1
|
Li Y, Shi Y, Lu Y, Li X, Zhou J, Zadpoor AA, Wang L. Additive manufacturing of vascular stents. Acta Biomater 2023:S1742-7061(23)00338-0. [PMID: 37331614 DOI: 10.1016/j.actbio.2023.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
With the advancement of additive manufacturing (AM), customized vascular stents can now be fabricated to fit the curvatures and sizes of a narrowed or blocked blood vessel, thereby reducing the possibility of thrombosis and restenosis. More importantly, AM enables the design and fabrication of complex and functional stent unit cells that would otherwise be impossible to realize with conventional manufacturing techniques. Additionally, AM makes fast design iterations possible while also shortening the development time of vascular stents. This has led to the emergence of a new treatment paradigm in which custom and on-demand-fabricated stents will be used for just-in-time treatments. This review is focused on the recent advances in AM vascular stents aimed at meeting the mechanical and biological requirements. First, the biomaterials suitable for AM vascular stents are listed and briefly described. Second, we review the AM technologies that have been so far used to fabricate vascular stents as well as the performances they have achieved. Subsequently, the design criteria for the clinical application of AM vascular stents are discussed considering the currently encountered limitations in materials and AM techniques. Finally, the remaining challenges are highlighted and some future research directions are proposed to realize clinically-viable AM vascular stents. STATEMENT OF SIGNIFICANCE: Vascular stents have been widely used for the treatment of vascular disease. The recent progress in additive manufacturing (AM) has provided unprecedented opportunities for revolutionizing traditional vascular stents. In this manuscript, we review the applications of AM to the design and fabrication of vascular stents. This is an interdisciplinary subject area that has not been previously covered in the published review articles. Our objective is to not only present the state-of-the-art of AM biomaterials and technologies but to also critically assess the limitations and challenges that need to be overcome to speed up the clinical adoption of AM vascular stents with both anatomical superiority and mechanical and biological functionalities that exceed those of the currently available mass-produced devices.
Collapse
Affiliation(s)
- Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yixuan Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuchen Lu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuan Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jie Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - Luning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
2
|
Vahabli E, Mann J, Heidari BS, Lawrence‐Brown M, Norman P, Jansen S, De‐Juan‐Pardo E, Doyle B. The Technological Advancement to Engineer Next-Generation Stent-Grafts: Design, Material, and Fabrication Techniques. Adv Healthc Mater 2022; 11:e2200271. [PMID: 35481675 PMCID: PMC11468507 DOI: 10.1002/adhm.202200271] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/04/2022] [Indexed: 12/12/2022]
Abstract
Endovascular treatment of aortic disorders has gained wide acceptance due to reduced physiological burden to the patient compared to open surgery, and ongoing stent-graft evolution has made aortic repair an option for patients with more complex anatomies. To date, commercial stent-grafts are typically developed from established production techniques with simple design structures and limited material ranges. Despite the numerous updated versions of stent-grafts by manufacturers, the reoccurrence of device-related complications raises questions about whether the current manfacturing methods are technically able to eliminate these problems. The technology trend to produce efficient medical devices, including stent-grafts and all similar implants, should eventually change direction to advanced manufacturing techniques. It is expected that through recent advancements, especially the emergence of 4D-printing and smart materials, unprecedented features can be defined for cardiovascular medical implants, like shape change and remote battery-free self-monitoring. 4D-printing technology promises adaptive functionality, a highly desirable feature enabling printed cardiovascular implants to physically transform with time to perform a programmed task. This review provides a thorough assessment of the established technologies for existing stent-grafts and provides technical commentaries on known failure modes. They then discuss the future of advanced technologies and the efforts needed to produce next-generation endovascular implants.
