1
|
Wang D, Woodcock E, Yang X, Nishikawa H, Sviderskaya EV, Oshima M, Edwards C, Zhang Y, Korchev Y. Exploration of individual colorectal cancer cell responses to H 2O 2 eustress using hopping probe scanning ion conductance microscopy. Sci Bull (Beijing) 2024; 69:1909-1919. [PMID: 38644130 DOI: 10.1016/j.scib.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
Colorectal cancer (CRC), a widespread malignancy, is closely associated with tumor microenvironmental hydrogen peroxide (H2O2) levels. Some clinical trials targeting H2O2 for cancer treatment have revealed its paradoxical role as a promoter of cancer progression. Investigating the dynamics of cancer cell H2O2 eustress at the single-cell level is crucial. In this study, non-contact hopping probe mode scanning ion conductance microscopy (HPICM) with high-sensitive Pt-functionalized nanoelectrodes was employed to measure dynamic extracellular to intracellular H2O2 gradients in individual colorectal cancer Caco-2 cells. We explored the relationship between cellular mechanical properties and H2O2 gradients. Exposure to 0.1 or 1 mmol/L H2O2 eustress increased the extracellular to intracellular H2O2 gradient from 0.3 to 1.91 or 3.04, respectively. Notably, cellular F-actin-dependent stiffness increased at 0.1 mmol/L but decreased at 1 mmol/L H2O2 eustress. This H2O2-induced stiffness modulated AKT activation positively and glutathione peroxidase 2 (GPX2) expression negatively. Our findings unveil the failure of some H2O2-targeted therapies due to their ineffectiveness in generating H2O2, which instead acts eustress to promote cancer cell survival. This research also reveals the complex interplay between physical properties and biochemical signaling in cancer cells' antioxidant defense, illuminating the exploitation of H2O2 eustress for survival at the single-cell level. Inhibiting GPX and/or catalase (CAT) enhances the cytotoxic activity of H2O2 eustress against CRC cells, which holds significant promise for developing innovative therapies targeting cancer and other H2O2-related inflammatory diseases.
Collapse
Affiliation(s)
- Dong Wang
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Emily Woodcock
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, United Kingdom
| | - Xi Yang
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiromi Nishikawa
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Elena V Sviderskaya
- Cell Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW17 0RE, United Kingdom
| | - Masanobu Oshima
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Christopher Edwards
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Yanjun Zhang
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan; Department of Medicine, Imperial College London, London W12 0NN, United Kingdom.
| | - Yuri Korchev
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
2
|
Dal Magro R, Vitali A, Fagioli S, Casu A, Falqui A, Formicola B, Taiarol L, Cassina V, Marrano CA, Mantegazza F, Anselmi-Tamburini U, Sommi P, Re F. Oxidative Stress Boosts the Uptake of Cerium Oxide Nanoparticles by Changing Brain Endothelium Microvilli Pattern. Antioxidants (Basel) 2021; 10:antiox10020266. [PMID: 33572224 PMCID: PMC7916071 DOI: 10.3390/antiox10020266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular oxidative stress is considered a worsening factor in the progression of Alzheimer's disease (AD). Increased reactive oxygen species (ROS) levels promote the accumulation of amyloid-β peptide (Aβ), one of the main hallmarks of AD. In turn, Aβ is a potent inducer of oxidative stress. In early stages of AD, the concomitant action of oxidative stress and Aβ on brain capillary endothelial cells was observed to compromise the blood-brain barrier functionality. In this context, antioxidant compounds might provide therapeutic benefits. To this aim, we investigated the antioxidant activity of cerium oxide nanoparticles (CNP) in human cerebral microvascular endothelial cells (hCMEC/D3) exposed to Aβ oligomers. Treatment with CNP (13.9 ± 0.7 nm in diameter) restored basal ROS levels in hCMEC/D3 cells, both after acute or prolonged exposure to Aβ. Moreover, we found that the extent of CNP uptake by hCMEC/D3 was +43% higher in the presence of Aβ. Scanning electron microscopy and western blot analysis suggested that changes in microvilli structures on the cell surface, under pro-oxidant stimuli (Aβ or H2O2), might be involved in the enhancement of CNP uptake. This finding opens the possibility to exploit the modulation of endothelial microvilli pattern to improve the uptake of anti-oxidant particles designed to counteract ROS-mediated cerebrovascular dysfunctions.
