1
|
Bernini M, Hellmuth R, O'Sullivan M, Dunlop C, McKenna CG, Lucchetti A, Gries T, Ronan W, Vaughan TJ. Shape-Setting of Self-Expanding Nickel-Titanium Laser-Cut and Wire-Braided Stents to Introduce a Helical Ridge. Cardiovasc Eng Technol 2024; 15:317-332. [PMID: 38315312 PMCID: PMC11239776 DOI: 10.1007/s13239-024-00717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024]
Abstract
PURPOSE Altered hemodynamics caused by the presence of an endovascular device may undermine the success of peripheral stenting procedures. Flow-enhanced stent designs are under investigation to recover physiological blood flow patterns in the treated artery and reduce long-term complications. However, flow-enhanced designs require the development of customised manufacturing processes that consider the complex behaviour of Nickel-Titanium (Ni-Ti). While the manufacturing routes of traditional self-expanding Ni-Ti stents are well-established, the process to introduce alternative stent designs is rarely reported in the literature, with much of this information (especially related to shape-setting step) being commercially sensitive and not reaching the public domain, as yet. METHODS A reliable manufacturing method was developed and improved to induce a helical ridge onto laser-cut and wire-braided Nickel-Titanium self-expanding stents. The process consisted of fastening the stent into a custom-built fixture that provided the helical shape, which was followed by a shape-setting in air furnace and rapid quenching in cold water. The parameters employed for the shape-setting in air furnace were thoroughly explored, and their effects assessed in terms of the mechanical performance of the device, material transformation temperatures and surface finishing. RESULTS Both stents were successfully imparted with a helical ridge and the optimal heat treatment parameters combination was found. The settings of 500 °C/30 min provided mechanical properties comparable with the original design, and transformation temperatures suitable for stenting applications (Af = 23.5 °C). Microscopy analysis confirmed that the manufacturing process did not alter the surface finishing. Deliverability testing showed the helical device could be loaded onto a catheter delivery system and deployed with full recovery of the expanded helical configuration. CONCLUSION This demonstrates the feasibility of an additional heat treatment regime to allow for helical shape-setting of laser-cut and wire-braided devices that may be applied to further designs.
Collapse
Affiliation(s)
- Martina Bernini
- Biomechanics Research Centre (BioMEC), School of Engineering and Informatics, University of Galway, Galway, Ireland
- Vascular Flow Technologies, Dundee, UK
| | - Rudolf Hellmuth
- Vascular Flow Technologies, Dundee, UK
- Division of Imaging and Science Technology, School of Medicine, Dundee, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | - Ciara G McKenna
- Biomechanics Research Centre (BioMEC), School of Engineering and Informatics, University of Galway, Galway, Ireland
| | - Agnese Lucchetti
- Institut für Textiltechnik of RWTH, Aachen University, Aachen, Germany
| | - Thomas Gries
- Institut für Textiltechnik of RWTH, Aachen University, Aachen, Germany
| | - William Ronan
- Biomechanics Research Centre (BioMEC), School of Engineering and Informatics, University of Galway, Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), School of Engineering and Informatics, University of Galway, Galway, Ireland.
| |
Collapse
|
2
|
Betz T, Pfister K, Schierling W, Sachsamanis G, Radunski J, Nolte Ernsting C, Stehr A. Treatment of symptomatic popliteal artery lesions: An obituary of the GORE® TIGRIS® vascular stent. Clin Hemorheol Microcirc 2024; 87:67-75. [PMID: 38339921 DOI: 10.3233/ch-231993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
BACKGROUND The popliteal artery is highly exposed to biomechanical stress, which is the primary factor associated with stent failure. However, information on the optimal endovascular treatment for the popliteal artery is lacking. OBJECTIVE To report the efficacy of the GORE® TIGRIS® Vascular Stent for the endovascular treatment of popliteal artery lesions. METHODS Retrospective analysis of all patients with symptoms of peripheral artery occlusive disease (PAD) and popliteal artery lesions who underwent implantation of a GORE® TIGRIS® Vascular Stent between August 2012 and August 2014 at a tertiary vascular centre. RESULTS Between August 2012 and August 2014, 48 patients (32 men, aged 75±8 years) were treated with a GORE® TIGRIS® Vascular Stent. The technical success rate was 100%. At 12 months, the primary and secondary patency rates were 74% and 85%, respectively. During follow-up, no stent fracture was observed. No major amputations were performed. CONCLUSIONS Our study showed that isolated popliteal artery lesions in patients with symptomatic PAD could easily be treated with the GORE® TIGRIS® Vascular Stent, as good short-term results were achieved at 12 months. Therefore, the discontinuation of this product removed a useful tool with a simple release mechanism from the endovascular armamentarium of vascular specialists.