Collapse
Affiliation(s)
- Ebrahim Vahabli
- Vascular Engineering LaboratoryHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlands and the UWA Centre for Medical ResearchThe University of Western AustraliaPerth6009Australia
- School of EngineeringThe University of Western AustraliaPerth6009Australia
| | - James Mann
- Vascular Engineering LaboratoryHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlands and the UWA Centre for Medical ResearchThe University of Western AustraliaPerth6009Australia
- School of EngineeringThe University of Western AustraliaPerth6009Australia
| | - Behzad Shiroud Heidari
- Vascular Engineering LaboratoryHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlands and the UWA Centre for Medical ResearchThe University of Western AustraliaPerth6009Australia
- School of EngineeringThe University of Western AustraliaPerth6009Australia
- Australian Research Council Centre for Personalised Therapeutics TechnologiesUniversity of Western AustraliaPerth6009Australia
| | | | - Paul Norman
- Vascular Engineering LaboratoryHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlands and the UWA Centre for Medical ResearchThe University of Western AustraliaPerth6009Australia
- Medical SchoolThe University of Western AustraliaPerth6009Australia
| | - Shirley Jansen
- Curtin Medical SchoolCurtin UniversityPerthWA6102Australia
- Department of Vascular and Endovascular SurgerySir Charles Gairdner HospitalPerthWA6009Australia
- Heart and Vascular Research InstituteHarry Perkins Medical Research InstitutePerthWA6009Australia
| | - Elena De‐Juan‐Pardo
- School of EngineeringThe University of Western AustraliaPerth6009Australia
- T3mPLATEHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlands and the UWA Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
- School of Mechanical, Medical and Process EngineeringQueensland University of TechnologyBrisbaneQueensland4059Australia
| | - Barry Doyle
- Vascular Engineering LaboratoryHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlands and the UWA Centre for Medical ResearchThe University of Western AustraliaPerth6009Australia
- School of EngineeringThe University of Western AustraliaPerth6009Australia
- Australian Research Council Centre for Personalised Therapeutics TechnologiesUniversity of Western AustraliaPerth6009Australia
- British Heart Foundation Centre for Cardiovascular ScienceThe University of EdinburghEdinburghEH16 4TJUK
| |
Collapse
|
3
|
Larrañeta E, Domínguez-Robles J, Margariti A, Basit AW, Goyanes Á. 3D printing for the development of implantable devices for cardiovascular disease treatment. Ther Deliv 2022; 13:359-362. [PMID: 36000225 DOI: 10.4155/tde-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
| | - Álvaro Goyanes
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia & Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
4
|
Khalaj R, Douroumis D. Applications of long-lasting and implantable drug delivery systems for cardiovascular disease treatment. LONG-ACTING DRUG DELIVERY SYSTEMS 2022:83-127. [DOI: 10.1016/b978-0-12-821749-8.00004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Khalaj R, Tabriz AG, Okereke MI, Douroumis D. 3D printing advances in the development of stents. Int J Pharm 2021; 609:121153. [PMID: 34624441 DOI: 10.1016/j.ijpharm.2021.121153] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
3D printing technologies have found several applications within the biomedical sector including in the fabrication of medical devices, advanced visualization, diagnosis planning and simulation of surgical procedures. One of the areas in which of 3D printing is anticipated to revolutionised is the manufacturing of implantable bioresorbable drug-eluting scaffolds (stents). The ability to customize and create personalised tailor-made bioresorbable scaffolds has the potential to help solve many of the challenges associated with stenting, such as inappropriate stent sizing and design, abolish late stent thrombosis and help artery growth; 3D printing offers a rapid prototyping and effective method of producing stents making customization of designs feasible. This review provides an overview of the subjects and summarizes the latest research in the 3D printing technologies employed for the design and fabrication of bioresorbable stents including materials with the required printable and mechanical properties. Finally, we present a regulatory perspective on the development and engineering of 3D printed implantable stents.
