1
|
Paakkari P, Inkinen SI, Jäntti J, Tuppurainen J, Fugazzola MC, Joenathan A, Ylisiurua S, Nieminen MT, Kröger H, Mikkonen S, van Weeren R, Snyder BD, Töyräs J, Honkanen MKM, Matikka H, Grinstaff MW, Honkanen JTJ, Mäkelä JTA. Dual-Contrast Agent with Nanoparticle and Molecular Components in Photon-Counting Computed Tomography: Assessing Articular Cartilage Health. Ann Biomed Eng 2025; 53:1423-1438. [PMID: 40155520 PMCID: PMC12075350 DOI: 10.1007/s10439-025-03715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/14/2025] [Indexed: 04/01/2025]
Abstract
PURPOSE Photon-counting detectors (PCDs) are cutting-edge technology that enable spectral computed tomography (CT) imaging with a single scan. Spectral imaging is particularly effective in contrast-enhanced CT (CECT) imaging, especially when multiple contrast agents are utilized, as materials are distinguishable based on their unique X-ray absorption. One application of CECT is joint imaging, where it assesses the structure and composition of articular cartilage soft tissue. This evaluates articular cartilage and reveals compositional changes associated with early-stage osteoarthritis (OA) using a photon-counting detector CT (PCD-CT) technique combined with a dual-contrast agent method. METHODS A dual-contrast agent combination was used, consisting of proteoglycan-binding cationic tantalum oxide nanoparticles, developed in our lab, and a commercial non-ionic iodinated iodixanol agent. Ex vivo equine stifle joint cartilage samples (N = 30) were immersed in the contrast agent bath for 96 hours and imaged at multiple timepoints for analysis of proteoglycan, collagen, and water contents as well as collagen orientation, histological scoring, and biomechanical parameters. RESULTS By analyzing contrast agent concentrations, the technique provided a simultaneous assessment of the solid constituents and function of cartilage. Contrast agent diffusion depended on contrast agent composition and was significantly different between healthy and early-stage OA groups within 12 hours. CONCLUSION The present study shows the promising utility of the dual-contrast PCD-CT technique for articular cartilage assessment and early-stage OA detection.
Collapse
Affiliation(s)
- Petri Paakkari
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland.
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - Satu I Inkinen
- Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jiri Jäntti
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Juuso Tuppurainen
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Maria C Fugazzola
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anisha Joenathan
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University, Boston, MA, USA
| | - Sampo Ylisiurua
- Oulu University Hospital, Oulu, Finland
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Heikki Kröger
- Department of Orthopaedics and Traumatology, Kuopio University Hospital, Kuopio, Finland
- Musculoskeletal Research Unit, University of Eastern Finland, Kuopio, Finland
| | - Santtu Mikkonen
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Juha Töyräs
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Hanna Matikka
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry and Medicine, Boston University, Boston, MA, USA
| | - Juuso T J Honkanen
- Radiotherapy Department, Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Janne T A Mäkelä
- Department of Technical Physics, University of Eastern Finland, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
2
|
Carrino JA, Ibad H, Lin Y, Ghotbi E, Klein J, Demehri S, Del Grande F, Bogner E, Boesen MP, Siewerdsen JH. CT in musculoskeletal imaging: still helpful and for what? Skeletal Radiol 2024; 53:1711-1725. [PMID: 38969781 DOI: 10.1007/s00256-024-04737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024]
Abstract
Computed tomography (CT) is a common modality employed for musculoskeletal imaging. Conventional CT techniques are useful for the assessment of trauma in detection, characterization and surgical planning of complex fractures. CT arthrography can depict internal derangement lesions and impact medical decision making of orthopedic providers. In oncology, CT can have a role in the characterization of bone tumors and may elucidate soft tissue mineralization patterns. Several advances in CT technology have led to a variety of acquisition techniques with distinct clinical applications. These include four-dimensional CT, which allows examination of joints during motion; cone-beam CT, which allows examination during physiological weight-bearing conditions; dual-energy CT, which allows material decomposition useful in musculoskeletal deposition disorders (e.g., gout) and bone marrow edema detection; and photon-counting CT, which provides increased spatial resolution, decreased radiation, and material decomposition compared to standard multi-detector CT systems due to its ability to directly translate X-ray photon energies into electrical signals. Advanced acquisition techniques provide higher spatial resolution scans capable of enhanced bony microarchitecture and bone mineral density assessment. Together, these CT acquisition techniques will continue to play a substantial role in the practices of orthopedics, rheumatology, metabolic bone, oncology, and interventional radiology.