Collapse
Affiliation(s)
- Thomas Betz
- Department of Vascular Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Karin Pfister
- Department of Vascular Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Wilma Schierling
- Department of Vascular Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Georgios Sachsamanis
- Department of Vascular Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Jörn Radunski
- Department of Vascular Surgery, Evangelical Hospital Mülheim, Mülheim/Ruhr, Germany
| | | | - Alexander Stehr
- Department of Vascular Surgery, University Hospital Regensburg, Regensburg, Germany
- Department of Vascular Surgery, Evangelical Hospital Mülheim, Mülheim/Ruhr, Germany
| |
Collapse
|
3
|
Li F, Zhu Y, Song H, Zhang H, Chen L, Guo W. Analysis of Postoperative Remodeling Characteristics after Modular Inner Branched Stent-Graft Treatment of Aortic Arch Pathologies Using Computational Fluid Dynamics. Bioengineering (Basel) 2023; 10:bioengineering10020164. [PMID: 36829658 PMCID: PMC9952632 DOI: 10.3390/bioengineering10020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/14/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The modular inner branched stent-graft (MIBSG), a novel interventional therapy, has demonstrated good effects in the endovascular treatment of aortic arch pathologies, especially those involving the supra-aortic branches. Nevertheless, the long-term efficacy of the MIBSG and in-depth quantitative evaluation of postoperative outcomes remain to be examined. Moreover, the regularity of postoperative vascular remodeling induced by MIBSG implantation has yet to be explored. To address these questions, we constructed four models (normal, preoperative, 1 week postoperative, and 6 months postoperative) based on a single patient case to perform computational fluid dynamics simulations. The morphological and hemodynamic characteristics, including the velocity profile, flow rate distribution, and hemodynamic parameter distribution (wall shear stress and its derivative parameters), were investigated. After MIBSG implantation, the morphology of the supra-aortic branches changed significantly, and the branch point moved forward to the proximal ascending aorta. Moreover, the curvature radius of the aortic arch axis continued to change. These changes in morphology altered the characteristics of the flow field and wall shear stress distribution. As a result, the local forces exerted on the vessel wall by the blood led to vessel remodeling. This study provides insight into the vascular remodeling process after MIBSG implantation, which occurs as a result of the interplay between vascular morphological characteristics and blood flow characteristics.
Collapse
Affiliation(s)
- Fen Li
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Institute of Applied Mechanics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yating Zhu
- First Medical Center of Chinese PLA General Hospital, Department of Vascular Surgery, Beijing 100853, China
| | - Hui Song
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Institute of Applied Mechanics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hongpeng Zhang
- First Medical Center of Chinese PLA General Hospital, Department of Vascular Surgery, Beijing 100853, China
| | - Lingfeng Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Correspondence: (L.C.); (W.G.)
| | - Wei Guo
- First Medical Center of Chinese PLA General Hospital, Department of Vascular Surgery, Beijing 100853, China
- Correspondence: (L.C.); (W.G.)
