1
|
Mansour JM, Motavalli M, Bensusan J, Li M, Margevicius S, Welter JF. The nonlinear relationship between speed of sound and compression in articular cartilage: Measurements and modeling. J Mech Behav Biomed Mater 2020; 110. [PMID: 32952604 DOI: 10.1016/j.jmbbm.2020.103923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We measured speed of sound in bovine articular cartilage as a function of compressive strain. Using techniques we developed, it was possible to apply strain starting from the unstrained, full height of a sample. Our measurements showed that speed of sound was not a monotonic function of strain as reported in earlier investigations. Speed increased with increasing strain over a range of lower strains. It reached a maximum, and then decreased as the strain increased further. These results were corroborated using a model of wave propagation in deformable porous materials. Using this model, we also established conditions under which a maximum in the speed would exist for samples in compression. Our measurements and analysis resolve the conflicting results reported in previous studies.
Collapse
Affiliation(s)
- Joseph M Mansour
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Mostafa Motavalli
- Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Jay Bensusan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ming Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.,Current Address: Division of Biostatistics, Department of Preventive Medicine, USC Biostatistics Core, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Seunghee Margevicius
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jean F Welter
- Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, Cleveland, OH, USA.,Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Motavalli M, Jones C, Berilla JA, Li M, Schluchter MD, Mansour JM, Welter JF. Apparatus and Method for Rapid Detection of Acoustic Anisotropy in Cartilage. J Med Biol Eng 2020; 40:419-427. [PMID: 32494235 DOI: 10.1007/s40846-020-00518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purpose Articular cartilage is known to be mechanically anisotropic. In this paper, the acoustic anisotropy of bovine articular cartilage and the effects of freeze-thaw cycling on acoustic anisotropy were investigated. Methods We developed apparatus and methods that use a magnetic L-shaped sample holder, which allowed minimal handling of a tissue, reduced the number of measurements compared to previous studies, and produced highly reproducible results. Results SOS was greater in the direction perpendicular to the articular surface compared to the direction parallel to the articular surface (N=17, P = 0.00001). Average SOS was 1,758 ± 107 m/s perpendicular to the surface, and 1,617 ± 55 m/s parallel to it. The average percentage difference in SOS between the perpendicular and parallel directions was 8.2% (95% CI: 5.4% to 11%). Freeze-thaw cycling did not have a significant effect on SOS (P>0.4). Conclusion Acoustic measurement of tissue properties is particularly attractive for work in our laboratory since it has the potential for nondestructive characterization of the properties of developing engineered cartilage. Our approach allowed us to observe acoustic anisotropy of articular cartilage rapidly and reproducibly. This property was not significantly affected by freeze-thawing of the tissue samples, making cryopreservation practical for these assays.
Collapse
Affiliation(s)
- Mostafa Motavalli
- Department of Biology, Case Western Reserve University, all Cleveland, OH, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, all Cleveland, OH, USA
| | | | - Jim A Berilla
- Department of Civil Engineering, Case Western Reserve University, all Cleveland, OH, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, all Cleveland, OH, USA
| | - Ming Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, all Cleveland, OH, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, all Cleveland, OH, USA
| | - Mark D Schluchter
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, all Cleveland, OH, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, all Cleveland, OH, USA
| | - Joseph M Mansour
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University all Cleveland, OH, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, all Cleveland, OH, USA
| | - Jean F Welter
- Department of Biology, Case Western Reserve University, all Cleveland, OH, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, all Cleveland, OH, USA
| |
Collapse
|
3
|
Mansour JM, Motavalli M, Dennis JE, Kean TJ, Caplan AI, Berilla JA, Welter JF. Rapid Detection of Shear-Induced Damage in Tissue-Engineered Cartilage Using Ultrasound. Tissue Eng Part C Methods 2019; 24:443-456. [PMID: 29999475 DOI: 10.1089/ten.tec.2017.0513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous investigations have shown that tissue-engineered articular cartilage can be damaged under a combination of compression and sliding shear. In these cases, damage was identified in histological sections after a test was completed. This approach is limited, in that it does not identify when damage occurred. This especially limits the utility of an assay for evaluating damage when comparing modifications to a tissue-engineering protocol. In this investigation, the feasibility of using ultrasound (US) to detect damage as it occurs was investigated. US signals were acquired before, during, and after sliding shear, as were stereomicroscope images of the cartilage surface. Histology was used as the standard for showing if a sample was damaged. We showed that US reflections from the surface of the cartilage were attenuated due to roughening following sliding shear. Furthermore, it was shown that by scanning the transducer across a sample, surface roughness and erosion following sliding shear could be identified. Internal delamination could be identified by the appearance of new echoes between those from the front and back of the sample. Thus, it is feasible to detect damage in engineered cartilage using US.
