1
|
Capalbo S, Polyakova A, El Imane Z, Khan I, Kawai T, Shindo S, Salinas M. A Comprehensive Review of Contemporary Bioreactors for Vascular Inflammation Studies. Inflammation 2025:10.1007/s10753-024-02231-y. [PMID: 39903422 DOI: 10.1007/s10753-024-02231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 02/06/2025]
Abstract
The field of vascular biology has advanced significantly with bioreactor systems, which have become essential tools for investigating the mechanisms of vascular inflammatory diseases such as atherosclerosis, vasculitis, and aneurysms. These bioreactors allow researchers to recreate specific vascular environments, providing a controlled setting for studying the effects of blood flow, mechanical stress, and biochemical factors on vascular tissues. Through these systems, researchers can explore how physical and chemical cues contribute to disease processes and cellular responses, enhancing our understanding of disease progression. Bioreactor studies have demonstrated that hemodynamic forces, particularly shear stress, influence endothelial cell behavior and play a role in vascular pathologies. For instance, in atherosclerosis, disturbed flow patterns are associated with endothelial dysfunction and plaque development. By simulating these conditions, bioreactors provide insight into the effects of mechanical forces on vascular wall biology, highlighting how altered flow can contribute to disease. Bioreactors also support studies on the impacts of pulsatile flow and circumferential stress, allowing a closer approximation of physiological environments. Beyond flow dynamics, these systems facilitate investigation into how vascular cells respond to biochemical signals, inflammatory markers, and therapeutic interventions. This integrated approach allows for a more complete picture of the factors involved in vascular disease. Recent advancements, such as vessel-on-a-chip models and artery-mimicking setups, extend the capabilities of bioreactors by enabling researchers to model a broader range of conditions relevant to human physiology. In vasculitis studies, bioreactors help explore immune interactions with endothelial cells, especially with stem cell-derived cells that replicate patient-specific responses. Bioreactors also play a role in vascular tissue engineering, particularly in assessing materials and scaffold-free designs that may reduce inflammation in vascular grafts. These efforts contribute to the ongoing search for more compatible graft materials, with the potential to improve outcomes in clinical applications. This review provides a comprehensive overview of bioreactor technologies applied in vascular inflammation research, examining their designs, applications, and contributions to disease modeling. Organized into sections on bioreactor configurations, flow dynamics, biochemical interactions, and tissue engineering applications, the review concludes by discussing recent innovations and highlighting directions for future research, underscoring the role of bioreactors in bridging laboratory studies with insights into vascular disease.
Collapse
Affiliation(s)
- Solana Capalbo
- Nova Southeastern University, College of Computing and Engineering, Davie, FL, USA
| | | | - Zayd El Imane
- Nova Southeastern University, College of Computing and Engineering, Davie, FL, USA
| | - Izza Khan
- Nova Southeastern University, College of Computing and Engineering, Davie, FL, USA
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, Nova Southeastern University College of Dental Medicine, Fort Lauderdale, FL, USA
| | - Satoru Shindo
- Department of Oral Science and Translational Research, Nova Southeastern University College of Dental Medicine, Fort Lauderdale, FL, USA
| | - Manuel Salinas
- Nova Southeastern University, College of Computing and Engineering, Davie, FL, USA.
| |
Collapse
|
2
|
Chakraborty S, Banerjee S, Raina M, Haldar S. Force-Directed “Mechanointeractome” of Talin–Integrin. Biochemistry 2019; 58:4677-4695. [DOI: 10.1021/acs.biochem.9b00442] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Manasven Raina
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| |
Collapse
|
3
|
Detection of frequency-dependent endothelial response to oscillatory shear stress using a microfluidic transcellular monitor. Sci Rep 2017; 7:10019. [PMID: 28855638 PMCID: PMC5577378 DOI: 10.1038/s41598-017-10636-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/10/2017] [Indexed: 02/06/2023] Open
Abstract
The endothelial microenvironment is critical in maintaining the health and function of the intimal layer in vasculature. In the context of cardiovascular disease (CVD), the vascular endothelium is the layer of initiation for the progression of atherosclerosis. While laminar blood flows are known to maintain endothelial homeostasis, disturbed flow conditions including those the endothelium experiences in the carotid artery are responsible for determining the fate of CVD progression. We present a microfluidic device designed to monitor the endothelium on two fronts: the real-time monitoring of the endothelial permeability using integrated electrodes and the end-point characterization of the endothelium through immunostaining. Our key findings demonstrate endothelial monolayer permeability and adhesion protein expression change in response to oscillatory shear stress frequency. These changes were found to be significant at certain frequencies, suggesting that a frequency threshold is needed to elicit an endothelial response. Our device made possible the real-time monitoring of changes in the endothelial monolayer and its end-point inspection through a design previously absent from the literature. This system may serve as a reliable research platform to investigate the mechanisms of various inflammatory complications of endothelial disorders and screen their possible therapeutics in a mechanistic and high-throughput manner.
