1
|
Chetyrkina MR, Fedorov FS, Nasibulin AG. In vitro toxicity of carbon nanotubes: a systematic review. RSC Adv 2022; 12:16235-16256. [PMID: 35733671 PMCID: PMC9152879 DOI: 10.1039/d2ra02519a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Carbon nanotube (CNT) toxicity-related issues provoke many debates in the scientific community. The controversial and disputable data about toxicity doses, proposed hazard effects, and human health concerns significantly restrict CNT applications in biomedical studies, laboratory practices, and industry, creating a barrier for mankind in the way of understanding how exactly the material behaves in contact with living systems. Raising the toxicity question again, many research groups conclude low toxicity of the material and its potential safeness at some doses for contact with biological systems. To get new momentum for researchers working on the intersection of the biological field and nanomaterials, i.e., CNT materials, we systematically reviewed existing studies with in vitro toxicological data to propose exact doses that yield toxic effects, summarize studied cell types for a more thorough comparison, the impact of incubation time, and applied toxicity tests. Using several criteria and different scientific databases, we identified and analyzed nearly 200 original publications forming a "golden core" of the field to propose safe doses of the material based on a statistical analysis of retrieved data. We also differentiated the impact of various forms of CNTs: on a substrate and in the form of dispersion because in both cases, some studies demonstrated good biocompatibility of CNTs. We revealed that CNTs located on a substrate had negligible impact, i.e., 90% of studies report good viability and cell behavior similar to control, therefore CNTs could be considered as a prospective conductive substrate for cell cultivation. In the case of dispersions, our analysis revealed mean values of dose/incubation time to be 4-5 μg mL-1 h-1, which suggested the material to be a suitable candidate for further studies to get a more in-depth understanding of its properties in biointerfaces and offer CNTs as a promising platform for fundamental studies in targeted drug delivery, chemotherapy, tissue engineering, biosensing fields, etc. We hope that the present systematic review will shed light on the current knowledge about CNT toxicity, indicate "dark" spots and offer possible directions for the subsequent studies based on the demonstrated here tabulated and statistical data of doses, cell models, toxicity tests, viability, etc.
Collapse
Affiliation(s)
| | - Fedor S Fedorov
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
- Aalto University FI-00076 15100 Espoo Finland
| |
Collapse
|
2
|
Bai R, Liu J, Zhang J, Shi J, Jin Z, Li Y, Ding X, Zhu X, Yuan C, Xiu B, Liu H, Yuan Z, Liu Z. Conductive single-wall carbon nanotubes/extracellular matrix hybrid hydrogels promote the lineage-specific development of seeding cells for tissue repair through reconstructing an integrin-dependent niche. J Nanobiotechnology 2021; 19:252. [PMID: 34425841 PMCID: PMC8381546 DOI: 10.1186/s12951-021-00993-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The niche of tissue development in vivo involves the growth matrix, biophysical cues and cell-cell interactions. Although natural extracellular matrixes may provide good supporting for seeding cells in vitro, it is evitable to destroy biophysical cues during decellularization. Reconstructing the bioactivities of extracellular matrix-based scaffolds is essential for their usage in tissue repair. RESULTS In the study, a hybrid hydrogel was developed by incorporating single-wall carbon nanotubes (SWCNTs) into heart-derived extracellular matrixes. Interestingly, insoluble SWCNTs were well dispersed in hybrid hydrogel solution via the interaction with extracellular matrix proteins. Importantly, an augmented integrin-dependent niche was reconstructed in the hybrid hydrogel, which could work like biophysical cues to activate integrin-related pathway of seeding cells. As supporting scaffolds in vitro, the hybrid hydrogels were observed to significantly promote seeding cell adhesion, differentiation, as well as structural and functional development towards mature cardiac tissues. As injectable carrier scaffolds in vivo, the hybrid hydrogels were then used to delivery stem cells for myocardial repair in rats. Similarly, significantly enhanced cardiac differentiation and maturation(12.5 ± 2.3% VS 32.8 ± 5%) of stem cells were detected in vivo, resulting in improved myocardial regeneration and repair. CONCLUSIONS The study represented a simple and powerful approach for exploring bioactive scaffold to promote stem cell-based tissue repair.