Collapse
Affiliation(s)
- Joseph M Mansour
- 1 Department of Mechanical and Aerospace Engineering, Case Western Reserve University , Cleveland, Ohio.,Department of Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio
| | - Mostafa Motavalli
- Department of Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio.,3 Department of Biology, Case Western Reserve University , Cleveland, Ohio
| | - James E Dennis
- 4 Department of Orthopedic Surgery, Baylor College of Medicine , Houston, Texas
| | - Thomas J Kean
- 4 Department of Orthopedic Surgery, Baylor College of Medicine , Houston, Texas
| | - Arnold I Caplan
- Department of Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio.,3 Department of Biology, Case Western Reserve University , Cleveland, Ohio
| | - Jim A Berilla
- Department of Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio.,5 Department of Civil Engineering, Case Western Reserve University , Cleveland, Ohio
| | - Jean F Welter
- Department of Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University , Cleveland, Ohio.,3 Department of Biology, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
4
|
Sánchez-Téllez DA, Téllez-Jurado L, Rodríguez-Lorenzo LM. Hydrogels for Cartilage Regeneration, from Polysaccharides to Hybrids. Polymers (Basel) 2017; 9:E671. [PMID: 30965974 PMCID: PMC6418920 DOI: 10.3390/polym9120671] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
The aims of this paper are: (1) to review the current state of the art in the field of cartilage substitution and regeneration; (2) to examine the patented biomaterials being used in preclinical and clinical stages; (3) to explore the potential of polymeric hydrogels for these applications and the reasons that hinder their clinical success. The studies about hydrogels used as potential biomaterials selected for this review are divided into the two major trends in tissue engineering: (1) the use of cell-free biomaterials; and (2) the use of cell seeded biomaterials. Preparation techniques and resulting hydrogel properties are also reviewed. More recent proposals, based on the combination of different polymers and the hybridization process to improve the properties of these materials, are also reviewed. The combination of elements such as scaffolds (cellular solids), matrices (hydrogel-based), growth factors and mechanical stimuli is needed to optimize properties of the required materials in order to facilitate tissue formation, cartilage regeneration and final clinical application. Polymer combinations and hybrids are the most promising materials for this application. Hybrid scaffolds may maximize cell growth and local tissue integration by forming cartilage-like tissue with biomimetic features.
Collapse
Affiliation(s)
- Daniela Anahí Sánchez-Téllez
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
| | - Lucía Téllez-Jurado
- Instituto Politécnico Nacional-ESIQIE, Depto. Ing. en Metalurgia y Materiales, UPALM-Zacatenco, Mexico City 07738, Mexico.
| | - Luís María Rodríguez-Lorenzo
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3-5, Pabellón 11, Planta 0, 28029 Madrid, Spain.
- Department Polymeric Nanomaterials and Biomaterials, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
5
|
Li K, Zhang C, Qiu L, Gao L, Zhang X. Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:399-411. [PMID: 28463576 DOI: 10.1089/ten.teb.2016.0427] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers often ignore the importance of biochemical factors to the growth and development of engineered cartilage. In our point of view, only by fully considering synergistic effects of mechanical and biochemical factors can we find appropriate culture conditions for functional cartilage constructs. Once again, rolling-sliding-compression load under appropriate biochemical conditions may be conductive to realize the adaptive development between the structure and function of engineered cartilage in vitro.
Collapse
Affiliation(s)
- Ke Li
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Chunqiu Zhang
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Lulu Qiu
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Lilan Gao
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Xizheng Zhang
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| |
Collapse
|
6
|
Ultrasound palpation for fast in-situ quantification of articular cartilage stiffness, thickness and relaxation capacity. Biomech Model Mechanobiol 2017; 16:1171-1185. [PMID: 28210824 DOI: 10.1007/s10237-017-0880-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
Most current cartilage testing devices require the preparation of excised samples and therefore do not allow intra-operative application for diagnostic purposes. The gold standard during open or arthroscopic surgery is still the subjective perception of manual palpation. This work presents a new diagnostic method of ultrasound palpation (USP) to acquire applied stress and strain data during manual palpation of articular cartilage. With the proposed method, we obtain cartilage thickness and stiffness. Moreover, repeated palpations allow the quantification of relaxation effects. USP measurements on elastomer phantoms demonstrated very good repeatability for both, stage-guided (97.2%) and handheld (96.0%) applications. The USP measurements were compared with conventional indentation experiments and revealed very good agreement on elastomer phantoms ([Formula: see text]) and good agreement on porcine cartilage samples ([Formula: see text]). Artificially degenerated cartilage samples showed reduced stiffness, weak capacity to relax after palpation and an increase of stiffness of approximately 50% with each single palpation. Intact cartilage was measured by USP directly at the patella (in situ) and after excision and removal of the subchondral bone (ex situ), leading to stiffness values of [Formula: see text] and [Formula: see text] ([Formula: see text]), respectively. The results demonstrate the potential of the USP system for cartilage testing, its sensitivity to degenerative changes and as a method for quantifying relaxation processes by means of repeated palpations. Furthermore, the differences in the results of in-situ and ex-situ measurements are of general interest, since such comparison has not been reported previously. We point out the limited comparability of ex-situ cartilage with its in-situ biomechanical behavior.