Collapse
Affiliation(s)
- John A Carrino
- Weill Cornell Medicine, New York, NY, USA.
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA.
| | - Hamza Ibad
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Yenpo Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Elena Ghotbi
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Joshua Klein
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Shadpour Demehri
- Musculoskeletal Radiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline Street, JHOC 5165, Baltimore, MD, 21287, USA
| | - Filippo Del Grande
- Clinic of Radiology, Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, 6900, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana (USI), Via G. Buffi 13, 6904, Lugano, Switzerland
| | - Eric Bogner
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Mikael P Boesen
- Department of Radiology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Nielsine Nielsens Vej 5, Entrance 7A, 3Rd Floor, 2400, Copenhagen, NV, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeffrey H Siewerdsen
- Department of Imaging Physics, Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Schadow JE, Maxey D, Smith TO, Finnilä MAJ, Manske SL, Segal NA, Wong AKO, Davey RA, Turmezei T, Stok KS. Systematic review of computed tomography parameters used for the assessment of subchondral bone in osteoarthritis. Bone 2024; 178:116948. [PMID: 37926204 DOI: 10.1016/j.bone.2023.116948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To systematically review the published parameters for the assessment of subchondral bone in human osteoarthritis (OA) using computed tomography (CT) and gain an overview of current practices and standards. DESIGN A literature search of Medline, Embase and Cochrane Library databases was performed with search strategies tailored to each database (search from 2010 to January 2023). The search results were screened independently by two reviewers against pre-determined inclusion and exclusion criteria. Studies were deemed eligible if conducted in vivo/ex vivo in human adults (>18 years) using any type of CT to assess subchondral bone in OA. Extracted data from eligible studies were compiled in a qualitative summary and formal narrative synthesis. RESULTS This analysis included 202 studies. Four groups of CT modalities were identified to have been used for subchondral bone assessment in OA across nine anatomical locations. Subchondral bone parameters measuring similar features of OA were combined in six categories: (i) microstructure, (ii) bone adaptation, (iii) gross morphology (iv) mineralisation, (v) joint space, and (vi) mechanical properties. CONCLUSIONS Clinically meaningful parameter categories were identified as well as categories with the potential to become relevant in the clinical field. Furthermore, we stress the importance of quantification of parameters to improve their sensitivity and reliability for the evaluation of OA disease progression and the need for standardised measurement methods to improve their clinical value.
Collapse
Affiliation(s)
- Jemima E Schadow
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia.
| | - David Maxey
- Department of Radiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom.
| | - Toby O Smith
- Warwick Medical School, University of Warwick, United Kingdom.
| | - Mikko A J Finnilä
- Research Unit of Health Science and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Sarah L Manske
- Department of Radiology, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Neil A Segal
- Department of Rehabilitation Medicine, The University of Kansas Medical Center, Kansas City, United States.
| | - Andy Kin On Wong
- Joint Department of Medical Imaging, University Health Network, Toronto, Canada; Schroeder's Arthritis Institute, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.
| | - Rachel A Davey
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, Australia.