Collapse
|
4
|
Nishide M, Nojima S, Ito D, Takamatsu H, Koyama S, Kang S, Kimura T, Morimoto K, Hosokawa T, Hayama Y, Kinehara Y, Kato Y, Nakatani T, Nakanishi Y, Tsuda T, Park JH, Hirano T, Shima Y, Narazaki M, Morii E, Kumanogoh A. Semaphorin 4D inhibits neutrophil activation and is involved in the pathogenesis of neutrophil-mediated autoimmune vasculitis. Ann Rheum Dis 2017; 76:1440-1448. [PMID: 28416516 PMCID: PMC5738596 DOI: 10.1136/annrheumdis-2016-210706] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Inappropriate activation of neutrophils plays a pathological role in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). The aim of this study was to investigate the functions of semaphorin 4D (SEMA4D) in regulation of neutrophil activation, and its involvement in AAV pathogenesis. METHODS Serum levels of soluble SEMA4D were evaluated by ELISA. Blood cell-surface expression of membrane SEMA4D was evaluated by flow cytometry. To determine the functional interactions between neutrophil membrane SEMA4D and endothelial plexin B2, wild-type and SEMA4D-/- mice neutrophils were cultured with an endothelial cell line (MS1) stained with SYTOX green, and subjected to neutrophil extracellular trap (NET) formation assays. The efficacy of treating human neutrophils with recombinant plexin B2 was assessed by measuring the kinetic oxidative burst and NET formation assays. RESULTS Serum levels of soluble SEMA4D were elevated in patients with AAV and correlated with disease activity scores. Cell-surface expression of SEMA4D was downregulated in neutrophils from patients with AAV, a consequence of proteolytic cleavage of membrane SEMA4D. Soluble SEMA4D exerted pro-inflammatory effects on endothelial cells. Membranous SEMA4D on neutrophils bound to plexin B2 on endothelial cells, and this interaction decreased NET formation. Recombinant plexin B2 suppressed neutrophil Rac1 activation through SEMA4D's intracellular domain, and inhibited pathogen-induced or ANCA-induced oxidative burst and NET formation. CONCLUSIONS Neutrophil surface SEMA4D functions as a negative regulator of neutrophil activation. Proteolytic cleavage of SEMA4D as observed in patients with AAV may amplify neutrophil-mediated inflammatory responses. SEMA4D is a promising biomarker and potential therapeutic target for AAV.
Collapse
Affiliation(s)
- Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Satoshi Nojima
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
- Department of Pathology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Daisuke Ito
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Sujin Kang
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
- Department of Clinical Application of Biologics, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Tetsuya Kimura
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Keiko Morimoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Takashi Hosokawa
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Yoshitomo Hayama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Yuhei Kinehara
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Takeshi Nakatani
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Takeshi Tsuda
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
- Department of Otorhinolaryngology–Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Jeong Hoon Park
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Toru Hirano
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Yoshihito Shima
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| |
Collapse
|
5
|
Fine N, Dimitriou ID, Rullo J, Sandí MJ, Petri B, Haitsma J, Ibrahim H, La Rose J, Glogauer M, Kubes P, Cybulsky M, Rottapel R. GEF-H1 is necessary for neutrophil shear stress-induced migration during inflammation. J Cell Biol 2017; 215:107-119. [PMID: 27738004 PMCID: PMC5057286 DOI: 10.1083/jcb.201603109] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022] Open
Abstract
In their work, Fine et al. demonstrate that GEF-H1 is required for the spreading and crawling of neutrophils in response to intravascular blood flow. They uncover a novel mechanism that couples shear stress with Rho-dependent migratory behavior of neutrophils during inflammation. Leukocyte crawling and transendothelial migration (TEM) are potentiated by shear stress caused by blood flow. The mechanism that couples shear stress to migration has not been fully elucidated. We found that mice lacking GEF-H1 (GEF-H1−/−), a RhoA-specific guanine nucleotide exchange factor (GEF), displayed limited migration and recruitment of neutrophils into inflamed tissues. GEF-H1−/− leukocytes were deficient in in vivo crawling and TEM in the postcapillary venules. We demonstrated that although GEF-H1 deficiency had little impact on the migratory properties of neutrophils under static conditions, shear stress triggered GEF-H1–dependent spreading and crawling of neutrophils and relocalization of GEF-H1 to flotillin-2–rich uropods. Our results identify GEF-H1 as a component of the shear stress response machinery in neutrophils required for a fully competent immune response to bacterial infection.
