidia Sadornil
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain
| | - Pedro A García-Encina
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, Valladolid University, Dr. Mergelina, s/n, Valladolid, Spain.
| |
Collapse
|
13
|
Enrichment and characteristics of mixed methane-oxidizing bacteria from a Chinese coal mine. Appl Microbiol Biotechnol 2016; 100:10331-10341. [DOI: 10.1007/s00253-016-7738-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 10/21/2022]
|
14
|
Growth of Bacillus methanolicus in 2 M methanol at 50 °C: the effect of high methanol concentration on gene regulation of enzymes involved in formaldehyde detoxification by the ribulose monophosphate pathway. J Ind Microbiol Biotechnol 2015; 42:1027-38. [PMID: 25952117 DOI: 10.1007/s10295-015-1623-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022]
Abstract
Bacillus methanolicus MGA3 is a Gram-positive aerobic methylotroph growing optimally at 50-53°C. Methylotrophy in B. methanolicus is encoded on pBM19 and by two chromosomal copies of the methanol dehydrogenase (mdh), hexulose phosphate synthase (hps) and phosphohexuloisomerase (phi) genes. However, there are no published studies on the regulation of methylotrophy or the dominant mechanism of detoxification of intracellular formaldehyde in response to high methanol concentration. The µ max of B. methanolicus MGA3 was assessed on methanol, mannitol and glucose. B. methanolicus achieved a µ max at 25 mM initial methanol of 0.65 ± 0.007 h(-1), which decreased to 0.231 ± 0.004 h(-1) at 2 M initial methanol. Slow growth was also observed with initial methanol concentrations of >2 M. The µ max on mannitol and glucose are 0.532 ± 0.002 and 0.336 ± 0.003 h(-1), respectively. Spiking cultures with additional methanol (100 mM) did not disturb the growth rate of methanol-grown cells, whereas, a 50 mM methanol spike halted the growth in mannitol. Surprisingly, growth in methanol was inhibited by 1 mM formaldehyde, while mannitol-grown cells tolerated 2 mM. Moreover, mannitol-grown cells removed formaldehyde faster than methanol-grown cells. Further, we show that methanol oxidation in B. methanolicus MGA3 is mainly carried out by the pBM19-encoded mdh. Formaldehyde and formate addition down-regulate the mdh and hps genes in methanol-grown cells. Similarly, they down-regulate mdh genes in mannitol-grown cells, but up-regulate hps. Phosphofructokinase (pfk) is up-regulated in both methanol and mannitol-grown cells, which suggests that pfk may be a possible synthetic methylotrophy target to reduce formaldehyde growth toxicity at high methanol concentrations.
Collapse
|
15
|
Khmelenina VN, Rozova ON, But SY, Mustakhimov II, Reshetnikov AS, Beschastnyi AP, Trotsenko YA. Biosynthesis of secondary metabolites in methanotrophs: Biochemical and genetic aspects (Review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815020088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 2014; 4:2785. [PMID: 24302011 DOI: 10.1038/ncomms3785] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/16/2013] [Indexed: 11/08/2022] Open
Abstract
Methane is an essential component of the global carbon cycle and one of the most powerful greenhouse gases, yet it is also a promising alternative source of carbon for the biological production of value-added chemicals. Aerobic methane-consuming bacteria (methanotrophs) represent a potential biological platform for methane-based biocatalysis. Here we use a multi-pronged systems-level approach to reassess the metabolic functions for methane utilization in a promising bacterial biocatalyst. We demonstrate that methane assimilation is coupled with a highly efficient pyrophosphate-mediated glycolytic pathway, which under oxygen limitation participates in a novel form of fermentation-based methanotrophy. This surprising discovery suggests a novel mode of methane utilization in oxygen-limited environments, and opens new opportunities for a modular approach towards producing a variety of excreted chemical products using methane as a feedstock.