| | - Tom Turmezei
- Department of Radiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom; Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | - Kathryn S Stok
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
4
|
Kasaeian A, Roemer FW, Ghotbi E, Ibad HA, He J, Wan M, Zbijewski WB, Guermazi A, Demehri S. Subchondral bone in knee osteoarthritis: bystander or treatment target? Skeletal Radiol 2023; 52:2069-2083. [PMID: 37646795 DOI: 10.1007/s00256-023-04422-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
The subchondral bone is an important structural component of the knee joint relevant for osteoarthritis (OA) incidence and progression once disease is established. Experimental studies have demonstrated that subchondral bone changes are not simply the result of altered biomechanics, i.e., pathologic loading. In fact, subchondral bone alterations have an impact on joint homeostasis leading to articular cartilage loss already early in the disease process. This narrative review aims to summarize the available and emerging imaging techniques used to evaluate knee OA-related subchondral bone changes and their potential role in clinical trials of disease-modifying OA drugs (DMOADs). Radiographic fractal signature analysis has been used to quantify OA-associated changes in subchondral texture and integrity. Cross-sectional modalities such as cone-beam computed tomography (CT), contrast-enhanced cone beam CT, and micro-CT can also provide high-resolution imaging of the subchondral trabecular morphometry. Magnetic resonance imaging (MRI) has been the most commonly used advanced imaging modality to evaluate OA-related subchondral bone changes such as bone marrow lesions and altered trabecular bone texture. Dual-energy X-ray absorptiometry can provide insight into OA-related changes in periarticular subchondral bone mineral density. Positron emission tomography, using physiological biomarkers of subchondral bone regeneration, has provided additional insight into OA pathogenesis. Finally, artificial intelligence algorithms have been developed to automate some of the above subchondral bone measurements. This paper will particularly focus on semiquantitative methods for assessing bone marrow lesions and their utility in identifying subjects at risk of symptomatic and structural OA progression, and evaluating treatment responses in DMOAD clinical trials.
Collapse
Affiliation(s)
- Arta Kasaeian
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frank W Roemer
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA
- Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Elena Ghotbi
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hamza Ahmed Ibad
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jianwei He
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mei Wan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wojciech B Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ali Guermazi
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA
| | - Shadpour Demehri
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Demehri S, Baffour FI, Klein JG, Ghotbi E, Ibad HA, Moradi K, Taguchi K, Fritz J, Carrino JA, Guermazi A, Fishman EK, Zbijewski WB. Musculoskeletal CT Imaging: State-of-the-Art Advancements and Future Directions. Radiology 2023; 308:e230344. [PMID: 37606571 PMCID: PMC10477515 DOI: 10.1148/radiol.230344] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 08/23/2023]
Abstract
CT is one of the most widely used modalities for musculoskeletal imaging. Recent advancements in the field include the introduction of four-dimensional CT, which captures a CT image during motion; cone-beam CT, which uses flat-panel detectors to capture the lower extremities in weight-bearing mode; and dual-energy CT, which operates at two different x-ray potentials to improve the contrast resolution to facilitate the assessment of tissue material compositions such as tophaceous gout deposits and bone marrow edema. Most recently, photon-counting CT (PCCT) has been introduced. PCCT is a technique that uses photon-counting detectors to produce an image with higher spatial and contrast resolution than conventional multidetector CT systems. In addition, postprocessing techniques such as three-dimensional printing and cinematic rendering have used CT data to improve the generation of both physical and digital anatomic models. Last, advancements in the application of artificial intelligence to CT imaging have enabled the automatic evaluation of musculoskeletal pathologies. In this review, the authors discuss the current state of the above CT technologies, their respective advantages and disadvantages, and their projected future directions for various musculoskeletal applications.
