1
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Kawecki F, Gluais M, Claverol S, Dusserre N, McAllister T, L'Heureux N. Inter-donor variability of extracellular matrix production in long-term cultures of human fibroblasts. Biomater Sci 2022; 10:3935-3950. [PMID: 35700514 PMCID: PMC9275472 DOI: 10.1039/d1bm01933c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several tissue engineering approaches are based on the ability of mesenchymal cells to endogenously synthesize an extracellular matrix (ECM) in vitro, which can be seen as a form of biomaterial. Accordingly, the inter-donor variability of cell-assembled extracellular matrix (CAM) production is a key parameter to understand in order to progress towards clinical applications, especially for autologous strategies. In this study, CAMs were produced, under good manufacturing process conditions, from skin fibroblasts of 21 patients as part of a clinical trial to evaluate a tissue-engineered vascular graft. The inter-donor variability of CAM strength, thickness, hydroxyproline, and glycosaminoglycan was substantial (coefficient of variability of 33%, 19%, 24%, and 19%, respectively), but a significant correlation was observed between all four properties (Pearson r: 0.43 to 0.70; p-value ≤ 0.05). A CAM matrisome analysis, performed by mass spectrometry, revealed the presence of 70 ECM-related proteins. Our study shows that the relative abundance of 16 proteins (15 non-collagenous) correlated with CAM thickness. These proteins also correlated with CAM hydroxyproline content, as well as 21 other proteins that included fibrillar collagens and non-collagenous proteins. However, data demonstrated that only the relative abundance of type I collagen subunit alpha-1 was correlated to CAM strength. This study is the most extensive evaluation of CAM inter-donor variability to date and will help tissue engineers working with this type of biomaterial to design strategies that take into account this variability, especially for autologous tissue manufacturing. Several tissue engineering approaches are based on the ability of mesenchymal cells to endogenously synthesize an extracellular matrix (ECM) in vitro, which can be seen as a form of biomaterial.![]()
Collapse
Affiliation(s)
- Fabien Kawecki
- Univ. Bordeaux, Inserm, BioTis, UMR1026, F-33000 Bordeaux, France.
| | - Maude Gluais
- Univ. Bordeaux, Inserm, BioTis, UMR1026, F-33000 Bordeaux, France.
| | - Stéphane Claverol
- Centre de Génomique Fonctionnelle, Plateforme Protéome, University of Bordeaux, F-33000, Bordeaux, France
| | | | | | | |
Collapse
|
3
|
Roy V, Magne B, Vaillancourt-Audet M, Blais M, Chabaud S, Grammond E, Piquet L, Fradette J, Laverdière I, Moulin VJ, Landreville S, Germain L, Auger FA, Gros-Louis F, Bolduc S. Human Organ-Specific 3D Cancer Models Produced by the Stromal Self-Assembly Method of Tissue Engineering for the Study of Solid Tumors. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6051210. [PMID: 32352002 PMCID: PMC7178531 DOI: 10.1155/2020/6051210] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/07/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Cancer research has considerably progressed with the improvement of in vitro study models, helping to understand the key role of the tumor microenvironment in cancer development and progression. Over the last few years, complex 3D human cell culture systems have gained much popularity over in vivo models, as they accurately mimic the tumor microenvironment and allow high-throughput drug screening. Of particular interest, in vitrohuman 3D tissue constructs, produced by the self-assembly method of tissue engineering, have been successfully used to model the tumor microenvironment and now represent a very promising approach to further develop diverse cancer models. In this review, we describe the importance of the tumor microenvironment and present the existing in vitro cancer models generated through the self-assembly method of tissue engineering. Lastly, we highlight the relevance of this approach to mimic various and complex tumors, including basal cell carcinoma, cutaneous neurofibroma, skin melanoma, bladder cancer, and uveal melanoma.
Collapse
Affiliation(s)
- Vincent Roy
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Brice Magne
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Maude Vaillancourt-Audet
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Mathieu Blais
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Stéphane Chabaud
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Emil Grammond
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Léo Piquet
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Julie Fradette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Isabelle Laverdière
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval and CHU de Québec-Université Laval Research Center, Oncology Division, Québec, QC, Canada
| | - Véronique J. Moulin
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Solange Landreville
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Lucie Germain
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François A. Auger
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François Gros-Louis
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Stéphane Bolduc
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|