1
|
da Silva TOB, de Moura Vidal LW, Cabral PGA, da Mota Costa MR, Cadena SMR, Dos Santos Junior MB, Antunes F, de Abreu Oliveira AL. Interventionist videothermometry: a new model of cardiac ischemia evaluation. BMC Vet Res 2020; 16:142. [PMID: 32429913 PMCID: PMC7236240 DOI: 10.1186/s12917-020-02358-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/07/2020] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of the present study was to evaluate, through videothermometry, the temperature variation in the hearts of rabbits, that underwent induced myocardial ischemia and reperfusion. Results A total of 20 female rabbits were divided into two groups: a treated group and a sham group, the treatment group underwent 5 min of cardiac arrest and reperfusion, using the inflow occlusion technique. Throughout the experiment, the animals were monitored by videothermometry, observing the thermal variations of the myocardial tissue. During the experiment, at different times, blood gas tests and tests to evaluate the lactate concentrations were performed. At the end of the experiment, each heart was submitted to histopathological evaluation. In the treated group, there was a reduction in temperature of the myocardial tissue during the circulatory arrest compared to the sham group. Additionally, a colder area next to the caudal vena cava ostium and the right atrium was observed. Notably, despite the 5 min of cardiac arrest in the treated group, both the lactate and bicarbonate levels were maintained without significant variation. However, there was an increase in PaCO2 and pH reduction, featuring respiratory acidosis. In relation to the histopathological study, the presence of hydropic degeneration in the myocardium of animals in the treated group was observed. Conclusions Based on these results, the videothermometry was efficient in identifying the range of myocardial tissue temperature, suggesting that the first areas to suffer due to cardiac arrest were the caudal vena cava ostium and the right atrium. However, in regard to the angiographic coronary thermography, the study was not feasible due to the small size of the coronary. There was no variation between the groups regarding the presence of myocardial infarction, myocardial congestion, myocardial edema and myocardial hemorrhage.
Collapse
Affiliation(s)
| | | | - Paula Gebe Abreu Cabral
- Darcy Ribeiro North Fluminense State University, Alberto Lamego Avenue, Campos dos Goytacazes, 2000, Brazil
| | | | - Silvia Marcela Ruiz Cadena
- Darcy Ribeiro North Fluminense State University, Alberto Lamego Avenue, Campos dos Goytacazes, 2000, Brazil
| | | | - Fernanda Antunes
- Darcy Ribeiro North Fluminense State University, Alberto Lamego Avenue, Campos dos Goytacazes, 2000, Brazil
| | | |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Blood flow is intimately linked with cardiovascular development, repair and dysfunction. The current review will build on the fluid mechanical principle underlying haemodynamic shear forces, mechanotransduction and metabolic effects. RECENT FINDINGS Pulsatile flow produces both time (∂τ/∂t) and spatial-varying shear stress (∂τ/∂x) to modulate vascular oxidative stress and inflammatory response with pathophysiological significance to atherosclerosis. The characteristics of haemodynamic shear forces, namely, steady laminar (∂τ/∂t = 0), pulsatile shear stress (PSS: unidirectional forward flow) and oscillatory shear stress (bidirectional with a near net 0 forward flow), modulate mechano-signal transduction to influence metabolic effects on vascular endothelial function. Atheroprotective PSS promotes antioxidant, anti-inflammatory and antithrombotic responses, whereas atherogenic oscillatory shear stress induces nicotinamide adenine dinucleotide phosphate oxidase-JNK signalling to increase mitochondrial superoxide production, protein degradation of manganese superoxide dismutase and post-translational protein modifications of LDL particles in the disturbed flow-exposed regions of vasculature. In the era of tissue regeneration, shear stress has been implicated in reactivation of developmental genes, namely, Wnt and Notch signalling, for vascular development and repair. SUMMARY Blood flow imparts a dynamic continuum from vascular development to repair. Augmentation of PSS confers atheroprotection and reactivation of developmental signalling pathways for regeneration.