Collapse
Affiliation(s)
- Rui Bai
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Jianfeng Liu
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiao Zhang
- Department of Cardiology, Beijing Electric Power Hospital, State Grid Corporation of China, Beijing, 100073, China
| | - Jinmiao Shi
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhigeng Jin
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yi Li
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Xiaoyu Ding
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiaoming Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Chao Yuan
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Bingshui Xiu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huiliang Liu
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Zengqiang Yuan
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Zhiqiang Liu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
3
|
Song G, Guo X, Zong X, DU L, Zhao J, Lai C, Jin X. Toxicity of functionalized multi-walled carbon nanotubes on bone mesenchymal stem cell in rats. Dent Mater J 2018; 38:127-135. [PMID: 30449827 DOI: 10.4012/dmj.2017-313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Carbon nanotubes (CNTs) are promising biomaterials in the medical field, especially in tissue engineering of bone. However, the use of CNTs is largely confined by its unfavorable solubility and toxicity. To improve solubility and biocompatibility of CNTs, functionalization has been proven to be an effective strategy. Although various functionalized CNTs have been extensively studied, only few CNTs have the desired qualities. We compared the toxicity of several promising functionalized multi-walled carbon nanotubes (MWCNTs) on rat bone-marrow derived stem cells (BMSCs). Cell experiments showed that while acid oxidation (AO)-MWCNTs and Raw-MWCNTs exhibited significant toxicity on BMSCs, polyethylene glycols (PEG)-MWCNTs and hydroxyapatit (HA)-MWCNTs had favorable biocompatibility and a trivial effect on BMSCs. Possible mechanisms for the cytotoxicity on BMSCs included mitochondrisome and deoxyribonucleic acid damage, increased oxidative stress and damaging of cellular membranes. Our data indicated that PEG-MWCNTs and HA-MWCNTs may be promising materials for bio-related applications.
Collapse
Affiliation(s)
- Guodong Song
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Xiaoshuang Guo
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Xianlei Zong
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Le DU
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Jingyi Zhao
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Chenzhi Lai
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Xiaolei Jin
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| |
Collapse
|
4
|
Sinis SI, Hatzoglou C, Gourgoulianis KI, Zarogiannis SG. Carbon Nanotubes and Other Engineered Nanoparticles Induced Pathophysiology on Mesothelial Cells and Mesothelial Membranes. Front Physiol 2018; 9:295. [PMID: 29651248 PMCID: PMC5884948 DOI: 10.3389/fphys.2018.00295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles have great potential for numerous applications due to their unique physicochemical properties. However, concerns have been raised that they may induce deleterious effects on biological systems. There is accumulating evidence that, like asbestos, inhaled nanomaterials of >5 μm and high aspect ratio (3:1), particularly rod-like carbon nanotubes, may inflict pleural disease including mesothelioma. Additionally, a recent set of case reports suggests that inhalation of polyacrylate/nanosilica could in part be associated with inflammation and fibrosis of the pleura of factory workers. However, the adverse outcomes of nanoparticle exposure to mesothelial tissues are still largely unexplored. In that context, the present review aims to provide an overview of the relevant pathophysiological implications involving toxicological studies describing effects of engineered nanoparticles on mesothelial cells and membranes. In vitro studies primarily emphasize on simulating cellular uptake and toxicity of nanotubes on benign or malignant cell lines. On the other hand, in vivo studies focus on illustrating endpoints of serosal pathology in rodent animal models. From a molecular aspect, some nanoparticle categories are shown to be cytotoxic and genotoxic after acute treatment, whereas chronic incubation may lead to malignant-like transformation. At an organism level, a number of fibrous shaped nanotubes are related with features of chronic inflammation and MWCNT-7 is the only type to consistently inflict mesothelioma.