Collapse
Affiliation(s)
- Roberta Dal Magro
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
- Correspondence:
| | - Agostina Vitali
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (A.V.); (U.A.-T.)
| | - Stefano Fagioli
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Alberto Casu
- NABLA Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (A.C.); (A.F.)
| | - Andrea Falqui
- NABLA Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (A.C.); (A.F.)
| | - Beatrice Formicola
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Lorenzo Taiarol
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Valeria Cassina
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Claudia Adriana Marrano
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Francesco Mantegazza
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | | | - Patrizia Sommi
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Francesca Re
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| |
Collapse
|
3
|
Zhang S, Xu W, Gao P, Chen W, Zhou Q. Construction of dual nanomedicines for the imaging and alleviation of atherosclerosis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2020; 48:169-179. [PMID: 31852323 DOI: 10.1080/21691401.2019.1699823] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022]
Abstract
Magnetic resonance imaging (MRI) is an essential tool for the diagnosis of atherosclerosis, a chronic cardiovascular disease. MRI primarily uses superparamagnetic iron oxide (SPIO) as a contrast agent. However, SPIO integrated with therapeutic drugs has rarely been studied. In this study, we explored biocompatible paramagnetic iron-oxide nanoparticles (NPs) in a complex with low pH-sensitive cyclodextrin for the diagnostic imaging and treatment of atherosclerosis. The NPs were conjugated with profilin-1 antibody (PFN1) to specifically target vascular smooth muscle cells (VSMCs) in the atherosclerotic plaque and integrated with the anti-inflammatory drug, rapamycin. The PFN1-CD-MNPs were easily binded to the VSMCs, indicating their good biocompatibility and low renal toxicity over the long term. Ex vivo near-infrared fluorescence (NIRF) imaging and in vivo MRI indicated the accumulation of PFN1-CD-MNPs in the atherosclerotic plaque. The RAP@PFN1-CD-MNPs alleviated the progression of arteriosclerosis. Thus, PFN1-CD-MNPs served not only as multifunctional imaging probes but also as nanovehicles for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuihua Zhang
- Department of Radiology, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
- Guangzhou Universal Medical Imaging Diagnostic Center, Universal Medical Imaging, Guangzhou, China
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wan Xu
- Ministry of Education Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Peng Gao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wenli Chen
- Ministry of Education Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Quan Zhou
- Department of Radiology, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, China
| |
Collapse
|
4
|
A new bioluminescence-based tool for modulating target proteins in live cells. Sci Rep 2019; 9:18239. [PMID: 31796796 PMCID: PMC6890795 DOI: 10.1038/s41598-019-54712-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/18/2019] [Indexed: 11/08/2022] Open
Abstract
We have developed a new genetically encoded tool designed to generate reactive oxygen species (ROS) at target proteins in cultured cells; it is designed using firefly luciferase and photosensitiser protein KillerRed. Targeting this fusion protein, KillerFirefly, to F-actin in live cells and treatment with luciferin induced a characteristic structure, previously reported as a cofilin-actin rod, which is seen in patients with Alzheimer's disease. This structural change is considered to be elicited by the consistent generation of very low-level ROS by KillerFirefly in the vicinity of F-actin. Moreover, our results suggest the presence of an actin-regulating system, controlled by very low levels of endogenously generated ROS.
Collapse
|
5
|
Varland S, Vandekerckhove J, Drazic A. Actin Post-translational Modifications: The Cinderella of Cytoskeletal Control. Trends Biochem Sci 2019; 44:502-516. [PMID: 30611609 DOI: 10.1016/j.tibs.2018.11.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/30/2022]
Abstract
Actin is one of the most abundant proteins in eukaryotic cells and the main component of the microfilament system. It plays essential roles in numerous cellular activities, including muscle contraction, maintenance of cell integrity, and motility, as well as transcriptional regulation. Besides interacting with various actin-binding proteins (ABPs), proper actin function is regulated by post-translational modifications (PTMs), such as acetylation, arginylation, oxidation, and others. Here, we explain how actin PTMs can contribute to filament formation and stability, and may have additional actin regulatory functions, which potentially contribute to disease development.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A, N-5020 Bergen, Norway; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Joël Vandekerckhove
- Department of Biochemistry, UGent Center for Medical Biotechnology, Ghent University, Albert Baertsoenkaai 3, 9000 Gent, Belgium
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5020 Bergen, Norway.
