1
|
Mizuno HL, Kang JD, Mizuno S. Effects of hydrostatic pressure, osmotic pressure, and confinement on extracellular matrix associated responses in the nucleus pulposus cells ex vivo. Matrix Biol 2024; 134:162-174. [PMID: 39428070 DOI: 10.1016/j.matbio.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/15/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Spinal movement in both upright and recumbent positions generates changes in physicochemical stresses including hydrostatic pressure (HP), deviatoric stress, and confinement within the intradiscal compartment. The nucleus pulposus (NP) of the intervertebral disc is composed of highly negatively charged extracellular matrix (ECM), which increases osmotic pressure (OP) and generates tissue swelling. In pursuing regenerative therapies for intervertebral disc degeneration, the effects of HP on the cellular responses of NP cells and the ECM environment remain incompletely understood. We hypothesized that anabolic turnover of ECM in NP tissue is maintained under HP and confinement. We first clarified the effects of the relationships among HP, OP, and confinement on swelling NP explants isolated from bovine caudal intervertebral discs over 12 h. We found that the application of confinement and constant HP significantly inhibits the free swelling of NP (p < 0.01) and helps retain the sulfated glycosaminoglycan. Since confinement and HP inhibited swelling, we incubated confined NPs under HP in high-osmolality medium mimicking ECM-associated OP for 7 days and demonstrated the effects of HP on metabolic turnover of ECM molecules in NP cells. The aggrecan core protein gene was significantly upregulated under confinement and constant HP compared to confinement and no HP (p < 0.01). We also found that confinement and constant HP helped to significantly retain smaller cell area (p < 0.01) and significantly prevent the severing of actin filaments compared to no confinement and HP (p < 0.01). Thus, we suggest that NP's metabolic turnover and cellular responses are regulated by the configuration of intracellular actin and fibrillar ECMs under HP.
Collapse
Affiliation(s)
- Hayato L Mizuno
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Japan
| | - James D Kang
- Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States
| | - Shuichi Mizuno
- Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States.
| |
Collapse
|
2
|
Salzer E, Mouser VHM, Bulsink JA, Tryfonidou MA, Ito K. Dynamic loading leads to increased metabolic activity and spatial redistribution of viable cell density in nucleus pulposus tissue. JOR Spine 2023; 6:e1240. [PMID: 36994465 PMCID: PMC10041377 DOI: 10.1002/jsp2.1240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Background Nucleus pulposus (NP) cell density is orchestrated by an interplay between nutrient supply and metabolite accumulation. Physiological loading is essential for tissue homeostasis. However, dynamic loading is also believed to increase metabolic activity and could thereby interfere with cell density regulation and regenerative strategies. The aim of this study was to determine whether dynamic loading could reduce the NP cell density by interacting with its energy metabolism. Methods Bovine NP explants were cultured in a novel NP bioreactor with and without dynamic loading in milieus mimicking the pathophysiological or physiological NP environment. The extracellular content was evaluated biochemically and by Alcian Blue staining. Metabolic activity was determined by measuring glucose and lactate in tissue and medium supernatants. A lactate-dehydrogenase staining was performed to determine the viable cell density (VCD) in the peripheral and core regions of the NP. Results The histological appearance and tissue composition of NP explants did not change in any of the groups. Glucose levels in the tissue reached critical values for cell survival (≤0.5 mM) in all groups. Lactate released into the medium was increased in the dynamically loaded compared to the unloaded groups. While the VCD was unchanged on Day 2 in all regions, it was significantly reduced in the dynamically loaded groups on Day 7 (p ≤ 0.01) in the NP core, which led to a gradient formation of VCD in the group with degenerated NP milieu and dynamic loading (p ≤ 0.05). Conclusion It was demonstrated that dynamic loading in a nutrient deprived environment similar to that during IVD degeneration can increase cell metabolism to the extent that it was associated with changes in cell viability leading to a new equilibrium in the NP core. This should be considered for cell injections and therapies that lead to cell proliferation for treatment of IVD degeneration.