| |
Collapse
|
4
|
Superficial Femoral Artery Recanalization Using Fiber Optic RealShape Technology. Medicina (B Aires) 2022; 58:medicina58070961. [PMID: 35888679 PMCID: PMC9317753 DOI: 10.3390/medicina58070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose: Report of a successful case of endovascular recanalization of an occluded superficial femoral artery (SFA) using Fiber Optic RealShape (FORS) technology. Case Report: A 79-year-old male was referred for evaluation of multiple ischemic pretibial ulcers of the right lower extremity. Computed tomography–angiography (CTA) imaging confirmed significant stenosis of the right common femoral artery (CFA) and an occlusion of the SFA from its origin to the Hunter’s canal. The patient was treated with a hybrid surgical procedure: an endarterectomy of the CFA and SFA origin was performed combined with an endovascular recanalization of the occluded SFA using FORS technology. During recanalization, the FORS guidewire slowly twisted subintimally around the occluded lumen of the SFA, maintaining the created corkscrew shape after pre-dilation with the percutaneous transluminal angioplasty (PTA) balloon and subsequent stenting. Conclusions: FORS technology can be successfully used during recanalization of an occluded SFA without the use of fluoroscopy. The corkscrew shape formed during recanalization in this case was retained during PTA balloon pre-dilation and stenting; this potentially improves hemodynamics and thereby reduces the risk of in-stent restenosis. However, expanding patient series and longer follow-up data are needed to increase the understanding of the feasibility and effectiveness of using FORS in the treatment of peripheral arterial occlusive disease.
Collapse
|
5
|
Colombo M, Corti A, Gallo D, Colombo A, Antognoli G, Bernini M, McKenna C, Berceli S, Vaughan T, Migliavacca F, Chiastra C. Superficial femoral artery stenting: Impact of stent design and overlapping on the local hemodynamics. Comput Biol Med 2022; 143:105248. [PMID: 35124437 DOI: 10.1016/j.compbiomed.2022.105248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Superficial femoral arteries (SFAs) treated with self-expanding stents are widely affected by in-stent restenosis (ISR), especially in case of long lesions and multiple overlapping devices. The altered hemodynamics provoked by the stent is considered as a promoting factor of ISR. In this context, this work aims to analyze the impact of stent design and stent overlapping on patient-specific SFA hemodynamics. METHODS Through a morphing technique, single or multiple stents were virtually implanted within two patient-specific, post-operative SFA models reconstructed from computed tomography. The stented domains were used to perform computational fluid dynamics simulations, quantifying wall shear stress (WSS) based descriptors including time-averaged WSS (TAWSS), oscillatory shear index (OSI), transverse WSS (transWSS), and WSS ratio (WSSRATIO). Four stent designs (three laser-cut - EverFlex, Zilver and S.M.A.R.T. - and one prototype braided stent), and three typical clinical scenarios accounting for different order of stent implantation and overlapping length were compared. RESULTS The main hemodynamic differences were found between the two types of stent designs (i.e. laser-cut vs. braided stents). The braided stent presented lower median transWSS and higher median WSSRATIO than the laser-cut stents (p < 0.0001). The laser-cut stents presented comparable WSS-based descriptor values, except for the Zilver, exhibiting a median TAWSS ∼30% higher than the other stents. Stent overlapping provoked an abrupt alteration of the WSS-based descriptors. The overlapping length, rather than the order of stent implantation, highly and negatively impacted the hemodynamics. CONCLUSION The proposed computational workflow compared different SFA stent designs and stent overlapping configurations, highlighting those providing the most favorable hemodynamic conditions.