Collapse
Affiliation(s)
- Roxanne Khalaj
- School of Science, University of Greenwich, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, UK; CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK
| | - Atabak Ghanizadeh Tabriz
- School of Science, University of Greenwich, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, UK; CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK
| | - Michael I Okereke
- Mathematical Modelling for Engineering Research Group, Department of Engineering Science, University of Greenwich, UK
| | - Dennis Douroumis
- School of Science, University of Greenwich, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, UK; CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK.
| |
Collapse
|
6
|
Wright J, Nguyen A, D’Souza N, Forbess JM, Nugent A, Reddy SRV, Jaquiss R, Welch TR. Bioresorbable Stent to Manage Congenital Heart Defects in Children. MATERIALIA 2021; 16:101078. [PMID: 34109305 PMCID: PMC8184019 DOI: 10.1016/j.mtla.2021.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intravascular stents for pediatric patients that degrade without inhibiting vessel growth remain a clinical challenge. Here, poly(L-lactide) fibers (DH-BDS) at two thicknesses, 250 μm and 300 μm, were assembled into large, pediatric-sized stents (Ø10 - Ø20 mm). Fibers were characterized mechanically and thermally, then stent mechanical properties were compared to metal controls, while mass loss and degradation kinetics modeling estimated total stent degradation time. Thicker fibers displayed lower stiffness (1969 ± 44 vs 2126 ± 37 MPa) and yield stress (117 ± 12 vs 137 ± 5 MPa) than thinner counterparts, but exhibited similar fail strength (478 ± 28 vs 476 ± 16 MPa) at higher strains (47 ± 2 vs 44 ± 2%). Stents all exhibited crystallinity between 51.3 - 54.4% and fiber glass transition temperatures of 88.6 ± 0.5 °C and 84.6 ± 0.5 °C were well above physiological ranges. Radial strength (0.31 ± 0.01 - 0.34 ± 0.02 N/mm) in thinner stents was similar to metal stents (0.24 - 0.41 N/mm) up to Ø14 mm with no foreshortening and thicker coils granted comparable radial strength (0.32 ± 0.02 - 0.34 ± 0.02 N/mm) in stents larger than Ø14 mm. Both 10 mm (1.17 ± 0.02 % and 0.86 ± 0.1 %) and 12 mm (1.1 ± 0.03% and 0.89 ± 0.1%) stents exhibited minimal weight loss over one year. Degradation kinetics models predicted full stent degradation within 2.8 - 4.5 years depending on thickness. DH-BDS exhibiting hoop strength similar to metal stents and demonstrating minimal degradation and strength loss over the first year before completely disappearing within 3 to 4.5 years show promise as a pediatric interventional alternative to current strategies.
Collapse
Affiliation(s)
- Jamie Wright
- Department of Cardiovascular Thoracic Surgery, University of Texas at Southwestern Medical Center of Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-8879, USA
| | - Annie Nguyen
- Department of Cardiovascular Thoracic Surgery, University of Texas at Southwestern Medical Center of Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-8879, USA
| | - Nandika D’Souza
- Department of Material Science, University of North Texas, 1155 Union Circle #310440, Denton, TX 76203-5017
| | - Joseph M. Forbess
- Department of Surgery, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore MD 21201
| | - Alan Nugent
- Department of Pediatrics, Northwestern University, Ann & Robert H. Lurie Children’s Hospital of Chicago Box 21, 225 E Chicago Avenue, Chicago IL 60611, USA
| | - Surendranath R. Veeram Reddy
- Department of Pediatrics, University of Texas at Southwestern Medical Center of DallasAc, 5323 Harry Hines Blvd, Dallas, TX 75390-9063, USA
| | - Robert Jaquiss
- Department of Cardiovascular Thoracic Surgery, University of Texas at Southwestern Medical Center of Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-8879, USA
| | | |
Collapse
|
7
|
Verboeket V, Khajavi SH, Krikke H, Salmi M, Holmström J. Additive Manufacturing for Localized Medical Parts Production: A Case Study. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:25818-25834. [PMID: 34812378 PMCID: PMC8545237 DOI: 10.1109/access.2021.3056058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/15/2021] [Indexed: 06/13/2023]
Abstract
Centralized supply chains (SCs) are prone to disruption, which makes them a risky choice for medical equipment production. Additive manufacturing (AM) allows for production localization and improvements in SC resilience. However, the comparative competitiveness of a localized SC from the time and cost perspective is still unclear. In this study, we investigate the competitiveness of localized medical part AM SCs against centralized ones by analyzing the responsiveness and cost of each SC. We utilize a real-world case study in which an AM service provider supplies medical parts to university medical centers in the Netherlands to construct six scenarios. We also develop a thorough empirical cost formulation for both central and local AM of patient-specific medical parts. The results of scenario analysis show that when utilizing the currently available AM technology, localized SC configurations significantly reduce the delivery time from about 54 to 27h, but at a 4.3-fold higher cost. Hence, we illustrate that the cost difference between the localized and centralized scenarios can be reduced when state-of-the-art AM machines are utilized, demand volumes increase, and the distances between the SC network nodes expand. Moreover, our scenario analysis confirms that the cost of the measures taken to prevent dust dispersion associated with powder-bed fusion AM has a major impact on the total cost of localized AM SCs for medical parts. The results of this study contribute to the understanding of the relevant factors in deciding whether central or localized SC configurations can be used in the AM production of medical parts. Furthermore, this study provides managerial insights for decision-makers at governments and hospitals as well as AM service providers and AM equipment manufacturers.