Collapse
|
7
|
Mansour JM, Lee Z, Welter JF. Nondestructive Techniques to Evaluate the Characteristics and Development of Engineered Cartilage. Ann Biomed Eng 2016; 44:733-49. [PMID: 26817458 PMCID: PMC4792725 DOI: 10.1007/s10439-015-1535-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/12/2015] [Indexed: 12/16/2022]
Abstract
In this review, methods for evaluating the properties of tissue engineered (TE) cartilage are described. Many of these have been developed for evaluating properties of native and osteoarthritic articular cartilage. However, with the increasing interest in engineering cartilage, specialized methods are needed for nondestructive evaluation of tissue while it is developing and after it is implanted. Such methods are needed, in part, due to the large inter- and intra-donor variability in the performance of the cellular component of the tissue, which remains a barrier to delivering reliable TE cartilage for implantation. Using conventional destructive tests, such variability makes it near-impossible to predict the timing and outcome of the tissue engineering process at the level of a specific piece of engineered tissue and also makes it difficult to assess the impact of changing tissue engineering regimens. While it is clear that the true test of engineered cartilage is its performance after it is implanted, correlation of pre and post implantation properties determined non-destructively in vitro and/or in vivo with performance should lead to predictive methods to improve quality-control and to minimize the chances of implanting inferior tissue.
Collapse
Affiliation(s)
- Joseph M Mansour
- Departments of Mechanical and Aerospace Engineering, Case Western Reserve University, 2123 Martin Luther King Jr. Drive, Glennan Building Room 616A, Cleveland, OH, 44106, USA.
| | - Zhenghong Lee
- Radiology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Jean F Welter
- Biology (Skeletal Research Center), Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
8
|
Chung CY, Heebner J, Baskaran H, Welter JF, Mansour JM. Ultrasound Elastography for Estimation of Regional Strain of Multilayered Hydrogels and Tissue-Engineered Cartilage. Ann Biomed Eng 2015; 43:2991-3003. [PMID: 26077987 DOI: 10.1007/s10439-015-1356-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/05/2015] [Indexed: 01/07/2023]
Abstract
Tissue-engineered (TE) cartilage constructs tend to develop inhomogeneously, thus, to predict the mechanical performance of the tissue, conventional biomechanical testing, which yields average material properties, is of limited value. Rather, techniques for evaluating regional and depth-dependent properties of TE cartilage, preferably non-destructively, are required. The purpose of this study was to build upon our previous results and to investigate the feasibility of using ultrasound elastography to non-destructively assess the depth-dependent biomechanical characteristics of TE cartilage while in a sterile bioreactor. As a proof-of-concept, and to standardize an assessment protocol, a well-characterized three-layered hydrogel construct was used as a surrogate for TE cartilage, and was studied under controlled incremental compressions. The strain field of the construct predicted by elastography was then validated by comparison with a poroelastic finite-element analysis (FEA). On average, the differences between the strains predicted by elastography and the FEA were within 10%. Subsequently engineered cartilage tissue was evaluated in the same test fixture. Results from these examinations showed internal regions where the local strain was 1-2 orders of magnitude greater than that near the surface. These studies document the feasibility of using ultrasound to evaluate the mechanical behaviors of maturing TE constructs in a sterile environment.
Collapse
Affiliation(s)
- Chen-Yuan Chung
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 2123 Martin Luther King Jr. Drive, Glennan Building Room 616A, Cleveland, OH, 44106, USA.,Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan
| | - Joseph Heebner
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 2123 Martin Luther King Jr. Drive, Glennan Building Room 616A, Cleveland, OH, 44106, USA
| | - Harihara Baskaran
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Jean F Welter
- Department of Biology (Skeletal Research Center), Case Western Reserve University, Cleveland, OH, USA
| | - Joseph M Mansour
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 2123 Martin Luther King Jr. Drive, Glennan Building Room 616A, Cleveland, OH, 44106, USA.
| |
Collapse
|