Collapse
Affiliation(s)
- Shadpour Demehri
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Francis I. Baffour
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Joshua G. Klein
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Elena Ghotbi
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Hamza Ahmed Ibad
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Kamyar Moradi
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Katsuyuki Taguchi
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Jan Fritz
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - John A. Carrino
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Ali Guermazi
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Elliot K. Fishman
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| | - Wojciech B. Zbijewski
- From the Russell H. Morgan Department of Radiology and Radiological
Science (S.D., J.G.K., E.G., H.A.I., K.M., K.T., E.K.F.) and Department of
Biomedical Engineering (W.B.Z.), Johns Hopkins University School of Medicine,
601 N Carolina St, Baltimore, MD 21287; Division of Musculoskeletal Imaging,
Department of Radiology, Mayo Clinic, Rochester, Minn (F.I.B.); Department of
Radiology, New York University Grossman School of Medicine, New York, NY (J.F.);
Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY
(J.A.C.); and Department of Radiology, Quantitative Imaging Center, Boston
University School of Medicine, Boston, Mass (A.G.)
| |
Collapse
|
6
|
Honkanen MKM, Mohammadi A, Te Moller NCR, Ebrahimi M, Xu W, Plomp S, Pouran B, Lehto VP, Brommer H, van Weeren PR, Korhonen RK, Töyräs J, Mäkelä JTA. Dual-contrast micro-CT enables cartilage lesion detection and tissue condition evaluation ex vivo. Equine Vet J 2023; 55:315-324. [PMID: 35353399 PMCID: PMC10084070 DOI: 10.1111/evj.13573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/10/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Post-traumatic osteoarthritis is a frequent joint disease in the horse. Currently, equine medicine lacks effective methods to diagnose the severity of chondral defects after an injury. OBJECTIVES To investigate the capability of dual-contrast-enhanced computed tomography (dual-CECT) for detection of chondral lesions and evaluation of the severity of articular cartilage degeneration in the equine carpus ex vivo. STUDY DESIGN Pre-clinical experimental study. METHODS In nine Shetland ponies, blunt and sharp grooves were randomly created (in vivo) in the cartilage of radiocarpal and middle carpal joints. The contralateral joint served as control. The ponies were subjected to an 8-week exercise protocol and euthanised 39 weeks after surgery. CECT scanning (ex vivo) of the joints was performed using a micro-CT scanner 1 hour after an intra-articular injection of a dual-contrast agent. The dual-contrast agent consisted of ioxaglate (negatively charged, q = -1) and bismuth nanoparticles (BiNPs, q = 0, diameter ≈ 0.2 µm). CECT results were compared to histological cartilage proteoglycan content maps acquired using digital densitometry. RESULTS BiNPs enabled prolonged visual detection of both groove types as they are too large to diffuse into the cartilage. Furthermore, proportional ioxaglate diffusion inside the tissue allowed differentiation between the lesion and ungrooved articular cartilage (3 mm from the lesion and contralateral joint). The mean ioxaglate partition in the lesion was 19 percentage points higher (P < 0.001) when compared with the contralateral joint. The digital densitometry and the dual-contrast CECT findings showed good subjective visual agreement. MAIN LIMITATIONS Ex vivo study protocol and a low number of investigated joints. CONCLUSIONS The dual-CECT methodology, used in this study for the first time to image whole equine joints, is capable of effective lesion detection and simultaneous evaluation of the condition of the articular cartilage.
Collapse
Affiliation(s)
- Miitu K M Honkanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Ali Mohammadi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Nikae C R Te Moller
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mohammadhossein Ebrahimi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Wujun Xu
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Saskia Plomp
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Behdad Pouran
- Department of Orthopedics, University Medical Center Utrecht, The Netherlands
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Harold Brommer
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - P René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.,Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Janne T A Mäkelä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Ibad HA, de Cesar Netto C, Shakoor D, Sisniega A, Liu S, Siewerdsen JH, Carrino JA, Zbijewski W, Demehri S. Computed Tomography: State-of-the-Art Advancements in Musculoskeletal Imaging. Invest Radiol 2023; 58:99-110. [PMID: 35976763 PMCID: PMC9742155 DOI: 10.1097/rli.0000000000000908] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Although musculoskeletal magnetic resonance imaging (MRI) plays a dominant role in characterizing abnormalities, novel computed tomography (CT) techniques have found an emerging niche in several scenarios such as trauma, gout, and the characterization of pathologic biomechanical states during motion and weight-bearing. Recent developments and advancements in the field of musculoskeletal CT include 4-dimensional, cone-beam (CB), and dual-energy (DE) CT. Four-dimensional CT has the potential to quantify biomechanical derangements of peripheral joints in different joint positions to diagnose and characterize patellofemoral instability, scapholunate ligamentous injuries, and syndesmotic injuries. Cone-beam CT provides an opportunity to image peripheral joints during weight-bearing, augmenting the diagnosis and characterization of disease processes. Emerging CBCT technologies improved spatial resolution for osseous microstructures in the quantitative analysis of osteoarthritis-related subchondral bone changes, trauma, and fracture healing. Dual-energy CT-based material decomposition visualizes and quantifies monosodium urate crystals in gout, bone marrow edema in traumatic and nontraumatic fractures, and neoplastic disease. Recently, DE techniques have been applied to CBCT, contributing to increased image quality in contrast-enhanced arthrography, bone densitometry, and bone marrow imaging. This review describes 4-dimensional CT, CBCT, and DECT advances, current logistical limitations, and prospects for each technique.