Collapse
|
17
|
Khmelenina VN, Beck DAC, Munk C, Davenport K, Daligault H, Erkkila T, Goodwin L, Gu W, Lo CC, Scholz M, Teshima H, Xu Y, Chain P, Bringel F, Vuilleumier S, DiSpirito A, Dunfield P, Jetten MSM, Klotz MG, Knief C, Murrell JC, Op den Camp HJM, Sakai Y, Semrau J, Svenning M, Stein LY, Trotsenko YA, Kalyuzhnaya MG. Draft Genome Sequence of Methylomicrobium buryatense Strain 5G, a Haloalkaline-Tolerant Methanotrophic Bacterium. GENOME ANNOUNCEMENTS 2013; 1:e00053-13. [PMID: 23814105 PMCID: PMC3695433 DOI: 10.1128/genomea.00053-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/08/2013] [Indexed: 11/20/2022]
Abstract
Robust growth of the gammaproteobacterium Methylomicrobium buryatense strain 5G on methane makes it an attractive system for CH4-based biocatalysis. Here we present a draft genome sequence of the strain that will provide a valuable framework for metabolic engineering of the core pathways for the production of valuable chemicals from methane.
Collapse
Affiliation(s)
- Valentina N. Khmelenina
- GK Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - David A. C. Beck
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- eScience Institute, University of Washington, Seattle, Washington, USA
| | - Christine Munk
- Los Alamos National Laboratory, Joint Genome Institute, Biosciences Division Genome Science B6, Los Alamos, New Mexico, USA
| | - Karen Davenport
- Los Alamos National Laboratory, Joint Genome Institute, Biosciences Division Genome Science B6, Los Alamos, New Mexico, USA
| | - Hajnalka Daligault
- Los Alamos National Laboratory, Joint Genome Institute, Biosciences Division Genome Science B6, Los Alamos, New Mexico, USA
| | - Tracy Erkkila
- Los Alamos National Laboratory, Joint Genome Institute, Biosciences Division Genome Science B6, Los Alamos, New Mexico, USA
| | - Lynne Goodwin
- Los Alamos National Laboratory, Joint Genome Institute, Biosciences Division Genome Science B6, Los Alamos, New Mexico, USA
| | - Wei Gu
- Los Alamos National Laboratory, Joint Genome Institute, Biosciences Division Genome Science B6, Los Alamos, New Mexico, USA
| | - Chien-Chi Lo
- Los Alamos National Laboratory, Joint Genome Institute, Biosciences Division Genome Science B6, Los Alamos, New Mexico, USA
| | - Matthew Scholz
- Los Alamos National Laboratory, Joint Genome Institute, Biosciences Division Genome Science B6, Los Alamos, New Mexico, USA
| | - Hazuki Teshima
- Los Alamos National Laboratory, Joint Genome Institute, Biosciences Division Genome Science B6, Los Alamos, New Mexico, USA
| | - Yan Xu
- Los Alamos National Laboratory, Joint Genome Institute, Biosciences Division Genome Science B6, Los Alamos, New Mexico, USA
| | - Patrick Chain
- Los Alamos National Laboratory, Joint Genome Institute, Biosciences Division Genome Science B6, Los Alamos, New Mexico, USA
| | - Francoise Bringel
- Equipe Adaptations et Interactions Microbiennes dans l’Environnement, UMR 7156 UdS–CNRS Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, Strasbourg, France
| | - Stéphane Vuilleumier
- Equipe Adaptations et Interactions Microbiennes dans l’Environnement, UMR 7156 UdS–CNRS Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, Strasbourg, France
| | - Alan DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Peter Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Mike S. M. Jetten
- Department of Microbiology, Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Martin G. Klotz
- Department of Biology, University of North Carolina, Charlotte, North Carolina, USA
| | - Claudia Knief
- Institute of Crop Science and Resource Conservation–Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Huub J. M. Op den Camp
- Department of Microbiology, Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jeremy Semrau
- Department of Civil & Environmental Engineering, the University of Michigan, Ann Arbor, Michigan, USA
| | - Mette Svenning
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway
| | - Lisa Y. Stein