Collapse
Affiliation(s)
- Victor Verboeket
- Brightlands Institute for Supply Chain InnovationZuyd University of Applied Sciences–Maastricht6200MaastrichtThe Netherlands
| | - Siavash H. Khajavi
- Department of Industrial Engineering and ManagementAalto University02150EspooFinland
| | - Harold Krikke
- Faculty of Management SciencesOpen University of the Netherlands6401HeerlenThe Netherlands
| | - Mika Salmi
- Department of Mechanical EngineeringSchool of EngineeringAalto University00076EspooFinland
| | - Jan Holmström
- Department of Industrial Engineering and ManagementAalto University02150EspooFinland
| |
Collapse
|
8
|
Casanova-Batlle E, Guerra AJ, Ciurana J. Continuous Based Direct Ink Write for Tubular Cardiovascular Medical Devices. Polymers (Basel) 2020; 13:E77. [PMID: 33379164 PMCID: PMC7794716 DOI: 10.3390/polym13010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Bioresorbable cardiovascular applications are increasing in demand as fixed medical devices cause episodes of late restenosis. The autologous treatment is, so far, the gold standard for vascular grafts due to the similarities to the replaced tissue. Thus, the possibility of customizing each application to its end user is ideal for treating pathologies within a dynamic system that receives constant stimuli, such as the cardiovascular system. Direct Ink Writing (DIW) is increasingly utilized for biomedical purposes because it can create composite bioinks by combining polymers and materials from other domains to create DIW-printable materials that provide characteristics of interest, such as anticoagulation, mechanical resistance, or radiopacity. In addition, bioinks can be tailored to encounter the optimal rheological properties for the DIW purpose. This review delves into a novel emerging field of cardiovascular medical applications, where this technology is applied in the tubular 3D printing approach. Cardiovascular stents and vascular grafts manufactured with this new technology are reviewed. The advantages and limitations of blending inks with cells, composite materials, or drugs are highlighted. Furthermore, the printing parameters and the different possibilities of designing these medical applications have been explored.
Collapse
Affiliation(s)
- Enric Casanova-Batlle
- Grup de Recerca en Enginyeria Producte Procès i Producció (GREP), Universitat de Girona, 17003 Girona, Spain;
| | | | - Joaquim Ciurana
- Grup de Recerca en Enginyeria Producte Procès i Producció (GREP), Universitat de Girona, 17003 Girona, Spain;
| |
Collapse
|
9
|
Verboeket V, Krikke H. The disruptive impact of additive manufacturing on supply chains: A literature study, conceptual framework and research agenda. COMPUT IND 2019. [DOI: 10.1016/j.compind.2019.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Zhang Y, Zhao J, Yang G, Zhou Y, Gao W, Wu G, Li X, Mao C, Sheng T, Zhou M. Mechanical properties and degradation of drug eluted bioresorbable vascular scaffolds prepared by three-dimensional printing technology. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:547-560. [PMID: 30897033 DOI: 10.1080/09205063.2019.1586303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bioresorbable vascular scaffolds are expected to replace the traditional metal stent, avoiding the long-term complications of metal stents. However, it is hard for the traditional scaffold manufacturing process to meet the requirements of individualized treatment for vascular lesions, which requires different morphologies. Here, we used a new method of scaffold manufacturing, three-dimensional printing technology, to prepare bioresorbable vascular scaffolds. The fabricated scaffold was loaded with sirolimus mixed with scaffold preparation material for slow drug release. The engineered, drug- loaded, bioresorbable vascular scaffold (BVS) was analyzed and tested in vivo. The scaffolds produced by three-dimensional printing technology exhibited good mechanical properties and in vitro degradation performance. The results also suggested that these scaffolds could maintain effective radial strength after long-term degradation and sustained release of the drug. As a new scaffold preparation method, it may provide a promising idea for developing bioresorbable vascular scaffold technology.