Collapse
Affiliation(s)
- Sotirios I Sinis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
5
|
Lara-Martínez LA, Massó F, Palacios González E, García-Peláez I, Contreras-Ramos A, Valverde M, Rojas E, Cervantes-Sodi F, Hernández-Gutiérrez S. Evaluating the biological risk of functionalized multiwalled carbon nanotubes and functionalized oxygen-doped multiwalled carbon nanotubes as possible toxic, carcinogenic, and embryotoxic agents. Int J Nanomedicine 2017; 12:7695-7707. [PMID: 29089764 PMCID: PMC5656341 DOI: 10.2147/ijn.s144777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Carbon nanotubes (CNTs) have been a focus of attention due to their possible applications in medicine, by serving as scaffolds for cell growth and proliferation and improving mesenchymal cell transplantation and engraftment. The emphasis on the benefits of CNTs has been offset by the ample debate on the safety of nanotechnologies. In this study, we determine whether functionalized multiwalled CNTs (fMWCNTs) and functionalized oxygen-doped multiwalled CNTs (fCOxs) have toxic effects on rat mesenchymal stem cells (MSCs) in vitro by analyzing morphology and cell proliferation and, using in vivo models, whether they are able to transform MSCs in cancer cells or induce embryotoxicity. Our results demonstrate that there are statistically significant differences in cell proliferation and the cell cycle of MSCs in culture. We identified dramatic changes in cells that were treated with fMWCNTs. Our evaluation of the transformation to cancer cells and cytotoxicity process showed little effect. However, we found a severe embryotoxicity in chicken embryos that were treated with fMWCNTs, while fCOxs seem to exert cardioembryotoxicity and a discrete teratogenicity. Furthermore, it seems that the time of contact plays an important role during cell transformation and embryotoxicity. A single contact with fMWCNTs is not sufficient to transform cells in a short time; an exposure of fMWCNTs for 2 weeks led to cell transformation risk and cardioembryotoxicity effects.
Collapse
Affiliation(s)
- Luis A Lara-Martínez
- Department of Molecular Biology, School of Medicine, Universidad Panamericana, Mexico City, Mexico
| | - Felipe Massó
- Department of Physiology, National Institute of Cardiology Ignacio Chavez, Mexico City, Mexico
| | - Eduardo Palacios González
- Department of Microscopy, Ultra High Resolution Electron Microscopy Laboratory, Instituto Mexicano del Petróleo, Mexico City, Mexico
| | - Isabel García-Peláez
- Department of Embryology, Medicine Faculty, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Alejandra Contreras-Ramos
- Department of Developmental Biology Research and Experimental Teratogenicity, Children's Hospital of Mexico, Federico Gomez, Mexico City, Mexico
| | - Mahara Valverde
- Department of Genomic Medicine, Institute of Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Emilio Rojas
- Department of Genomic Medicine, Institute of Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Felipe Cervantes-Sodi
- Department of Physics and Mathematics, Nanoscience and Nanotechnology Laboratory, Universidad Iberoamericana, Mexico City, Mexico
| | | |
Collapse
|
6
|
Huang X, Shan L, Cheng K, Weng W. Cytocompatibility of Titanium Microsphere-Based Surfaces. ACS Biomater Sci Eng 2017; 3:3254-3260. [DOI: 10.1021/acsbiomaterials.7b00551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoxiao Huang
- School
of Materials Science and Engineering, State Key Laboratory of Silicon
Materials, Zhejiang University, Hangzhou 310027, China
| | - Lijun Shan
- Department
of Chemical and Process Engineering, Faculty of Engineering and Built
Environment, University Kebangsaan Malaysia, Bangi, Malaysia
| | - Kui Cheng
- School
of Materials Science and Engineering, State Key Laboratory of Silicon
Materials, Zhejiang University, Hangzhou 310027, China
| | - Wenjian Weng
- School
of Materials Science and Engineering, State Key Laboratory of Silicon
Materials, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Magnetic super-hydrophilic carbon nanotubes/graphene oxide composite as nanocarriers of mesenchymal stem cells: Insights into the time and dose dependences. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:694-701. [DOI: 10.1016/j.msec.2016.05.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/16/2016] [Accepted: 05/10/2016] [Indexed: 12/18/2022]
|
8
|
Lalwani G, Patel SC, Sitharaman B. Two- and Three-Dimensional All-Carbon Nanomaterial Assemblies for Tissue Engineering and Regenerative Medicine. Ann Biomed Eng 2016; 44:2020-35. [DOI: 10.1007/s10439-016-1623-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/16/2016] [Indexed: 12/12/2022]
|
9
|
Leal CV, Martinez DST, Más BA, Alves OL, Duek EAR. Influence of purified multiwalled carbon nanotubes on the mechanical and morphological behavior in poly (L-lactic acid) matrix. J Mech Behav Biomed Mater 2016; 59:547-560. [PMID: 27038896 DOI: 10.1016/j.jmbbm.2016.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/13/2016] [Accepted: 03/17/2016] [Indexed: 11/26/2022]
Abstract
Poly (L-latic acid) (PLLA) is a bioresorbable polymer widely used as a biomaterial, but its fragility can limit its use. An alternative is to produce polymer nanocomposites, which can enhance the mechanical properties of polymeric matrix, resulting in a material with differentiated properties. In this work, PLLA based nanocomposites containing 0.25, 0.5 and 1.0wt% of purified multiwalled carbon nanotubes (p-MWCNTs) were prepared by the solvent casting method. The morphology and mechanical properties results show an improvement in strain at break for 0.25 and 0.5wt% p-MWCNTs and an increase in stiffness and elastic modulus for all compositions. Nanocomposites presented a p-MWCNTs agglomeration; however, there was a good stress transfer between PLLA and p-MWCNTs, which was confirmed by the increase in the hardness and elastic modulus. Atomic force microscopy analysis indicated an increase in roughness after nanotube addition. The in vitro biological study showed that PLLA/p-MWCNTs nanocomposites are cytocompatible with osteoblasts cells. The capacity of PLLA nanocomposites to stimulate osteogenesis was investigated by alkaline phosphatase (ALP) activity assay. Higher ALP activity was found on osteoblasts cultured on nanocomposites with 0.25 and 0.5wt% p-MWCNT compared to neat PLLA, confirming that PLLA cytocompatibility was improved on these compositions. Finally, our results showed that by a simple and inexpensive solvent casting method, it is possible to manufacture biofunctional nanocomposites devices with potential for orthopedic applications.