| |
Collapse
|
6
|
Seixas AI, Azevedo MM, Paes de Faria J, Fernandes D, Mendes Pinto I, Relvas JB. Evolvability of the actin cytoskeleton in oligodendrocytes during central nervous system development and aging. Cell Mol Life Sci 2019; 76:1-11. [PMID: 30302529 PMCID: PMC11105620 DOI: 10.1007/s00018-018-2915-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 01/23/2023]
Abstract
The organization of actin filaments into a wide range of subcellular structures is a defining feature of cell shape and dynamics, important for tissue development and homeostasis. Nervous system function requires morphological and functional plasticity of neurons and glial cells, which is largely determined by the dynamic reorganization of the actin cytoskeleton in response to intrinsic and extracellular signals. Oligodendrocytes are specialized glia that extend multiple actin-based protrusions to form the multilayered myelin membrane that spirally wraps around axons, increasing conduction speed and promoting long-term axonal integrity. Myelination is a remarkable biological paradigm in development, and maintenance of myelin is essential for a healthy adult nervous system. In this review, we discuss how structure and dynamics of the actin cytoskeleton is a defining feature of myelinating oligodendrocytes' biology and function. We also review "old and new" concepts to reflect on the potential role of the cytoskeleton in balancing life and death of myelin membranes and oligodendrocytes in the aging central nervous system.
Collapse
Affiliation(s)
- Ana Isabel Seixas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.
| | - Maria Manuela Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Joana Paes de Faria
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Diogo Fernandes
- Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- International Iberian Nanotechnology Laboratory - INL, Braga, Portugal
| | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory - INL, Braga, Portugal
| | - João Bettencourt Relvas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- The Discoveries Centre for Regeneration and Precision Medicine, Porto Campus, Porto, Portugal
| |
Collapse
|
7
|
Duan X, Wan JMF, Mak AFT. Oxidative Stress Alters the Morphological Responses of Myoblasts to Single-Site Membrane Photoporation. Cell Mol Bioeng 2017; 10:313-325. [PMID: 31719866 DOI: 10.1007/s12195-017-0488-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/26/2017] [Indexed: 01/19/2023] Open
Abstract
The responses of single cells to plasma membrane damage is critical to cell survival under adverse conditions and to many transfection protocols in genetic engineering. While the post-damage molecular responses have been much studied, the holistic morphological changes of damaged cells have received less attention. Here we document the post-damage morphological changes of the C2C12 myoblast cell bodies and nuclei after femtosecond laser photoporation targeted at the plasma membrane. One adverse environmental condition, namely oxidative stress, was also studied to investigate whether external environmental threats could affect the cellular responses to plasma membrane damage. The 3D characteristics data showed that in normal conditions, the cell bodies underwent significant shrinkage after single-site laser photoporation on the plasma membrane. However for the cells bearing hydrogen peroxide oxidative stress beforehand, the cell bodies showed significant swelling after laser photoporation. The post-damage morphological changes of single cells were more obvious after chronic oxidative exposure than that after acute ones. Interestingly, in both conditions, the 2D projection of nucleus apparently shrank after laser photoporation and distanced itself from the damage site. Our results suggest that the cells may experience significant multi-dimensional biophysical changes after single-site plasma membrane damage. These post-damage responses could be dramatically affected by oxidative stress.