Collapse
Affiliation(s)
- Yepeng Zhang
- a Department of Vascular Surgery , Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School , Nanjing , People's Republic of China
| | - Jie Zhao
- a Department of Vascular Surgery , Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School , Nanjing , People's Republic of China
| | - Guangmin Yang
- a Department of Vascular Surgery , Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School , Nanjing , People's Republic of China
| | - Yu Zhou
- a Department of Vascular Surgery , Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School , Nanjing , People's Republic of China
| | - Wentao Gao
- a Department of Vascular Surgery , Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School , Nanjing , People's Republic of China
| | - Guangyan Wu
- a Department of Vascular Surgery , Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School , Nanjing , People's Republic of China
| | - Xiaoqiang Li
- a Department of Vascular Surgery , Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School , Nanjing , People's Republic of China
| | - Chun Mao
- b School of Chemistry and National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials Materials Science , Nanjing Normal University , Nanjing , People's Republic of China
| | - Tao Sheng
- c Department of Vascular and Interventional Radiology , Wujin People's Hospital Affilicated to Jiangsu University , Changzhou , People's Republic of China
| | - Min Zhou
- a Department of Vascular Surgery , Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School , Nanjing , People's Republic of China
| |
Collapse
|
11
|
Abstract
The quest for an ideal biodegradable stent for both adult coronary and pediatric congenital heart disease applications continues. Over the past few years, a lot of progress has been made toward development of a dedicated pediatric biodegradable stent that can be used for congenital heart disease applications. At present, there are no biodegradable stents available for use in congenital heart disease. In this article, the authors review the different biodegradable materials and their limitations and provide an overview of the current biodegradable stents being evaluated for congenital heart disease applications.
Collapse
Affiliation(s)
- Tre R Welch
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Alan W Nugent
- Division of Cardiology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue, Box 21, Chicago, IL 60611, USA
| | - Surendranath R Veeram Reddy
- Division of Cardiology, Department of Pediatrics, University of Texas Southwestern Medical Center, Children's Health System of Texas, Childrens Medical Center, 1935 Medical District Drive, Dallas, TX 75235, USA.
| |
Collapse
|
12
|
Ameer GA, Akar B, Sun C. 3D-printed bioresorbable vascular scaffolds: an important step towards personalizing vascular medical devices? EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1318035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Guillermo A. Ameer
- Biomedical Engineering Department, McCormick School of Engineering, Evanston, IL, USA
- Department of Surgery, Feinberg School of Medicine, Chicago, IL, USA
| | - Banu Akar
- Biomedical Engineering Department, McCormick School of Engineering, Evanston, IL, USA
| | - Cheng Sun
- Mechanical Engineering Department, McCormick School of Engineering, Evanston, IL, USA
| |
Collapse
|
13
|
Ang HY, Bulluck H, Wong P, Venkatraman SS, Huang Y, Foin N. Bioresorbable stents: Current and upcoming bioresorbable technologies. Int J Cardiol 2017; 228:931-939. [DOI: 10.1016/j.ijcard.2016.11.258] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/24/2022]
|
14
|
Ware HOT, Farsheed AC, Baker E, Ameer G, Sun C. Fabrication Speed Optimization for High-resolution 3D-printing of Bioresorbable Vascular Scaffolds. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.procir.2017.04.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|