Collapse
Affiliation(s)
- Hamza Ahmed Ibad
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cesar de Cesar Netto
- Department of Orthopaedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Delaram Shakoor
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Alejandro Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen Liu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - John A. Carrino
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Wojciech Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Shadpour Demehri
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Talebi Jouybari M, Fani N, Jahangir S, Bagheri F, Golru R, Taghiyar L. Validation of Tissue-Engineered Constructs: Preclinical and Clinical Studies. CARTILAGE: FROM BIOLOGY TO BIOFABRICATION 2023:491-527. [DOI: 10.1007/978-981-99-2452-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Sasaki S, Sasaki E, Yamamoto Y, Kimura Y, Chiba D, Tsushima T, Tsuda E, Ishibashi Y. Spectroscopic Quantitative Measurement of the Cartilage Surface using Arthroscopy Correlates with a Conventional Macroscopic Grading System. Arthrosc Sports Med Rehabil 2022; 5:e233-e238. [PMID: 36866322 PMCID: PMC9971858 DOI: 10.1016/j.asmr.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/13/2022] [Indexed: 12/29/2022] Open
Abstract
Purpose To quantify the cartilage surface profile visualized during arthroscopic surgery and examine its clinical utility by comparing the results of quantitative measurements with a conventional grading system. Methods Fifty consecutive patients diagnosed with knee osteoarthritis and who underwent arthroscopic surgery were included in this study. A 4 K camera system was used, and the cartilage surface profile was visualized using the augmented reality imaging program. The highlighted image was displayed in 2 colors: black (the worn cartilage area) and green (the part where the cartilage thickness was maintained). The percentage of the green area was calculated using ImageJ and used as an index of cartilage degeneration. The quantitative value was statistically compared with the International Cartilage Repair Society (ICRS) grade as a conventional macroscopic evaluation. Results In the quantitative measurement, the median percentage of the green area was 60.7 at ICRS grades 0 and 1 (interquartile range [IQR], 67.3-51.0), 47.2 at grade 2 (IQR, 54.1-39.2), 36.5 at grade 3 (IQR, 43.2-30.4), and 34.0 at grade 4 (IQR, 38.5-29.3). There was a significant difference between the macroscopic grades, except for Grades 3 and 4. There was a significant negative correlation between macroscopic evaluation and quantitative measurement (r = -0.672, P < .001). Conclusions The quantitative measurement of the cartilage surface profile using the spectroscopic absorption technique was significantly correlated with the conventional macroscopic grading system and demonstrated fair to good inter-rater and intra-rater reliabilities. Level of Evidence Level II, diagnostic (prospective cohort study).
