1
|
Liu Z, Liu L, Liu J, Wu J, Tang R, Wolfram J. Electrospun meshes for abdominal wall hernia repair: Potential and challenges. Acta Biomater 2025; 195:52-72. [PMID: 39826853 DOI: 10.1016/j.actbio.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Surgical meshes are widely used in abdominal wall hernia repairs. However, consensus on mesh treatment remains elusive due to varying repair outcomes, especially with the introduction of new meshes, posing a substantial challenge for surgeons. Addressing these issues requires communicating the features of emerging candidates with a focus on clinical considerations. Electrospinning is a versatile technique for producing meshes with biomechanical architectures that closely mimic the extracellular matrix and enable incorporation of bioactive and therapeutic agents into the interconnective porous network, providing a favorable milieu for tissue integration and remodeling. Although this promising technique has drawn considerable interest in mesh fabrication and functionalization, currently developed electrospun meshes have limitations in meeting clinical requirements for hernia repair. This review summarizes the advantages and limitations of meshes prepared through electrospinning based on biomechanical, biocompatible, and bioactive properties/functions, offering interdisciplinary insights into challenges and future directions toward clinical mesh-aided hernia repair. STATEMENT OF SIGNIFICANCE: Consensus for hernia treatments using surgical meshes remains elusive based on varying repair outcomes, presenting significant challenges for researchers and surgeons. Differences in understanding mesh between specialists, particularly regarding material characteristics and clinical requirements, contribute to this issue. Electrospinning has been increasingly applied in mesh preparation through various approaches and strategies, aiming to improve abdominal wall hernia by restoring mechanical, morphological and functional integrity. However, there is no comprehensive overview of these emerging meshes regarding their features, functions, and clinical potentials, emphasizing the necessity of interdisciplinary discussions on this topic that build upon recent developments in electrospun mesh and provide insights from clinically practical prospectives.
Collapse
Affiliation(s)
- Zhengni Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia; Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China.
| | - Lei Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
2
|
Tomaszewska A, Reznikov D. Combined numerical and experimental approach to determine numerical model of abdominal scaffold. Comput Methods Biomech Biomed Engin 2021; 25:1235-1248. [PMID: 34841994 DOI: 10.1080/10255842.2021.2005788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A proper junction of the prosthesis and the abdominal wall is important in successful hernia repair. The number of tacks should be balanced to assure appropriate mesh fixation and not to induce post-operative pain. Numerical simulations help to find this balance. The study is aimed at creating a proper numerical model of a knitted surgical mesh subjected to boundary conditions and load occurring in the abdominal cavity. Continuous, anisotropic constitutive relation is considered to reflect the mesh behaviour. Different sets of material law parameters are determined on the basis of different bi-axial tests setups. Force- and displacement-controlled tests with different ratios are considered. Consequently, some numerical model variants are obtained featuring various reaction distributions in the scaffold fixation points. The proper variant is selected based on comparison of the position of maximal reaction force in the numerical model and in the reference physical model of operated hernia. Force-driven tests have shown anisotropic mesh behaviour, while equibiaxial displacement-driven test has demonstrated reduced anisotropic response. Within seven scenarios of constitutive parameters identification (based on single or combined experimental data), the equibiaxial force-controlled test appeared to produce the most relevant model to follow the prosthesis behaviour under pressure. The position of maximal reaction force in such model is similar to obtained in the physical hernia model. The equibiaxial force-driven test provides most suitable data for Gasser-Ogden-Holzapfel constitutive model identification of a considered surgical mesh to be used to model the mesh under pressure.
Collapse
Affiliation(s)
- Agnieszka Tomaszewska
- Department of Structural Mechanics, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Daniil Reznikov
- Department of Structural Mechanics, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
3
|
He W, Cao G, Gan X, Fan Y, Pei B, Li X. Evaluation methods for mechanical biocompatibility of hernia repair meshes: respective characteristics, application scope and future perspectives. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2021; 13:1826-1840. [DOI: 10.1016/j.jmrt.2021.05.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
4
|
Utrabo CAL, Czeczko NG, Busato CR, Montemór-Netto MR, Lipinski L, Malafaia O. BETWEEN PROLENE®, ULTRAPRO® AND BARD SOFT® MESHES WHICH PRESENTS THE BEST PERFORMANCE IN THE REPAIR OF THE ABDOMINAL WALL? ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2021; 34:e1577. [PMID: 34133524 PMCID: PMC8195468 DOI: 10.1590/0102-672020210001e1577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the definition of the mesh to be used to correct hernias, porosity, amount of absorbable material and polypropylene should be considered in the different stages of healing process. AIM To evaluate the inflammatory reaction in the use of macro and microporous meshes of high and low weight in the repair of defects in the abdominal wall of rats. METHODS Ninety Wistar rats (Rattus norvegicus albinus) were used. The animals were submitted to similar surgical procedures, with lesion of the ventral abdominal wall, maintaining the integrity of the parietal peritoneum and correction using the studied meshes (Prolene®, Ultrapro® and Bard Soft®). Euthanasia was performed at 30, 60 and 120 days after surgery. The abdominal wall segments were submitted to histological analysis using H&E, Masson's trichrome, immunohistochemistry, picrosirius red and tensiometric evaluation. RESULTS On the 120th day, the tensiometric analysis was superior with Ultrapro® macroporous mesh. The inflammatory process score showed a significant prevalence of subacute process at the beginning and at the end of the study. Microporous meshes showed block encapsulation and in macroporous predominance of filamentous encapsulation. CONCLUSION The Ultrapro® mesh showed better performance than the others in healing process of the abdominal wall.