Collapse
Affiliation(s)
- Xinxing Duan
- 1Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- 3Department of Mechanical & Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- 4School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jennifer M F Wan
- 4School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Arthur F T Mak
- 1Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- 2Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- 3Department of Mechanical & Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
8
|
Intermittent vibration protects aged muscle from mechanical and oxidative damage under prolonged compression. J Biomech 2017; 55:113-120. [DOI: 10.1016/j.jbiomech.2017.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/02/2017] [Accepted: 02/16/2017] [Indexed: 11/30/2022]
|
9
|
Wong SW, Yao Y, Hong Y, Ma Z, Kok SHL, Sun S, Cho M, Lee KKH, Mak AFT. Preventive Effects of Poloxamer 188 on Muscle Cell Damage Mechanics Under Oxidative Stress. Ann Biomed Eng 2016; 45:1083-1092. [PMID: 27650939 DOI: 10.1007/s10439-016-1733-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/10/2016] [Indexed: 12/31/2022]
Abstract
High oxidative stress can occur during ischemic reperfusion and chronic inflammation. It has been hypothesized that such oxidative challenges could contribute to clinical risks such as deep tissue pressure ulcers. Skeletal muscles can be challenged by inflammation-induced or reperfusion-induced oxidative stress. Oxidative stress reportedly can lower the compressive damage threshold of skeletal muscles cells, causing actin filament depolymerization, and reduce membrane sealing ability. Skeletal muscles thus become easier to be damaged by mechanical loading under prolonged oxidative exposure. In this study, we investigated the preventive effect of poloxamer 188 (P188) on skeletal muscle cells against extrinsic oxidative challenges (H2O2). It was found that with 1 mM P188 pre-treatment for 1 h, skeletal muscle cells could maintain their compressive damage threshold. The actin polymerization dynamics largely remained stable in term of the expression of cofilin, thymosin beta 4 and profilin. Laser photoporation demonstrated that membrane sealing ability was preserved even as the cells were challenged by H2O2. These findings suggest that P188 pre-treatment can help skeletal muscle cells retain their normal mechanical integrity in oxidative environments, adding a potential clinical use of P188 against the combined challenge of mechanical-oxidative stresses. Such effect may help to prevent deep tissue ulcer development.
Collapse
Affiliation(s)
- Sing Wan Wong
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yifei Yao
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Ye Hong
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Zhiyao Ma
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Stanton H L Kok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Shan Sun
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Kenneth K H Lee
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Arthur F T Mak
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| |
Collapse
|
10
|
Yao Y, Da Ong LX, Li X, Wan K, Mak AFT. Effects of Biowastes Released by Mechanically Damaged Muscle Cells on the Propagation of Deep Tissue Injury: A Multiphysics Study. Ann Biomed Eng 2016; 45:761-774. [PMID: 27624658 DOI: 10.1007/s10439-016-1731-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/07/2016] [Indexed: 12/24/2022]
Abstract
Deep tissue injuries occur in muscle tissues around bony prominences under mechanical loading leading to severe pressure ulcers. Tissue compression can potentially compromise lymphatic transport and cause accumulation of metabolic biowastes, which may cause further cell damage under continuous mechanical loading. In this study, we hypothesized that biowastes released by mechanically damaged muscle cells could be toxic to the surrounding muscle cells and could compromise the capability of the surrounding muscle cells to withstand further mechanical loadings. In vitro, we applied prolonged low compressive stress (PLCS) and short-term high compressive stress to myoblasts to cause cell damage and collected the biowastes released by the damaged cells under the respective loading scenarios. In silico, we used COMSOL to simulate the compressive stress distribution and the diffusion of biowastes in a semi-3D buttock finite element model. In vitro results showed that biowastes collected from cells damaged under PLCS were more toxic and could compromise the capability of normal myoblasts to resist compressive damage. In silico results showed that higher biowastes diffusion coefficient, higher biowastes release rate, lower biowastes tolerance threshold and earlier timeline of releasing biowastes would cause faster propagation of tissue damage. This study highlighted the importance of biowastes in the development of deep tissue injury to clinical pressure ulcers under prolonged skeletal compression.
Collapse
Affiliation(s)
- Yifei Yao
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lucas Xian Da Ong
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Xiaotong Li
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kinlun Wan
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Arthur F T Mak
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Rm. 429, Ho Sin Hang Engineering Building, Shatin, N.T., Hong Kong SAR, China.