Collapse
Affiliation(s)
- Shizuka Sasaki
- Address correspondence to Shizuka Sasaki, M.D., Department of Orthopaedic Surgery, Aomori City Hospital, Katta 1-14-20, Aomori, Aomori 030-0821, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bhattarai A, Lok JGT, Sun H, Vardhanabhuti V. Computed Tomography of Cartilage: An Exploration of Novel Cationic Bismuth Contrast Agent. Ann Biomed Eng 2022; 51:977-986. [PMID: 36446911 DOI: 10.1007/s10439-022-03110-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
Accurate diagnosis of minor cartilage injuries with delayed contrast-enhanced computed tomography (CECT) is challenging as poor diffusion and toxicity issues limit the usage of common CT contrast agents. Hence, the design of safe contrast agents with physiochemical properties suitable for fast, deep cartilage imaging is imminent. Herein, a novel cationic bismuth contrast agent (Bi-DOTAPXD) based on dodecane tetraacetic acid (DOTA) was synthesized and examined for CECT of cartilage. The complex was designed to improve diagnosis by utilising a net-positive charge for enhanced permeability through cartilage, inherent low-toxicity and high X-ray attenuation of bismuth. Osteochondral plugs (n = 12), excised from visually intact porcine articular cartilage were immersed in Bi-DOTAPXD (8 mg/mL) and Gd-DOTAPXD (10 mg/mL) contrast agents and scanned with a high-resolution microcomputed tomography scanner at multiple time-points. The mean Bi-DOTAPXD and Gd-DOTAPXD partitions at 45-min time-point were 85.7 ± 35.1 and 69.8 ± 30.2%, and the partitions correlated with the histopathological analysis of cartilage proteoglycan (PG) content (r) at 0.657 and 0.632, respectively. The time diffusion constants (τ) for Bi-DOTAPXD and Gd-DOTA were 121 and 159 min, respectively. Diffusion Bi-DOTAPXD and Gd-DOTAPXD reflected inter-sample variation in cartilage PG content. Cationic Bi-DOTAPXD may have the potential as a CT agent for the diagnosis of cartilage.
Collapse
|
11
|
Hall ME, Wang AS, Gold GE, Levenston ME. Contrast solution properties and scan parameters influence the apparent diffusivity of computed tomography contrast agents in articular cartilage. J R Soc Interface 2022; 19:20220403. [PMID: 35919981 PMCID: PMC9346352 DOI: 10.1098/rsif.2022.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
The inability to detect early degenerative changes to the articular cartilage surface that commonly precede bulk osteoarthritic degradation is an obstacle to early disease detection for research or clinical diagnosis. Leveraging a known artefact that blurs tissue boundaries in clinical arthrograms, contrast agent (CA) diffusivity can be derived from computed tomography arthrography (CTa) scans. We combined experimental and computational approaches to study protocol variations that may alter the CTa-derived apparent diffusivity. In experimental studies on bovine cartilage explants, we examined how CA dilution and transport direction (absorption versus desorption) influence the apparent diffusivity of untreated and enzymatically digested cartilage. Using multiphysics simulations, we examined mechanisms underlying experimental observations and the effects of image resolution, scan interval and early scan termination. The apparent diffusivity during absorption decreased with increasing CA concentration by an amount similar to the increase induced by tissue digestion. Models indicated that osmotically-induced fluid efflux strongly contributed to the concentration effect. Simulated changes to spatial resolution, scan spacing and total scan time all influenced the apparent diffusivity, indicating the importance of consistent protocols. With careful control of imaging protocols and interpretations guided by transport models, CTa-derived diffusivity offers promise as a biomarker for early degenerative changes.