Collapse
Affiliation(s)
- Noah Fine
- Princess Margaret Cancer Center, Toronto, Ontario M5G 1L7, Canada Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1L7, Canada Matrix Dynamics Group, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Ioannis D Dimitriou
- Princess Margaret Cancer Center, Toronto, Ontario M5G 1L7, Canada Department of Immunology, University of Toronto, Toronto, Ontario M5S 1L7, Canada
| | - Jacob Rullo
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - María José Sandí
- Princess Margaret Cancer Center, Toronto, Ontario M5G 1L7, Canada
| | - Björn Petri
- Immunology Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jack Haitsma
- Department of Anesthesiology, VU Medical Center, 1081 HV Amsterdam, Netherlands
| | - Hisham Ibrahim
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Jose La Rose
- Princess Margaret Cancer Center, Toronto, Ontario M5G 1L7, Canada
| | - Michael Glogauer
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Paul Kubes
- Immunology Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Myron Cybulsky
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Center, Toronto, Ontario M5G 1L7, Canada Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1L7, Canada Department of Immunology, University of Toronto, Toronto, Ontario M5S 1L7, Canada Department of Medicine, University of Toronto, Toronto, Ontario M5S 1L7, Canada Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
6
|
Physiological roles and potential therapeutic applications of the P2X7 receptor in inflammation and pain. Molecules 2013; 18:10953-72. [PMID: 24013409 PMCID: PMC6270334 DOI: 10.3390/molecules180910953] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/21/2022] Open
Abstract
The P2X7 receptor (P2X7R) is a nonselective cation channel that is activated by extracellular ATP and triggers the secretion of several proinflammatory substances, such as IL-1β, IL-18, TNF-α, and nitric oxide. Recently, several preclinical studies have demonstrated that this receptor participates in inflammation and pain mechanisms. Taken together, these results indicate that P2X7R is a promising pharmacological target, and compounds that modulate the function of this receptor show potential as new anti-inflammatory medicines. In this review, we discuss aspects of P2X7R pharmacology and the participation of this protein in inflammation and pain and provide an overview of some promising compounds that have been tested as antagonists of P2X7R, with clinical applicability.
Collapse
|
7
|
Kunes P, Mandak J, Holubcova Z, Kolackova M, Krejsek J. The long pentraxin PTX3: a candidate anti-inflammatory mediator in cardiac surgery. Perfusion 2013; 28:377-89. [DOI: 10.1177/0267659113483799] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Coronary artery bypass grafting (CABG) is performed with the use of cardiopulmonary bypass (CPB) and cardioplegic arrest (CA) of the heart. The advantage of this technique, alternatively referred to as “on-pump” surgery, resides, for the surgeon, in relatively easy access to and manipulation with the non-beating, bloodless heart. However, the advantage that is, thereby, gained by the patient is paid off by an increased susceptibility to postoperative systemic inflammatory response syndrome (SIRS). Under unfavorable conditions, the inflammatory syndrome may develop into life-threatening forms of MODS (multiple organ dysfunction syndrome) or even MOFS (multiple organ failure syndrome). Deliberate avoidance of CPB, also known as “off-pump” surgery, attenuates early postoperative inflammation throughout its trajectory of SIRS→MODS→MOFS, but, in the long run, there appears to be no substantial difference in the overall mortality rates. In the last years, our knowledge of the pathophysiology of surgical inflammation has increased considerably. Recent findings, highlighting the as yet rather obscure role of pentraxin 3 (PTX3) in these processes, are discussed in this review article.