Collapse
Affiliation(s)
- Elias Salzer
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Vivian H. M. Mouser
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Jurgen A. Bulsink
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
3
|
Salzer E, Mouser VHM, Tryfonidou MA, Ito K. A bovine nucleus pulposus explant culture model. J Orthop Res 2022; 40:2089-2102. [PMID: 34812520 PMCID: PMC9542046 DOI: 10.1002/jor.25226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/18/2021] [Accepted: 11/20/2021] [Indexed: 02/04/2023]
Abstract
Low back pain is a global health problem that is frequently caused by intervertebral disc degeneration (IVDD). Sulfated glycosaminoglycans (sGAGs) give the healthy nucleus pulposus (NP) a high fixed charge density (FCD), which creates an osmotic pressure that enables the disc to withstand high compressive forces. However, during IVDD sGAG reduction in the NP compromises biomechanical function. The aim of this study was to develop an ex vivo NP explant model with reduced sGAG content and subsequently investigate biomechanical restoration via injection of proteoglycan-containing notochordal cell-derived matrix (NCM). Bovine coccygeal NP explants were cultured in a bioreactor chamber and sGAG loss was induced by chondroitinase ABC (chABC) and cultured for up to 14 days. Afterwards, diurnal loading was studied, and explant restoration was investigated via injection of NCM. Explants were analyzed via histology, biochemistry, and biomechanical testing via stress relaxation tests and height measurements. ChABC injection induced dose-dependent sGAG reduction on Day 3, however, no dosing effects were detected after 7 and 14 days. Diurnal loading reduced sGAG loss after injection of chABC. NCM did not show an instant biomechanical (equilibrium pressure) or biochemical (FCD) restoration, as the injected fixed charges leached into the medium, however, NCM stimulated proliferation and increased Alcian blue staining intensity and matrix organization. NCM has biological repair potential and biomaterial/NCM combinations, which could better entrap NCM within the NP tissue, should be investigated in future studies. Concluding, chABC induced progressive, time-, dose- and loading-dependent sGAG reduction that led to a loss of biomechanical function. Keywords biomechanics | intervertebral disc | matrix degradation | low back pain | proteoglycans.
Collapse
Affiliation(s)
- Elias Salzer
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNoord‐BrabantThe Netherlands
| | - Vivian H. M. Mouser
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNoord‐BrabantThe Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNoord‐BrabantThe Netherlands
| |
Collapse
|
4
|
Takeoka Y, Kang JD, Mizuno S. In vitro nucleus pulposus tissue model with physicochemical stresses. JOR Spine 2020; 3:e1105. [PMID: 33015578 PMCID: PMC7524234 DOI: 10.1002/jsp2.1105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/12/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Intervertebral discs (IVDs) are exposed to changes in physicochemical stresses including hydrostatic and osmotic pressure via diurnal spinal motion. Homeostasis, degeneration, and regeneration in IVDs have been studied using in vitro, ex vivo, and animal models. However, incubation of nucleus pulposus (NP) cells in medium has limited capability to reproduce anabolic turnover and regeneration under physicochemical stresses. We developed a novel pressure/perfusion cell culture system and a semipermeable membrane pouch device for enclosing isolated NP cells for in vitro incubation under physicochemical stresses. We assessed the performance of this system to identify an appropriate stress loading regimen to promote gene expression and consistent accumulation of extracellular matrices by bovine caudal NP cells. Cyclic hydrostatic pressure (HP) for 4 days followed by constant HP for 3 days in high osmolality (HO; 450 mOsm/kg H2O) showed a trend towards upregulated aggrecan expression and dense accumulation of keratan sulfate without gaps by the NP cells. Furthermore, a repetitive regimen of cyclic HP for 2 days followed by constant HP for 1 day in HO (repeated twice) significantly upregulated gene expression of aggrecan (P < .05) compared to no pressure and suppressed matrix metalloproteinase-13 expression (P < .05) at 6 days. Our culture system and pouches will be useful to reproduce physicochemical stresses in NP cells for simulating anabolic, catabolic, and homeostatic turnover under diurnal spinal motion.
Collapse
Affiliation(s)
- Yoshiki Takeoka
- Department of Orthopaedic SurgeryBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - James D. Kang
- Department of Orthopaedic SurgeryBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Shuichi Mizuno
- Department of Orthopaedic SurgeryBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
5
|
Thorpe AA, Bach FC, Tryfonidou MA, Le Maitre CL, Mwale F, Diwan AD, Ito K. Leaping the hurdles in developing regenerative treatments for the intervertebral disc from preclinical to clinical. JOR Spine 2018; 1:e1027. [PMID: 31463447 PMCID: PMC6686834 DOI: 10.1002/jsp2.1027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic back and neck pain is a prevalent disability, often caused by degeneration of the intervertebral disc. Because current treatments for this condition are less than satisfactory, a great deal of effort is being applied to develop new solutions, including regenerative strategies. However, the path from initial promising idea to clinical use is fraught with many hurdles to overcome. Many of the keys to success are not necessarily linked to science or innovation. Successful translation to clinic will also rely on planning and awareness of the hurdles. It will be essential to plan your entire path to clinic from the outset and to do this with a multidisciplinary team. Take advice early on regulatory aspects and focus on generating the proof required to satisfy regulatory approval. Scientific demonstration and societal benefits are important, but translation cannot occur without involving commercial parties, which are instrumental to support expensive clinical trials. This will only be possible when intellectual property can be protected sufficiently to support a business model. In this manner, commercial, societal, medical, and scientific partners can work together to ultimately improve patient health. Based on literature surveys and experiences of the co-authors, this opinion paper presents this pathway, highlights the most prominent issues and hopefully will aid in your own translational endeavors.