Collapse
Affiliation(s)
- Juhyun Lee
- Department of Bioengineering, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
| | - René R. Sevag Packard
- Department of Molecular, Cellular and Integrative Physiology, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
- Division of Cardiology, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
| | - Tzung K. Hsiai
- Department of Bioengineering, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
- Department of Molecular, Cellular and Integrative Physiology, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
- Division of Cardiology, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
3
|
Thiruvengadam J, Anburajan M, Menaka M, Venkatraman B. Potential of thermal imaging as a tool for prediction of cardiovascular disease. J Med Phys 2014; 39:98-105. [PMID: 24872607 PMCID: PMC4035622 DOI: 10.4103/0971-6203.131283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 01/14/2023] Open
Abstract
Vascular dysfunction is associated with onset of cardiovascular disease (CVD). Its effect is reflected as temperature change on the skin. The aim of this work was to test the potential of thermal imaging as cost effective screening tool for prediction of CVD. Thermal imaging of various parts of the subject (N = 80, male/female =44/36, aged 25-75 years) was done using noncontact infrared (IR) camera. In each subject, total cholesterol (TC; mg/dl) and high-density lipoprotein (HDL, mg/dl) were measured according to standard biochemical analysis. Based on National Cholesterol Education Program ATP III criteria, subject with known CVD (N = 16) and age- and sex- matched normal subjects (N = 21) were included in the study. The average surface temperature of various parts from head to toe was calculated and statistical analysis was performed between the groups. In the total population (N = 37), correlation study shows TC (mg/dl) was correlated with measured surface temperature of the following regions: Temporal left (r = -0.316) and right (r = -0.417), neck left (r = 0.347) and right (r = -0.410), and hand left (r = 0.387). HDL (mg/dl) was found to be correlated with measured surface temperature of the following regions: Temporal left (r = 0.445) and right (r = 0.458), hand left (r = -0.470), and foot anterior left (r = -0.332) and right (r = -0.336). Temperature asymmetry was more significant in upper extremity in CVD group. Using the surface temperature, regression models were calculated for noninvasive estimation of TC and HDL. The predictive ability of measured surface temperature for TC and HDL was 60%. The model for noninvasive estimation gave sensitivity and specificity value of 79 and 83% for TC and 78 and 81% for HDL, respectively. Thus, the surface temperature can be one of the screening tools for prediction of CVD. The limitation of the present study is also discussed under future work.
Collapse
Affiliation(s)
| | - M Anburajan
- Department of Biomedical Engineering, SRM University, Chennai, Tamil Nadu, India
| | - M Menaka
- Department of Quality Assurance Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Chennai, Tamil Nadu, India
| | - B Venkatraman
- Department of Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Cao H, Yu F, Zhao Y, Scianmarello N, Lee J, Dai W, Jen N, Beebe T, Li R, Ebrahimi R, Chang DS, Mody FV, Pacella J, Tai YC, Hsiai T. Stretchable electrochemical impedance sensors for intravascular detection of lipid-rich lesions in New Zealand White rabbits. Biosens Bioelectron 2013; 54:610-6. [PMID: 24333932 DOI: 10.1016/j.bios.2013.11.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 12/31/2022]
Abstract
Flexible electronics have enabled catheter-based intravascular sensing. However, real-time interrogation of unstable plaque remains an unmet clinical challenge. Here, we demonstrate the feasibility of stretchable electrochemical impedance spectroscopy (EIS) sensors for endoluminal investigations in New Zealand White (NZW) rabbits on diet-induced hyperlipidemia. A parylene C (PAC)-based EIS sensor mounted on the surface of an inflatable silicone balloon affixed to the tip of an interrogating catheter was deployed (1) on the explants of NZW rabbit aorta for detection of lipid-rich atherosclerotic lesions, and (2) on live animals for demonstration of balloon inflation and EIS measurements. An input peak-to-peak AC voltage of 10 mV and sweeping-frequency from 300 kHz to 100 Hz were delivered to the endoluminal sites. Balloon inflation allowed EIS sensors to be in contact with endoluminal surface. In the oxidized low-density-lipoprotein (oxLDL)-rich lesions from explants of fat-fed rabbits, impedance magnitude increased significantly by 1.5-fold across the entire frequency band, and phase shifted ~5° at frequencies below 10 kHz. In the lesion-free sites of the normal diet-fed rabbits, impedance magnitude increased by 1.2-fold and phase shifted ~5° at frequencies above 30 kHz. Thus, we demonstrate the feasibility of stretchable intravascular EIS sensors for identification of lipid rich lesions, with a translational implication for detecting unstable lesions.