Collapse
Affiliation(s)
- P Kunes
- Deparment of Cardiac Surgery, Charles University in Prague, Medical School and University Hospital in Hradec Kralove, Czech Republic
| | - J Mandak
- Deparment of Cardiac Surgery, Charles University in Prague, Medical School and University Hospital in Hradec Kralove, Czech Republic
| | - Z Holubcova
- Deparment of Cardiac Surgery, Charles University in Prague, Medical School and University Hospital in Hradec Kralove, Czech Republic
| | - M Kolackova
- Department of Clinical Immunology, Charles University in Prague, Medical School and University Hospital in Hradec Kralove, Czech Republic
| | - J Krejsek
- Department of Clinical Immunology, Charles University in Prague, Medical School and University Hospital in Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Huang RB, Gonzalez AL, Eniola-Adefeso O. Laminar shear stress elicit distinct endothelial cell E-selectin expression pattern via TNFα and IL-1β activation. Biotechnol Bioeng 2013; 110:999-1003. [PMID: 23055258 DOI: 10.1002/bit.24746] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 12/30/2022]
Abstract
The ability to discriminate cell adhesion molecule expression between healthy and inflamed endothelium is critical for therapeutic intervention in many diseases. This study explores the effect of laminar flow on TNFα-induced E-selectin surface expression levels in human umbilical vein endothelial cells (HUVECs) relative to IL-1β-induced expression via flow chamber assays. HUVECs grown in static culture were either directly (naïve) activated with cytokine in the presence of laminar shear or pre-exposed to 12 h of laminar shear (shear-conditioned) prior to simultaneous shear and cytokine activation. Naïve cells activated with cytokine in static served as control. Depending on the cell shear history, fluid shear is found to differently affect TNFα-induced relative to IL-1β-induced HUVEC expression of E-selectin. Specifically, E-selectin surface expression by naïve HUVECs is enhanced in the 8-12 h activation time range with simultaneous exposure to shear and TNFα (shear-TNFα) relative to TNFα static control whereas enhanced E-selectin expression is observed in the 4-24 h range for shear-IL-1β treatment relative to IL-1β static control. While exposure of HUVECs to shear preconditioning mutes shear-TNFα-induced E-selectin expression, it enhances or down-regulates shear-IL-1β-induced expression dependent on the activation period. Under dual-cytokine-shear conditions, IL-1β signaling dominates. Overall, a better understanding of E-selectin expression pattern by human ECs relative to the combined interaction of cytokines, shear profile and history can help elucidate many disease pathologies.
Collapse
Affiliation(s)
- Ryan B Huang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
9
|
Intercellular adhesion molecule-1 blockade attenuates inflammatory response and improves microvascular perfusion in rat pancreas grafts. Pancreas 2012; 41:1112-8. [PMID: 22617707 DOI: 10.1097/mpa.0b013e31824abb2c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES After pancreas transplantation (PTx), early capillary malperfusion and leukocyte recruitment indicate the manifestation of severe ischemia/reperfusion injury (IRI). Oscillatory blood-flow redistribution (intermittent capillary perfusion, IP), leading to an overall decrease in erythrocyte flux, precedes complete microvascular perfusion failure with persistent blood flow cessation. We addressed the role of intercellular adhesion molecule-1 (ICAM-1) for leukocyte-endothelial interactions (LEIs) after PTx and evaluated the contribution of IP and malperfusion. METHODS Pancreas transplantation was performed in rats after 18-hour preservation, receiving either isotype-matched IgG or monoclonal anti-ICAM-1 antibodies (10 mg/kg intravenously) once before reperfusion. Leukocyte-endothelial interaction, IP, erythrocyte flux, and functional capillary density, respectively, were examined in vivo during 2-hour reperfusion. Nontransplanted animals served as controls. Tissue samples were analyzed by histomorphometry. RESULTS In grafts of IgG-treated animals, IP was encountered already at an early stage after reperfusion and steadily increased over 2 hours, whereas erythrocyte flux declined continuously. In contrast, inhibition of ICAM-1 significantly improved erythrocyte flux and delayed IP appearance by 2 hours. Further, anti-ICAM-1 significantly reduced LEI and leukocyte tissue infiltration when compared to IgG; edema development was less pronounced in response to anti-ICAM-1 monoclonal antibody. CONCLUSION Intercellular adhesion molecule-1 blockade significantly attenuates IRI via immediate reduction of LEI and concomitant improvement of capillary perfusion patterns, emphasizing its central role during IRI in PTx.
