1
|
Sarker FA, Prior VG, Bax S, O'Neill GM. Forcing a growth factor response - tissue-stiffness modulation of integrin signaling and crosstalk with growth factor receptors. J Cell Sci 2020; 133:133/23/jcs242461. [PMID: 33310867 DOI: 10.1242/jcs.242461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Research throughout the 90s established that integrin crosstalk with growth factor receptors stimulates robust growth factor signaling. These insights were derived chiefly from comparing adherent versus suspension cell cultures. Considering the new understanding that mechanosensory inputs tune adhesion signaling, it is now timely to revisit this crosstalk in different mechanical environments. Here, we present a brief historical perspective on integrin signaling against the backdrop of the mechanically diverse extracellular microenvironment, then review the evidence supporting the mechanical regulation of integrin crosstalk with growth factor signaling. We discuss early studies revealing distinct signaling consequences for integrin occupancy (binding to matrix) and aggregation (binding to immobile ligand). We consider how the mechanical environments encountered in vivo intersect with this diverse signaling, focusing on receptor endocytosis. We discuss the implications of mechanically tuned integrin signaling for growth factor signaling, using the epidermal growth factor receptor (EGFR) as an illustrative example. We discuss how the use of rigid tissue culture plastic for cancer drug screening may select agents that lack efficacy in the soft in vivo tissue environment. Tuning of integrin signaling via external mechanical forces in vivo and subsequent effects on growth factor signaling thus has implications for normal cellular physiology and anti-cancer therapies.
Collapse
Affiliation(s)
- Farhana A Sarker
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Victoria G Prior
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Samuel Bax
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia
| | - Geraldine M O'Neill
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead NSW, Westmead 2145, Australia .,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia.,School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
2
|
Wu Y, Fu R, Mohanty S, Nasser M, Guo B, Ghosh G. Investigation of Integrated Effects of Hydroxyapatite and VEGF on Capillary Morphogenesis of Endothelial Cells. ACS APPLIED BIO MATERIALS 2019; 2:2339-2346. [DOI: 10.1021/acsabm.8b00780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Wu
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan, Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Rong Fu
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan, Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Swetaparna Mohanty
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan, Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Malak Nasser
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan, Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Bingxin Guo
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan, Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Gargi Ghosh
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan, Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| |
Collapse
|
3
|
Nguyen EH, Murphy WL. Customizable biomaterials as tools for advanced anti-angiogenic drug discovery. Biomaterials 2018; 181:53-66. [PMID: 30077137 DOI: 10.1016/j.biomaterials.2018.07.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
The inhibition of angiogenesis is a critical element of cancer therapy, as cancer vasculature contributes to tumor expansion. While numerous drugs have proven to be effective at disrupting cancer vasculature, patient survival has not significantly improved as a result of anti-angiogenic drug treatment. Emerging evidence suggests that this is due to a combination of unintended side effects resulting from the application of anti-angiogenic compounds, including angiogenic rebound after treatment and the activation of metastasis in the tumor. There is currently a need to better understand the far-reaching effects of anti-angiogenic drug treatments in the context of cancer. Numerous innovations and discoveries in biomaterials design and tissue engineering techniques are providing investigators with tools to develop physiologically relevant vascular models and gain insights into the holistic impact of drug treatments on tumors. This review examines recent advances in the design of pro-angiogenic biomaterials, specifically in controlling integrin-mediated cell adhesion, growth factor signaling, mechanical properties and oxygen tension, as well as the implementation of pro-angiogenic materials into sophisticated co-culture models of cancer vasculature.
Collapse
Affiliation(s)
- Eric H Nguyen
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA; Human Models for Analysis of Pathways (Human MAPs) Center, University of Wisconsin, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA; Human Models for Analysis of Pathways (Human MAPs) Center, University of Wisconsin, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
4
|
Li J, Wu Y, Schimmel N, Al-Ameen MA, Ghosh G. Breast cancer cells mechanosensing in engineered matrices: Correlation with aggressive phenotype. J Mech Behav Biomed Mater 2016; 61:208-220. [PMID: 26874251 DOI: 10.1016/j.jmbbm.2016.01.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 01/27/2023]
Abstract
The pathogenesis of cancer is often driven by the modulation of the tumor microenvironment. Recent reports have highlighted that the progressive stiffening of tumor matrix is crucial for malignant transformation. Though extensive work has been done analyzing the mechanotransductive signals involved in tumor progression, it is still not clear whether the stiffness induced changes in cancer cell behavior is conserved across the invasive/aggressive phenotype of cells. Here, we used synthetic hydrogel based cell culture platform to correlate the aggressive potential of the breast cancer cells to the responses to matrix stiffness. The cellular functions such as proliferation, migration, and angiogenic capability were characterized. We report that the proliferation and motility of the highly aggressive cell line MDA-MB-231 increased with increase in matrix rigidity. We also demonstrated for the first time that the change in matrix stiffness stimulated the angiogenic activity of these cells as manifested from enhanced expression of vascular endothelial growth factor (VEGF). Inhibition of actomyosin contractility attenuated proliferation of MDA-MB-231 cells on stiff matrices while promoted the growth on soft gels. In addition, the release of VEGF was reduced upon inhibition of contractility. The less and non-aggressive breast cancer cells, SKBr3 and MCF-7 respectively displayed less dependency on matrix stiffness.
Collapse
Affiliation(s)
- Ji Li
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan, Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA
| | - Yang Wu
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan, Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA
| | - Nicholas Schimmel
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan, Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA
| | - Mohammad Ali Al-Ameen
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan, Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA
| | - Gargi Ghosh
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan, Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA.
| |
Collapse
|