Collapse
Affiliation(s)
- Monika Colombo
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Anna Corti
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Diego Gallo
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Colombo
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Giacomo Antognoli
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Martina Bernini
- Biomechanics Research Centre (BioMEC), National University of Ireland Galway, Ireland
| | - Ciara McKenna
- Biomechanics Research Centre (BioMEC), National University of Ireland Galway, Ireland
| | - Scott Berceli
- Department of Surgery, University of Florida, Gainesville, FL, USA; Malcom Randall VAMC, Gainesville, FL, USA
| | - Ted Vaughan
- Biomechanics Research Centre (BioMEC), National University of Ireland Galway, Ireland
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
| |
Collapse
|
6
|
Wang H, Sun A, Li Y, Xi Y, Fan Y, Deng X, Chen Z. A systematic review of DVT and stent restenosis after stent implantation for iliac vein compression syndrome. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
7
|
Genkel VV, Kuznetcova AS, Shaposhnik II. Biomechanical Forces and Atherosclerosis: From Mechanism to Diagnosis and Treatment. Curr Cardiol Rev 2019; 16:187-197. [PMID: 31362692 PMCID: PMC7536809 DOI: 10.2174/1573403x15666190730095153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 11/22/2022] Open
Abstract
The article provides an overview of current views on the role of biomechanical forces in the pathogenesis of atherosclerosis. The importance of biomechanical forces in maintaining vascular homeostasis is considered. We provide descriptions of mechanosensing and mechanotransduction. The roles of wall shear stress and circumferential wall stress in the initiation, progression and destabilization of atherosclerotic plaque are described. The data on the possibilities of assessing biomechanical factors in clinical practice and the clinical significance of this approach are presented. The article concludes with a discussion on current therapeutic approaches based on the modulation of biomechanical forces.
Collapse
Affiliation(s)
- Vadim V Genkel
- Department of Internal Medicine, Federal State Budgetary Educational Institution of Higher Education "South-Ural State Medical University" of the Ministry of Healthcare of the Russian Federation, Chelyabinsk, Russian Federation
| | - Alla S Kuznetcova
- Department of Hospital Therapy Federal State Budgetary Educational Institution of Higher Education "South-Ural State Medical University" of the Ministry of Healthcare of the Russian Federation, Chelyabinsk, Russian Federation
| | - Igor I Shaposhnik
- Department of Internal Medicine, Federal State Budgetary Educational Institution of Higher Education "South-Ural State Medical University" of the Ministry of Healthcare of the Russian Federation, Chelyabinsk, Russian Federation
| |
Collapse
|
8
|
Numerical and Experimental Investigation of Novel Blended Bifurcated Stent Grafts with Taper to Improve Hemodynamic Performance. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:8054850. [PMID: 30271457 PMCID: PMC6151236 DOI: 10.1155/2018/8054850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/17/2018] [Accepted: 07/29/2018] [Indexed: 11/26/2022]
Abstract
The typical helical flow within the human arterial system is widely used when designing cardiovascular devices, as this helical flow can be generated using the “crossed limbs” strategy of the bifurcated stent graft (BSG) and enhanced by the tapered structure of arteries. Here, we propose the use of a deflected blended bifurcated stent graft (BBSG) with various tapers, using conventional blended BSGs with the same degree of taper as a comparison. Hemodynamic performances, including helical strength and wall shear stress- (WSS-) based indicators, were assessed. Displacement forces that may induce stent-graft migration were assessed using numerical simulations and in vitro experiments. The results showed that as the taper increased, the displacement force, helicity strength, and time-averaged wall shear stress (TAWSS) within the iliac grafts increased, whereas the oscillating shear index (OSI) and relative residence time (RRT) gradually decreased for both types of BBSGs. With identical tapers, deflected BBSGs, compared to conventional BBSGs, exhibited a wider helical structure and lower RRT on the iliac graft and lower displacement force; however, there were no differences in hemodynamic indicators. In summary, the presence of tapering facilitated helical flow and produced better hemodynamic performance but posed a higher risk of graft migration. Conventional and deflected BBSGs with taper might be the two optimal configurations for endovascular aneurysm repair, given the helical flow. The deflected BBSG provides a better configuration, compared to the conventional BBSG, when considering the reduction of migration risk.