Collapse
|
10
|
Huang RB, Eniola-Adefeso O. Shear stress modulation of IL-1β-induced E-selectin expression in human endothelial cells. PLoS One 2012; 7:e31874. [PMID: 22384091 PMCID: PMC3286450 DOI: 10.1371/journal.pone.0031874] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 01/13/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Endothelial cells (ECs) are continuously exposed to hemodynamic forces imparted by blood flow. While it is known that endothelial behavior can be influenced by cytokine activation or fluid shear, the combined effects of these two independent agonists have yet to be fully elucidated. METHODOLOGY We investigated EC response to long-term inflammatory cues under physiologically relevant shear conditions via E-selectin expression where monolayers of human umbilical vein ECs were simultaneously exposed to laminar fluid shear and interleukin-1ß (shear-cytokine activation) in a parallel plate flow chamber. RESULTS AND CONCLUSION Naïve ECs exposed to shear-cytokine activation display significantly higher E-selectin expression for up to 24 hr relative to ECs activated in static (static-cytokine). Peak E-selectin expression occurred after 8-12 hr of continuous shear-cytokine activation contrary to the commonly observed 4-6 hr peak expression in ECs exposed to static-cytokine activation. Cells with some history of high shear conditioning exhibited either high or muted E-selectin expression depending on the durations of the shear pre-conditioning and the ensuing shear-cytokine activation. Overall, the presented data suggest that a high laminar shear enhances acute EC response to interleukin-1ß in naïve or shear-conditioned ECs as may be found in the pathological setting of ischemia/reperfusion injury while conferring rapid E-selectin downregulation to protect against chronic inflammation.
Collapse
Affiliation(s)
- Ryan B. Huang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
11
|
Montes-Sánchez D, Ventura JL, Mitre I, Frías S, Michán L, Espejel-Nuñez A, Vadillo-Ortega F, Zentella A. Glycosylated VCAM-1 isoforms revealed in 2D western blots of HUVECs treated with tumoral soluble factors of breast cancer cells. BMC CHEMICAL BIOLOGY 2009; 9:7. [PMID: 19930605 PMCID: PMC2787495 DOI: 10.1186/1472-6769-9-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 11/22/2009] [Indexed: 11/10/2022]
Abstract
Background Several common aspects of endothelial phenotype, such as the expression of cell adhesion molecules, are shared between metastasis and inflammation. Here, we analyzed VCAM-1 variants as biological markers of these two types of endothelial cell activation. With the combination of 2-DE and western blot techniques and the aid of tunicamycin, we analyzed N-glycosylation variants of VCAM-1 in primary human endothelial cells stimulated with either TNF or tumoral soluble factors (TSF's) derived from the human breast cancer cell line ZR75.30. Results Treatments induced a pro-adhesive endothelial phenotype. 2D western blots analysis of cells subjected to both treatments revealed the expression of the two known VCAM-1 isoforms and of previously unknown isoforms. In particular TSFZR75.30 induced an isoform with a relative molecular mass (Mr) and isoelectric point (pI) of 75-77 kDa and 5.0, respectively. Conclusion The unknown isoforms of VCAM-1 that were found to be overexpressed after treatment with TSF's compared with TNF, could serve as biomarkers to discriminate between inflammation and metastasis. 2D western blots revealed three new VCAM-1 isoforms expressed in primary human endothelial cells in response to TSF stimulation. Each of these isoforms varies in Mr and pI and could be the result of differential glycosylation states.