Collapse
Affiliation(s)
- Abbey A. Thorpe
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Frances C. Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtthe Netherlands
| | | | - Fackson Mwale
- Department of SurgeryMcGill UniversityMontrealCanada
| | - Ashish D. Diwan
- Spine Service, Department of Orthopaedic SurgerySt. George & Sutherland Clinical School, University of New South WalesSydneyAustralia
| | - Keita Ito
- Orthopaedic Biomechanics Division, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
- Department of OrthopedicsUniversity Medical Centre UtrechtUtrechtthe Netherlands
| |
Collapse
|
6
|
Arkesteijn ITM, Potier E, Ito K. The Regenerative Potential of Notochordal Cells in a Nucleus Pulposus Explant. Global Spine J 2017; 7:14-20. [PMID: 28451504 PMCID: PMC5400162 DOI: 10.1055/s-0036-1583174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/01/2016] [Indexed: 12/12/2022] Open
Abstract
STUDY DESIGN In vitro disk explant culture. OBJECTIVE Notochordal cells (NCs) have been shown to upregulate matrix production by nucleus pulposus (NP) cells in coculture. To examine the translation of these in vitro results to a nativelike setting, the regenerative potential of NCs injected into NP tissue was assessed in this study. METHODS NP explants were cultured after injection with NCs in phosphate-buffered saline (PBS) or with PBS alone (sham). At days 0 and 42, cell viability and morphology, water, DNA, sulfated glycosaminoglycan and hydroxyproline content, and gene expression of anabolic markers were analyzed. RESULTS NCs remained viable during culture, but their morphology changed. The biochemical content remained unchanged, except for the DNA content in the NC group. Overall ACAN expression remained unchanged, whereas COL2A1 decreased during culture. CONCLUSIONS No overall anabolic response was observed when NCs were injected into NP explants. NCs were found to survive but did not display the typical NC morphology by the end of the culture period.
Collapse
Affiliation(s)
- Irene T. M. Arkesteijn
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Esther Potier
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands,Department of Osteoarticular Bioengineering and Bioimaging, University Paris Diderot, Paris, France
| | - Keita Ito
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands,Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands,Address for correspondence Keita Ito, MD, ScD, Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, GEM-Z 4.115, 5600 MB, Eindhoven, The Netherlands (e-mail: )
| |
Collapse
|
7
|
Li P, Gan Y, Wang H, Xu Y, Li S, Song L, Zhang C, Ou Y, Wang L, Zhou Q. Role of the ERK1/2 pathway in osmolarity effects on nucleus pulposus cell apoptosis in a disc perfusion culture. J Orthop Res 2017; 35:86-92. [PMID: 27035885 DOI: 10.1002/jor.23249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/23/2016] [Indexed: 02/04/2023]
Abstract
Osmolarity fluctuations are inevitable within the nucleus pulposus (NP). However, the effects of osmolarity on NP cell apoptosis within the organ-cultured disc remain unclear. The objective of this study was to investigate effects of different osmolarity levels (hypo-, iso-, and hyper-) and osmolarity modes (constant and cyclic) on NP cell apoptosis in a disc perfusion culture and to study the role of the ERK1/2 pathway in this regulatory process. Porcine discs were cultured for 7 days in different osmotic medium, including constant hypo-, iso-, and hyper-osmolarity (330, 430, and 550 mOsm/L, respectively) and cyclic-osmolarity (430 mOsm/L for 8 h, followed by 550 mOsm/L for 16 h). The role of the ERK1/2 pathway was investigated by using the pharmacological inhibitor U0126. NP cell apoptosis was analyzed by TUNEL staining, caspase-3 activity, gene expression of Bcl-2, Bax and caspase-3 and protein expression of cleaved caspase-3, and cleaved PARP. Our results showed that NP cell apoptosis was increased in hypo- and hyper-osmolarity cultures compared to iso- or cyclic-osmolarity culture, whereas the level of apoptosis in the iso-osmolarity culture was lower than that in the cyclic-osmolarity culture. When the ERK1/2 pathway was inhibited in the iso- and cyclic-osmolarity cultures, the level of NP cell apoptosis was significantly increased. In conclusion, the effects of osmolarity on NP cell apoptosis depend on the osmolarity level (hypo-, iso-, or hyper-) and osmolarity mode (constant or cyclic). Futhermore, inhibition of the ERK1/2 pathway promotes NP cell apoptosis in this process. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:86-92, 2017.
Collapse
Affiliation(s)
- Pei Li
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Yibo Gan
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Haoming Wang
- Department of Orthopedic Surgery, Chongqing Three Gorges Central Hospital, Chongqing 404000, China
| | - Yuan Xu
- Department of Orthopedic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Songtao Li
- Department of Orthopedic Surgery, No. 181 Hospital of PLA, Guilin, Guangxi 541002, China
| | - Lei Song
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Chengmin Zhang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Yangbin Ou
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Liyuan Wang
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| | - Qiang Zhou
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, GaoTanYan 29, Chongqing 400038, China
| |
Collapse
|