Collapse
Affiliation(s)
| | - Nicolau Gregori Czeczko
- Post-Graduate Program in Principles of Surgery, Evangelical Mackenzie Faculty of Paraná, Curitiba, PR, Brazil
| | | | | | - Leandro Lipinski
- Post-Graduate Program in Principles of Surgery, Evangelical Mackenzie Faculty of Paraná, Curitiba, PR, Brazil
| | - Osvaldo Malafaia
- Post-Graduate Program in Principles of Surgery, Evangelical Mackenzie Faculty of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
5
|
Kallinowski F, Ludwig Y, Löffler T, Vollmer M, Lösel PD, Voß S, Görich J, Heuveline V, Nessel R. Biomechanics applied to incisional hernia repair - Considering the critical and the gained resistance towards impacts related to pressure. Clin Biomech (Bristol, Avon) 2021; 82:105253. [PMID: 33401197 DOI: 10.1016/j.clinbiomech.2020.105253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Incisional hernia repair is burdened with recurrence, pain and disability. The repair is usually carried out with a textile mesh fixed between the layers of the abdominal wall. METHODS We developed a bench test with low cyclic loading. The test uses dynamic intermittent strain resembling coughs. We applied preoperative computed tomography of the abdomen at rest and during Valsalva's maneuver to the individual patient to analyze tissue elasticity. FINDINGS The mesh, its placements and overlap, the type and distribution of fixation elements, the elasticity of the tissue of the individual and the closure of the abdominal defect-all aspects influence the reconstruction necessary. Each influence can be attributed to a relative numerical quantity which can be summed up into a characterizing value. The elasticity of the tissues within the abdominal wall of the individual patient can be assessed with low-dose computed tomography of the abdomen with Valsalva's maneuver. We established a procedure to integrate the results into a surgical concept. We demonstrate potential computer algorithms using non-rigid b-spline registration and artificial intelligence to further improve the evaluation process. INTERPRETATION The bench test yields relative values for the characterization of hernia, mesh and fixation. It can be applied to patient care using established procedures. The clinical application in the first ninety-six patients shows no recurrences and reduced pain levels after one year. The concept has been spread to other surgical groups with the same results in another fifty patients. Future efforts will make the abdominal wall reconstruction more predictable.
Collapse
Affiliation(s)
- F Kallinowski
- General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; General and Visceral Surgery, GRN Hospital Eberbach, Scheuerbergstrasse 3, 69412 Eberbach, Germany.
| | - Y Ludwig
- General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - T Löffler
- General and Visceral Surgery, GRN Hospital Eberbach, Scheuerbergstrasse 3, 69412 Eberbach, Germany
| | - M Vollmer
- Hamburg University of Technology, Biomechanics, Denickestrasse 15, 21073 Hamburg, Germany
| | - P D Lösel
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany; Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - S Voß
- Department of Fluid Dynamics and Technical Flows, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany; Research Campus STIMULATE, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - J Görich
- Radiological Center, Kellereistrasse 32-34, 69412 Eberbach, Germany
| | - V Heuveline
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany; Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Heidelberg University Computing Centre (URZ), Im Neuenheimer Feld 293, 69120 Heidelberg, Germany
| | - R Nessel
- General, Visceral and Pediatric Surgery, Klinikum Am Gesundbrunnen, Am Gesundbrunnen 20-26, s Heilbronn, Germany
| |
Collapse
|
6
|
Pierrat B, Nováček V, Avril S, Turquier F. Mechanical characterization and modeling of knitted textile implants with permanent set. J Mech Behav Biomed Mater 2020; 114:104210. [PMID: 33338783 DOI: 10.1016/j.jmbbm.2020.104210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
Textile-based implant (mesh) treatment is considered as a standard of care for abdominal wall hernia repair. Computational models and simulations have appeared as one of the most promising approach to investigate biomechanics related to hernia repair and to improve clinical outcomes. This paper presents a novel anisotropic hypo-elastoplastic constitutive model specifically established for surgical knitted textile implants. The major mechanical characteristics of these materials such as anisotropy and permanent set have been reproduced. For the first time ever, we report an extensive mechanical characterization of one of these meshes, including cyclic uniaxial tension, planar equibiaxial tension and plunger type testing. These tests highlight the complex mechanical behavior with strong nonlinearity, anisotropy and permanent set. The novel anisotropic hypo-elasto-plastic constitutive model has been identified based on the tensile experiments and validated successfully against the data of the plunger experiment. In the future, implementation of this characterization and modeling approach to additional surgical knitted textiles should be the direction to follow in order to develop clinical decision support software for abdominal wall repair.