Collapse
|
9
|
Wang J, Jin X, Huang Y, Ran X, Luo D, Yang D, Jia D, Zhang K, Tong J, Deng X, Wang G. Endovascular stent-induced alterations in host artery mechanical environments and their roles in stent restenosis and late thrombosis. Regen Biomater 2018; 5:177-187. [PMID: 29942650 PMCID: PMC6007795 DOI: 10.1093/rb/rby006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/11/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular stent restenosis remains a major challenge in interventional treatment of cardiovascular occlusive disease. Although the changes in arterial mechanical environment due to stent implantation are the main causes of the initiation of restenosis and thrombosis, the mechanisms that cause this initiation are still not fully understood. In this article, we reviewed the studies on the issue of stent-induced alterations in arterial mechanical environment and discussed their roles in stent restenosis and late thrombosis from three aspects: (i) the interaction of the stent with host blood vessel, involve the response of vascular wall, the mechanism of mechanical signal transmission, the process of re-endothelialization and late thrombosis; (ii) the changes of hemodynamics in the lumen of the vascular segment and (iii) the changes of mechanical microenvironment within the vascular segment wall due to stent implantation. This review has summarized and analyzed current work in order to better solve the two main problems after stent implantation, namely in stent restenosis and late thrombosis, meanwhile propose the deficiencies of current work for future reference.
Collapse
Affiliation(s)
- Jinxuan Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Xuepu Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Yuhua Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Xiaolin Ran
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Desha Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Dongchuan Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Dongyu Jia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Kang Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| | - Jianhua Tong
- Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants; Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Razavi MK, Donohoe D, D’Agostino RB, Jaff MR, Adams G. Adventitial Drug Delivery of Dexamethasone to Improve Primary Patency in the Treatment of Superficial Femoral and Popliteal Artery Disease. JACC Cardiovasc Interv 2018; 11:921-931. [DOI: 10.1016/j.jcin.2017.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022]
|
11
|
Real-Time Electrical Bioimpedance Characterization of Neointimal Tissue for Stent Applications. SENSORS 2017; 17:s17081737. [PMID: 28788093 PMCID: PMC5579752 DOI: 10.3390/s17081737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/17/2017] [Accepted: 07/25/2017] [Indexed: 11/29/2022]
Abstract
To follow up the restenosis in arteries stented during an angioplasty is an important current clinical problem. A new approach to monitor the growth of neointimal tissue inside the stent is proposed on the basis of electrical impedance spectroscopy (EIS) sensors and the oscillation-based test (OBT) circuit technique. A mathematical model was developed to analytically describe the histological composition of the neointima, employing its conductivity and permittivity data. The bioimpedance model was validated against a finite element analysis (FEA) using COMSOL Multiphysics software. A satisfactory correlation between the analytical model and FEA simulation was achieved in most cases, detecting some deviations introduced by the thin “double layer” that separates the neointima and the blood. It is hereby shown how to apply conformal transformations to obtain bioimpedance electrical models for stack-layered tissues over coplanar electrodes. Particularly, this can be applied to characterize the neointima in real-time. This technique is either suitable as a main mechanism for restenosis follow-up or it can be combined with proposed intelligent stents for blood pressure measurements to auto-calibrate the sensibility loss caused by the adherence of the tissue on the micro-electro-mechanical sensors (MEMSs).
Collapse
|
12
|
Design and Comparison of Large Vessel Stents: Balloon Expandable and Self-Expanding Peripheral Arterial Stents. Interv Cardiol Clin 2017; 5:365-380. [PMID: 28582034 DOI: 10.1016/j.iccl.2016.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endovascular stenting has evolved over the last 50 years since its inception into the framework of management of vascular atherosclerotic disease. Stent design has evolved as lesion complexity has increased. Nevertheless, certain first principles regarding stent design have been recapitulated time and again with every iteration of endovascular stents. This article reviews principles of endovascular stent design and compares and contrasts key aspects of balloon expandable and self-expanding stents.
Collapse
|
13
|
Bioinspired helical graft with taper to enhance helical flow. J Biomech 2016; 49:3643-3650. [DOI: 10.1016/j.jbiomech.2016.09.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/09/2016] [Accepted: 09/19/2016] [Indexed: 11/23/2022]
|