| |
Collapse
|
11
|
Change in viability of C2C12 myoblasts under compression, shear and oxidative challenges. J Biomech 2016; 49:1305-1310. [DOI: 10.1016/j.jbiomech.2016.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 01/27/2023]
|
12
|
Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress: confocal-based cell-specific finite element analysis. Biomech Model Mechanobiol 2016; 15:1495-1508. [DOI: 10.1007/s10237-016-0779-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/03/2016] [Indexed: 01/07/2023]
|
13
|
Ma Z, Wu YS, Mak AF. Rheological behavior of actin stress fibers in myoblasts after nanodissection: Effects of oxidative stress. Biorheology 2015; 52:225-34. [DOI: 10.3233/bir-14041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Zili Ma
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiqian Shirley Wu
- Biomedical Engineering Programme, The Chinese University of Hong Kong, Hong Kong, China
| | - Arthur F.T. Mak
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
- Biomedical Engineering Programme, The Chinese University of Hong Kong, Hong Kong, China
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Duan X, Chan KT, Lee KKH, Mak AFT. Oxidative Stress and Plasma Membrane Repair in Single Myoblasts After Femtosecond Laser Photoporation. Ann Biomed Eng 2015; 43:2735-44. [PMID: 26014361 DOI: 10.1007/s10439-015-1341-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/14/2015] [Indexed: 02/01/2023]
Abstract
Cell membranes are susceptible to biophysical damages. These biophysical damages often present themselves in challenging oxidative environments, such as in chronic inflammation. Here we report the damage evolution after single myoblasts were individually subjected to femtosecond (fs) laser photoporation on their plasma membranes under normal and oxidative conditions. A well-characterized tunable fs laser was coupled with a laser scanning confocal microscope. The post-damage wound evolution was documented by real-time imaging. The fs laser could generate a highly focused hole at a targeted site of the myoblast plasma membrane. The initial hole size depended on the laser dosage in terms of power and exposure duration. With the same laser power and irradiation duration, photoporation invoked bigger holes in the oxidative groups than in the control. Myoblasts showed difficulty in repairing holes with initial size beyond certain threshold. Within the threshold, holes could apparently be resealed within 100 s under the normal condition; while in oxidative condition, the resealing process could take 100-300 s. The hole-resealing capacity of myoblasts was compromised under oxidative stress particularly when the oxidative exposure was chronic. It is interesting to note that brief exposure to oxidative stress apparently could promote resealing in myoblasts after photoporation.
Collapse
Affiliation(s)
- Xinxing Duan
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kam Tai Chan
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kenneth K H Lee
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Arthur F T Mak
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong. .,Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong. .,Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
15
|
Siu AW, Shan SW, Li KK, Lam HY, Fung MY, Li KK, To CH, Do CW. Glutathione attenuates nitric oxide-induced retinal lipid and protein changes. Ophthalmic Physiol Opt 2015; 35:135-46. [DOI: 10.1111/opo.12198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/30/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Andrew W. Siu
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - Sze Wan Shan
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - King Kit Li
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - Hiu Yan Lam
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - Man Yee Fung
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - Ka Ki Li
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - Chi Ho To
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou China
| | - Chi Wai Do
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| |
Collapse
|
16
|
The effects of oxidative stress on the compressive damage thresholds of C2C12 mouse myoblasts: implications for deep tissue injury. Ann Biomed Eng 2015; 43:287-96. [PMID: 25558846 DOI: 10.1007/s10439-014-1239-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/26/2014] [Indexed: 12/12/2022]
Abstract
Deep tissue injury (DTI) is a severe kind of pressure ulcers formed by sustained deformation of muscle tissues over bony prominences. As a major clinical issue, DTI affects people with physical disabilities, and is obviously related to the load-bearing capacity of muscle cells in various in vivo conditions. It has been hypothesized that oxidative stress, either induced by reperfusion immediately following tissue unloading or in chronic inflammatory conditions, may affect the cellular capacity against subsequent mechanical damages. In this study, we measured the compressive damage threshold of C2C12 mouse myoblasts with or without pre-treatment of hydrogen peroxide as an oxidative agent to understand how changes in the oxidative environment may contribute to the development of DTI. Spherical indentation was applied onto a layer of agarose gel (3 mm thick) covering a monolayer of C2C12 myoblasts. Cell damage was recognized by using a cell membrane damage assay, propidium iodide. The spatial profile of the measured percentage cell damage was correlated with the radially varying stress field as determined by finite element analysis to estimate the compressive stress threshold for cell damage. Results supported the hypothesis that chronic exposure to high-dosage oxidative stress could compromise the capability of muscle cells to withstand compressive damages, while short exposure to low-dosage oxidative stress could enhance such capability.
Collapse
|