Collapse
Affiliation(s)
- Hung Cao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Division of Cardiology, Department of Medicine, VA Greater Los Angeles Healthcare System, School of Medicine, University of California, United States
| | - Fei Yu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Yu Zhao
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Nick Scianmarello
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Juhyun Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Division of Cardiology, Department of Medicine, VA Greater Los Angeles Healthcare System, School of Medicine, University of California, United States
| | - Wangde Dai
- The Heart Institute of Good Samaritan Hospital, Los Angeles, CA, United States
| | - Nelson Jen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Division of Cardiology, Department of Medicine, VA Greater Los Angeles Healthcare System, School of Medicine, University of California, United States
| | - Tyler Beebe
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Division of Cardiology, Department of Medicine, VA Greater Los Angeles Healthcare System, School of Medicine, University of California, United States
| | - Rongsong Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Division of Cardiology, Department of Medicine, VA Greater Los Angeles Healthcare System, School of Medicine, University of California, United States
| | - Ramin Ebrahimi
- Division of Cardiology, Department of Medicine, VA Greater Los Angeles Healthcare System, School of Medicine, University of California, United States
| | - Donald S Chang
- Division of Cardiology, Department of Medicine, VA Greater Los Angeles Healthcare System, School of Medicine, University of California, United States
| | - Freny V Mody
- Division of Cardiology, Department of Medicine, VA Greater Los Angeles Healthcare System, School of Medicine, University of California, United States
| | - John Pacella
- Division of Cardiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yu-Chong Tai
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Tzung Hsiai
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Division of Cardiology, Department of Medicine, VA Greater Los Angeles Healthcare System, School of Medicine, University of California, United States.
| |
Collapse
|
5
|
Jen N, Yu F, Lee J, Wasmund S, Dai X, Chen C, Chawareeyawong P, Yang Y, Li R, Hamdan MH, Hsiai TK. Atrial fibrillation pacing decreases intravascular shear stress in a New Zealand white rabbit model: implications in endothelial function. Biomech Model Mechanobiol 2013; 12:735-45. [PMID: 22983703 PMCID: PMC3548016 DOI: 10.1007/s10237-012-0437-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/29/2012] [Indexed: 01/01/2023]
Abstract
Atrial fibrillation (AF) is characterized by multiple rapid and irregular atrial depolarization, leading to rapid ventricular responses exceeding 100 beats per minute (bpm). We hypothesized that rapid and irregular pacing reduced intravascular shear stress (ISS) with implication to modulating endothelial responses. To simulate AF, we paced the left atrial appendage of New Zealand White rabbits (n = 4) at rapid and irregular intervals. Surface electrical cardiograms were recorded for atrial and ventricular rhythm, and intravascular convective heat transfer was measured by microthermal sensors, from which ISS was inferred. Rapid and irregular pacing decreased arterial systolic and diastolic pressures (baseline, 99/75 mmHg; rapid regular pacing, 92/73; rapid irregular pacing, 90/68; p < 0.001, n = 4), temporal gradients ([Formula: see text] from 1,275 ± 80 to 1,056 ± 180 dyne/cm(2) s), and reduced ISS (from baseline at 32.0 ± 2.4 to 22.7 ± 3.5 dyne/cm(2)). Computational fluid dynamics code demonstrated that experimentally inferred ISS provided a close approximation to the computed wall shear stress at a given catheter to vessel diameter ratio, shear stress range, and catheter position. In an in vitro flow system in which time-averaged shear stress was maintained at [Formula: see text] , we further demonstrated that rapid pulse rates at 150 bpm down-regulated endothelial nitric oxide, promoted superoxide (O 2 (.-) ) production, and increased monocyte binding to endothelial cells. These findings suggest that rapid pacing reduces ISS and [Formula: see text] , and rapid pulse rates modulate endothelial responses.