Collapse
Affiliation(s)
- Delina Montes-Sánchez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Ciudad Universitaria, Circuito Interior apartado postal 70228, CP04510, México DF.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Oh H, Mohler ER, Tian A, Baumgart T, Diamond SL. Membrane cholesterol is a biomechanical regulator of neutrophil adhesion. Arterioscler Thromb Vasc Biol 2009; 29:1290-7. [PMID: 19667108 PMCID: PMC2762395 DOI: 10.1161/atvbaha.109.189571] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the role of membrane cholesterol on human neutrophil and HL-60 biomechanics, capture, rolling, and arrest to P-selectin- or IL-1-activated endothelium. METHODS AND RESULTS Methyl-beta-cyclodextrin (MbetaCD) removed up to 73% and 45% of membrane cholesterol from HL-60 cells and neutrophils, whereas MbetaCD/cholesterol complexes resulted in maximum enrichment of 65% and 40%, respectively, above control levels. Cells were perfused at a venous wall shear rate of 100 s(-1) over adherent P-selectin-coated 1-microm diameter beads, uncoated 10-mum diameter beads, P-selectin-coated surfaces, or activated endothelium. Elevated cholesterol enhanced capture efficiency to 1-microm beads and increased membrane tether growth rate by 1.5- to 2-fold, whereas cholesterol depletion greatly reduced tether formation. Elevated cholesterol levels increased tether lifetime by 17% in neutrophils and adhesion lifetime by 63% in HL-60 cells. Deformation of cholesterol-enriched neutrophils increased the contact time with 10-mum beads by 32% and the contact area by 7-fold. On both P-selectin surfaces and endothelial-cell monolayers, cholesterol-enriched neutrophils rolled more slowly, more stably, and were more likely to firmly arrest. Cholesterol depletion resulted in opposite effects. CONCLUSIONS Increasing membrane cholesterol enhanced membrane tether formation and whole cell deformability, contributing to slower, more stable rolling on P-selectin and increased firm arrest on activated endothelium.
Collapse
Affiliation(s)
- Hana Oh
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania
| | | | - Aiwei Tian
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania
- Department of Chemistry, University of Pennsylvania
| | | | - Scott L. Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania
| |
Collapse
|
13
|
Abstract
Cells sense their physical surroundings through mechanotransduction - that is, by translating mechanical forces and deformations into biochemical signals such as changes in intracellular calcium concentration or by activating diverse signalling pathways. In turn, these signals can adjust cellular and extracellular structure. This mechanosensitive feedback modulates cellular functions as diverse as migration, proliferation, differentiation and apoptosis, and is crucial for organ development and homeostasis. Consequently, defects in mechanotransduction - often caused by mutations or misregulation of proteins that disturb cellular or extracellular mechanics - are implicated in the development of various diseases, ranging from muscular dystrophies and cardiomyopathies to cancer progression and metastasis.
Collapse
Affiliation(s)
- Diana E Jaalouk
- Brigham and Women's Hospital, Harvard Medical School, Department of Medicine, Cardiovascular Division, 65 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
14
|
Oh H, Diamond SL. Ethanol enhances neutrophil membrane tether growth and slows rolling on P-selectin but reduces capture from flow and firm arrest on IL-1-treated endothelium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:2472-82. [PMID: 18684938 PMCID: PMC2562726 DOI: 10.4049/jimmunol.181.4.2472] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of ethanol at physiological concentrations on neutrophil membrane tether pulling, adhesion lifetime, rolling, and firm arrest behavior were studied in parallel-plate flow chamber assays with adherent 1-microm-diameter P-selectin-coated beads, P-selectin-coated surfaces, or IL-1-stimulated human endothelium. Ethanol (0.3% by volume) had no effect on P-selectin glycoprotein ligand-1 (PSGL-1), L-selectin, or CD11b levels but caused PSGL-1 redistribution. Also, ethanol prevented fMLP-induced CD11b up-regulation. During neutrophil collisions with P-selectin-coated beads at venous wall shear rates of 25-100 s(-1), ethanol increased membrane tether length and membrane growth rate by 2- to 3-fold but reduced the adhesion efficiency (detectable bonding per total collisions) by 2- to 3-fold, compared with untreated neutrophils. Without ethanol treatment, adhesion efficiency and adhesion lifetime declined as wall shear rate was increased, whereas ethanol caused the adhesion lifetime over all events to increase from 0.1 s to 0.5 s as wall shear rate was increased, an example of pharmacologically induced hydrodynamic thresholding. Consistent with this increased membrane fluidity and reduced capture, ethanol reduced rolling velocity by 37% and rolling flux by 55% on P-selectin surfaces at 100 s(-1), compared with untreated neutrophils. On IL-1-stimulated endothelium, rolling velocity was unchanged by ethanol treatment, but the fraction of cells converting to firm arrest was reduced from 35% to 24% with ethanol. Overall, ethanol caused competing biophysical and biochemical effects that: 1) reduced capture due to PSGL-1 redistribution, 2) reduced rolling velocity due to increased membrane tether growth, and 3) reduced conversion to firm arrest.
Collapse
Affiliation(s)
- Hana Oh
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania
| | - Scott L. Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania
| |
Collapse
|