Collapse
Affiliation(s)
- Baptiste Pierrat
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France.
| | - Vít Nováček
- New Technologies - Research Centre, University of West Bohemia, Univerzitní 8, 301 00, Plzeň, Czech Republic
| | - Stéphane Avril
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - Frédéric Turquier
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| |
Collapse
|
7
|
Abstract
INTRODUCTION Today the use of textile meshes has become a standard for the treatment of abdominal wall hernias and for the reinforcement of any tissue repair as the strength of the implant decreases the recurrence rates. With increasing use, side effects of the textile implants became apparent, as well. AREAS COVERED Based on publications in Medline over the past decade, general and specific benefits, as well as risks, are discussed with the challenge to define individual risk-benefit ratios. For meshes, certain high-risk or low-risk conditions can be defined. In an attempt to eliminate mesh-related risks, quality control for medical devices has meanwhile been revised. In both the USA and the EU post-market surveillance studies are required to keep medical devices approved. EXPERT COMMENTARY The impact of material on the complication rate will vary depending on the patient's co-morbidity or the risks of the procedure. Even the best material can end up with disappointing results in case of poor healing or poor surgery. On the other hand, when using high-risk devices, most of the complications after excellent surgery with excellent indication can be supposed to be mesh-related. Thus, the use of low-risk devices is recommended even though its advantage may not be demonstrable in clinical studies.
Collapse
Affiliation(s)
- Uwe Klinge
- a Department of General , Visceral and Transplant Surgery at the University Hospital of the RWTH Aachen , Aachen , Germany
| | - Bernd Klosterhalfen
- b Department of Pathology , Institute for Pathology at the Düren Hospital , Düren , Germany
| |
Collapse
|
8
|
Simón-Allué R, Ortillés A, Calvo B. Mechanical behavior of surgical meshes for abdominal wall repair: In vivo versus biaxial characterization. J Mech Behav Biomed Mater 2018; 82:102-111. [PMID: 29579555 DOI: 10.1016/j.jmbbm.2018.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 10/17/2022]
Abstract
Despite the widespread use of synthetic meshes in the surgical treatment of the hernia pathology, the election criteria of a suitable mesh for specific patient continues to be uncertain. Thus, in this work, we propose a methodology to determine in advance potential disadvantages on the use of certain meshes based on the patient-specific abdominal geometry and the mechanical features of the certain meshes. To that purpose, we have first characterized the mechanical behavior of four synthetic meshes through biaxial tests. Secondly, two of these meshes were implanted in several New Zealand rabbits with a total defect previously created on the center of the abdominal wall. After the surgical procedure, specimen were subjected to in vivo pneumoperitoneum tests to determine the immediate post-surgical response of those meshes after implanted in a healthy specimen. Experimental performance was recorded by a stereo rig with the aim of obtaining quantitative information about the pressure-displacement relation of the abdominal wall. Finally, following the procedure presented in prior works (Simón-Allué et al., 2015, 2017), a finite element model was reconstructed from the experimental measurements and tests were computationally reproduced for the healthy and herniated cases. Simulations were compared and validated with the in vivo behavior and results were given along the abdominal wall in terms of displacements, stresses and strain. Mechanical characterization of the meshes revealed SurgiproTM as the most rigid implant and Neomesh SuperSoft® as the softer, while other two meshes (Neomesh Soft®, Neopore®) remained in between. These two meshes were employed in the experimental study and resulted in similar effect in the abdominal wall cavity and both were close to the healthy case. Simulations confirmed this result while showed potential objections in the case of the other two meshes, due to high values in stresses or elongation that may led to discomfort in real tissue. The use of this methodology on human surgery may provide the surgeons with reliable and useful information to avoid certain meshes on specific-patient treatment.