Collapse
Affiliation(s)
- C V Leal
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Campinas, 13083-860 Campinas, SP, Brazil.
| | - D S T Martinez
- Solid State Chemistry Laboratory, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13081-970 Campinas, SP, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 1308-970 Campinas, SP, Brazil
| | - B A Más
- Faculty of Medical Sciences, Pontifical Catholic University of São Paulo - PUC-SP, 18030-095 Sorocaba, SP, Brazil
| | - O L Alves
- Solid State Chemistry Laboratory, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13081-970 Campinas, SP, Brazil
| | - E A R Duek
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Campinas, 13083-860 Campinas, SP, Brazil; Faculty of Medical Sciences, Pontifical Catholic University of São Paulo - PUC-SP, 18030-095 Sorocaba, SP, Brazil
| |
Collapse
|
10
|
Deligianni DD. Multiwalled carbon nanotubes enhance human bone marrow mesenchymal stem cells' spreading but delay their proliferation in the direction of differentiation acceleration. Cell Adh Migr 2015; 8:558-62. [PMID: 25482646 DOI: 10.4161/cam.32124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Investigating the ability of films of pristine (purified, without any functionalization) multiwalled carbon nanotubes (MWCNTs) to influence human bone marrow mesenchymal stem cells' (hBMSCs) proliferation, morphology, and differentiation into osteoblasts, we concluded to the following: A. MWCNTs delay the proliferation of hBMSCs but increase their differentiation. The enhancement of the differentiation markers could be a result of decreased proliferation and maturation of the extracellular matrix B. Cell spread on MWCNTs toward a polygonal shape with many thin filopodia to attach to the surfaces. Spreading may be critical in supporting osteogenic differentiation in pre-osteoblastic progenitors, being related with cytoskeletal tension. C. hBMSCs prefer MWCNTs than tissue plastic to attach and grow, being non-toxic to these cells. MWCNTs can be regarded as osteoinductive biomaterial topographies for bone regenerative engineering.
Collapse
Affiliation(s)
- Despina D Deligianni
- a Department of Mechanical Engineering & Aeronautics ; University of Patras , Greece
| |
Collapse
|
11
|
Kroustalli A, Kotsikoris V, Karamitri A, Topouzis S, Deligianni D. Mechanoresponses of human primary osteoblasts grown on carbon nanotubes. J Biomed Mater Res A 2014; 103:1038-44. [DOI: 10.1002/jbm.a.35250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/12/2014] [Accepted: 06/05/2014] [Indexed: 01/27/2023]
Affiliation(s)
- A. Kroustalli
- Department of Mechanical Engineering & Aeronautics, Laboratory of Biomechanics and Biomedical Engineering; University of Patras; Patras Greece
| | - V. Kotsikoris
- Department of Pharmacy, Laboratory of Molecular Pharmacology; University of Patras; Patras Greece
| | - A. Karamitri
- Department of Pharmacy, Laboratory of Molecular Pharmacology; University of Patras; Patras Greece
| | - S. Topouzis
- Department of Pharmacy, Laboratory of Molecular Pharmacology; University of Patras; Patras Greece
| | - D. Deligianni
- Department of Mechanical Engineering & Aeronautics, Laboratory of Biomechanics and Biomedical Engineering; University of Patras; Patras Greece
| |
Collapse
|