Collapse
Affiliation(s)
- Nelson Jen
- Department of Biomedical Engineering and Cardiovascular Medicine, School of Engineering and Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yu F, Lee J, Jen N, Li X, Zhang Q, Tang R, Zhou Q, Kim ES, Hsiai TK. Elevated electrochemical impedance in the endoluminal regions with high shear stress: implication for assessing lipid-rich atherosclerotic lesions. Biosens Bioelectron 2012; 43:237-44. [PMID: 23318546 DOI: 10.1016/j.bios.2012.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/29/2012] [Accepted: 12/04/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND Identifying metabolically active atherosclerotic lesions remains an unmet clinical challenge during coronary intervention. Electrochemical impedance (EIS) increased in response to oxidized low density lipoprotein (oxLDL)-laden lesions. We hereby assessed whether integrating EIS with intravascular ultrasound (IVUS) and shear stress (ISS) provided a new strategy to assess oxLDL-laden lesions in the fat-fed New Zealand White (NZW) rabbits. METHODS AND RESULTS A micro-heat transfer sensor was deployed to acquire the ISS profiles at baseline and post high-fat diet (HD) in the NZW rabbits (n=8). After 9 weeks of HD, serum oxLDL levels (mg/dL) increased by 140 fold, accompanied by a 1.5-fold increase in kinematic viscosity (cP) in the HD group. Time-averaged ISS (ISSave) in the thoracic aorta also increased in the HD group (baseline: 17.61±0.24 vs. 9 weeks: 25.22±0.95dyne/cm(2), n=4), but remained unchanged in the normal diet group (baseline: 22.85±0.53dyn/cm(2) vs. 9 weeks: 22.37±0.57dyne/cm(2), n=4). High-frequency intravascular ultrasound (IVUS) revealed atherosclerotic lesions in the regions with augmented ISSave, and concentric bipolar microelectrodes demonstrated elevated EIS signals, which were correlated with prominent anti-oxLDL immuno-staining (oxLDL-free regions: 497±55Ω, n=8 vs. oxLDL-rich lesions: 679±125Ω, n=12, P<0.05). The equivalent circuit model for tissue resistance between the lesion-free and ox-LDL-rich lesions further validated the experimental EIS signals. CONCLUSIONS By applying electrochemical impedance in conjunction with shear stress and high-frequency ultrasound sensors, we provided a new strategy to identify oxLDL-laden lesions. The study demonstrated the feasibility of integrating EIS, ISS, and IVUS for a catheter-based approach to assess mechanically unstable plaque.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biomedical Engineering and Cardiovascular Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Yu F, Zhao Y, Gu J, Quigley KL, Chi NC, Tai YC, Hsiai TK. Flexible microelectrode arrays to interface epicardial electrical signals with intracardial calcium transients in zebrafish hearts. Biomed Microdevices 2012; 14:357-66. [PMID: 22124886 DOI: 10.1007/s10544-011-9612-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The zebrafish (Danio rerio) is an emerging genetic model for regenerative medicine. In humans, myocardial infarction results in the irreversible loss of cardiomyocytes. However, zebrafish hearts fully regenerate after a 20% ventricular resection, without either scarring or arrhythmias. To study this cardiac regeneration, we developed implantable flexible multi-microelectrode membrane arrays that measure the epicardial electrocardiogram signals of zebrafish in real-time. The microelectrode electrical signals allowed for a high level of both temporal and spatial resolution (~20 μm), and the signal to noise ratio of the epicardial ECG was comparable to that of surface electrode ECG (7.1 dB vs. 7.4 dB, respectively). Processing and analysis of the signals from the microelectrode array demonstrated distinct ECG signals: namely, atrial conduction (P waves), ventricular contraction (QRS), and ventricular repolarization (QT interval). The electrical signals were in synchrony with optically measured Calcium concentration gradients in terms of d[Ca²⁺]/dt at both whole heart and tissue levels. These microelectrodes therefore provide a real-time analytical tool for monitoring conduction phenotypes of small vertebral animals with a high temporal and spatial resolution.
Collapse
Affiliation(s)
- Fei Yu
- Biomedical Engineering and Cardiovascular Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|