Collapse
Affiliation(s)
- R Simón-Allué
- AMB, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Mechanical Department, c/ María de Luna s/n, 50018 Zaragoza, Spain.
| | - A Ortillés
- AMB, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Mechanical Department, c/ María de Luna s/n, 50018 Zaragoza, Spain
| | - B Calvo
- AMB, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Mechanical Department, c/ María de Luna s/n, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
9
|
Wang ZL, Wu SZ, Li ZF, Guo JH, Zhang Y, Pi JK, Hu JG, Yang XJ, Huang FG, Xie HQ. Comparison of small intestinal submucosa and polypropylene mesh for abdominal wall defect repair. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:663-682. [PMID: 29375018 DOI: 10.1080/09205063.2018.1433419] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhu-Le Wang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shi-Zhou Wu
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Zhi-Feng Li
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jin-Hai Guo
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
- Department of Orthopedics, Jin Tang Hospital, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jin-Kui Pi
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jun-Gen Hu
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi-Jing Yang
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Fu-Guo Huang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
10
|
Deeken CR, Lake SP. Mechanical properties of the abdominal wall and biomaterials utilized for hernia repair. J Mech Behav Biomed Mater 2017; 74:411-427. [DOI: 10.1016/j.jmbbm.2017.05.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 12/29/2022]
|
11
|
Minardi S, Taraballi F, Wang X, Cabrera FJ, Van Eps JL, Robbins AB, Sandri M, Moreno MR, Weiner BK, Tasciotti E. Biomimetic collagen/elastin meshes for ventral hernia repair in a rat model. Acta Biomater 2017; 50:165-177. [PMID: 27872012 DOI: 10.1016/j.actbio.2016.11.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/05/2016] [Accepted: 11/12/2016] [Indexed: 02/07/2023]
Abstract
Ventral hernia repair remains a major clinical need. Herein, we formulated a type I collagen/elastin crosslinked blend (CollE) for the fabrication of biomimetic meshes for ventral hernia repair. To evaluate the effect of architecture on the performance of the implants, CollE was formulated both as flat sheets (CollE Sheets) and porous scaffolds (CollE Scaffolds). The morphology, hydrophylicity and in vitro degradation were assessed by SEM, water contact angle and differential scanning calorimetry, respectively. The stiffness of the meshes was determined using a constant stretch rate uniaxial tensile test, and compared to that of native tissue. CollE Sheets and Scaffolds were tested in vitro with human bone marrow-derived mesenchymal stem cells (h-BM-MSC), and finally implanted in a rat ventral hernia model. Neovascularization and tissue regeneration within the implants was evaluated at 6weeks, by histology, immunofluorescence, and q-PCR. It was found that CollE Sheets and Scaffolds were not only biomechanically sturdy enough to provide immediate repair of the hernia defect, but also promoted tissue restoration in only 6weeks. In fact, the presence of elastin enhanced the neovascularization in both sheets and scaffolds. Overall, CollE Scaffolds displayed mechanical properties more closely resembling those of native tissue, and induced higher gene expression of the entire marker genes tested, associated with de novo matrix deposition, angiogenesis, adipogenesis and skeletal muscles, compared to CollE Sheets. Altogether, this data suggests that the improved mechanical properties and bioactivity of CollE Sheets and Scaffolds make them valuable candidates for applications of ventral hernia repair. STATEMENT OF SIGNIFICANCE Due to the elevated annual number of ventral hernia repair in the US, the lack of successful grafts, the design of innovative biomimetic meshes has become a prime focus in tissue engineering, to promote the repair of the abdominal wall, avoid recurrence. Our meshes (CollE Sheets and Scaffolds) not only showed promising mechanical performance, but also allowed for an efficient neovascularization, resulting in new adipose and muscle tissue formation within the implant, in only 6weeks. In addition, our meshes allowed for the use of the same surgical procedure utilized in clinical practice, with the commercially available grafts. This study represents a significant step in the design of bioactive acellular off-the-shelf biomimetic meshes for ventral hernia repair.
Collapse
Affiliation(s)
- Silvia Minardi
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX 77030, USA; National Research Council of Italy - Institute of Science and Technology for Ceramics (ISTEC-CNR), Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Francesca Taraballi
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX 77030, USA
| | - Xin Wang
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX 77030, USA
| | - Fernando J Cabrera
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX 77030, USA
| | - Jeffrey L Van Eps
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX 77030, USA
| | - Andrew B Robbins
- Department of Biomedical Engineering, Texas A&M University (TAMU), 401 Joe Routt Blvd, College Station, TX 77843, USA
| | - Monica Sandri
- National Research Council of Italy - Institute of Science and Technology for Ceramics (ISTEC-CNR), Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Michael R Moreno
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX 77030, USA; Department of Biomedical Engineering, Texas A&M University (TAMU), 401 Joe Routt Blvd, College Station, TX 77843, USA; Department of Mechanical Engineering, Texas A&M University (TAMU), 3123 TAMU, College Station, TX 77843, USA; Department of Orthopedics, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX 77030, USA
| | - Bradley K Weiner
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX 77030, USA; Department of Orthopedics, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX 77030, USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), 6670 Bertner Ave., Houston, TX 77030, USA; Department of Orthopedics, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|