- OMeGA, the Organization for Methanotrophic Genome Analysis, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Yuri A. Trotsenko
- GK Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | | |
Collapse
|
18
|
Vuilleumier S, Khmelenina VN, Bringel F, Reshetnikov AS, Lajus A, Mangenot S, Rouy Z, Op den Camp HJM, Jetten MSM, Dispirito AA, Dunfield P, Klotz MG, Semrau JD, Stein LY, Barbe V, Médigue C, Trotsenko YA, Kalyuzhnaya MG. Genome sequence of the haloalkaliphilic methanotrophic bacterium Methylomicrobium alcaliphilum 20Z. J Bacteriol 2012; 194:551-2. [PMID: 22207753 PMCID: PMC3256673 DOI: 10.1128/jb.06392-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 11/20/2022] Open
Abstract
Methylomicrobium strains are widespread in saline environments. Here, we report the complete genome sequence of Methylomicrobium alcaliphilum 20Z, a haloalkaliphilic methanotrophic bacterium, which will provide the basis for detailed characterization of the core pathways of both single-carbon metabolism and responses to osmotic and high-pH stresses. Final assembly of the genome sequence revealed that this bacterium contains a 128-kb plasmid, making M. alcaliphilum 20Z the first methanotrophic bacterium of known genome sequence for which a plasmid has been reported.
Collapse
Affiliation(s)
- Stéphane Vuilleumier
- Équipe Adaptations et Interactions Microbiennes dans l’Environnement, Université de Strasbourg, UMR 7156 CNRS, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing XH. Methanotrophs: Multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.01.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Trotsenko YA, Murrell JC. Metabolic aspects of aerobic obligate methanotrophy. ADVANCES IN APPLIED MICROBIOLOGY 2008; 63:183-229. [PMID: 18395128 DOI: 10.1016/s0065-2164(07)00005-6] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yuri A Trotsenko
- G.K.Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow 142290, Russia
| | | |
Collapse
|
21
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
22
|
Shirokikh IG, Shupletsova ON, Shirokikh AA. Assessment of the effect of methylotrophic bacteria on plants in vitro. ACTA ACUST UNITED AC 2007. [DOI: 10.3103/s1068367407050102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Ghosh A, Goyal A, Jain RK. Study of methanol-induced phenotypic changes in a novel strain of Acinetobacter lwoffii. Arch Microbiol 2007; 188:533-9. [PMID: 17572881 DOI: 10.1007/s00203-007-0268-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 04/20/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
A Gram-negative bacterial strain designated LS2 isolated from Lahaul-Spiti valley of North India was shown to produce pink pigment while utilizing methanol as sole source of carbon and energy. Interestingly, pigment production was inducible in nature since the organism did not produce any pigment when grown on other carbon sources. Based on phenotypic and phylogenetic characterization the non-pigmented methylotroph was identified as a novel strain of Acinetobacter lwoffii MTCC 8288 (DQ144736). By means of spectral and mass analyses the pigment was characterized as bacterioruberin-like carotenoid molecule. Here, the carotenoid pigment may form an important part of the antioxidant defense mechanism against oxidative stress imparted by methanol. The methanol utilization pathway in strain LS2 was deciphered by showing the presence of functional methanol dehydrogenase and formaldehyde dehydrogenase genes. In addition, to investigate methanol induced physiological changes, comparative fatty acid profile was analysed and distinctive qualitative as well as quantitative differences in fatty acid content were observed. Therefore, we suggest that strain LS2 exhibiting such unique phenotypic property should be assigned a taxonomic position other than the pigmented and non-pigmented methylotrophs.
Collapse
Affiliation(s)
- Anuradha Ghosh
- Institute of Microbial Technology, Sector-39A, Chandigarh, 160036, India
| | | | | |
Collapse
|