Collapse
Affiliation(s)
- Mary E. Hall
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Adam S. Wang
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Garry E. Gold
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Marc E. Levenston
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Fowkes MM, Das Neves Borges P, Cacho-Nerin F, Brennan PE, Vincent TL, Lim NH. Imaging articular cartilage in osteoarthritis using targeted peptide radiocontrast agents. PLoS One 2022; 17:e0268223. [PMID: 35536857 PMCID: PMC9089912 DOI: 10.1371/journal.pone.0268223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background Established MRI and emerging X-ray contrast agents for non-invasive imaging of articular cartilage rely on non-selective electrostatic interactions with negatively charged proteoglycans. These contrast agents have limited prognostic utility in diseases such as osteoarthritis (OA) due to the characteristic high turnover of proteoglycans. To overcome this limitation, we developed a radiocontrast agent that targets the type II collagen macromolecule in cartilage and used it to monitor disease progression in a murine model of OA. Methods To confer radiopacity to cartilage contrast agents, the naturally occurring tyrosine derivative 3,5-diiodo-L-tyrosine (DIT) was introduced into a selective peptide for type II collagen. Synthetic DIT peptide derivatives were synthesised by Fmoc-based solid-phase peptide synthesis and binding to ex vivo mouse tibial cartilage evaluated by high-resolution micro-CT. Di-Iodotyrosinated Peptide Imaging of Cartilage (DIPIC) was performed ex vivo and in vivo 4, 8 and 12 weeks in mice after induction of OA by destabilisation of the medial meniscus (DMM). Finally, human osteochondral plugs were imaged ex vivo using DIPIC. Results Fifteen DIT peptides were synthesised and tested, yielding seven leads with varying cartilage binding strengths. DIPIC visualised ex vivo murine articular cartilage comparably to the ex vivo contrast agent phosphotungstic acid. Intra-articular injection of contrast agent followed by in vivo DIPIC enabled delineation of damaged murine articular cartilage. Finally, the translational potential of the contrast agent was confirmed by visualisation of ex vivo human cartilage explants. Conclusion DIPIC has reduction and refinement implications in OA animal research and potential clinical translation to imaging human disease.
Collapse
Affiliation(s)
- Milan M. Fowkes
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Patricia Das Neves Borges
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Fernando Cacho-Nerin
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Paul E. Brennan
- Target Discovery Institute, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Tonia L. Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ngee H. Lim
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Saukko AEA, Nykänen O, Sarin JK, Nissi MJ, Te Moller NCR, Weinans H, Mancini IAD, Visser J, Brommer H, van Weeren PR, Malda J, Grinstaff MW, Töyräs J. Dual-contrast computed tomography enables detection of equine posttraumatic osteoarthritis in vitro. J Orthop Res 2022; 40:703-711. [PMID: 33982283 DOI: 10.1002/jor.25066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
To prevent the progression of posttraumatic osteoarthritis, assessment of cartilage composition is critical for effective treatment planning. Posttraumatic changes include proteoglycan (PG) loss and elevated water content. Quantitative dual-energy computed tomography (QDECT) provides a means to diagnose these changes. Here, we determine the potential of QDECT to evaluate tissue quality surrounding cartilage lesions in an equine model, hypothesizing that QDECT allows detection of posttraumatic degeneration by providing quantitative information on PG and water contents based on the partitions of cationic and nonionic agents in a contrast mixture. Posttraumatic osteoarthritic samples were obtained from a cartilage repair study in which full-thickness chondral defects were created surgically in both stifles of seven Shetland ponies. Control samples were collected from three nonoperated ponies. The experimental (n = 14) and control samples (n = 6) were immersed in the contrast agent mixture and the distributions of the agents were determined at various diffusion time points. As a reference, equilibrium moduli, dynamic moduli, and PG content were measured. Significant differences (p < 0.05) in partitions between the experimental and control samples were demonstrated with cationic contrast agent at 30 min, 60 min, and 20 h, and with non-ionic agent at 60 and 120 min. Significant Spearman's rank correlations were obtained at 20 and 24 h (ρ = 0.482-0.693) between the partition of cationic contrast agent, cartilage biomechanical properties, and PG content. QDECT enables evaluation of posttraumatic changes surrounding a lesion and quantification of PG content, thus advancing the diagnostics of the extent and severity of cartilage injuries.
Collapse
Affiliation(s)
- Annina E A Saukko
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Olli Nykänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Research Unit of Medical Imaging Physics and Technology, University of Oulu, Oulu, Finland
| | - Jaakko K Sarin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Mikko J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Research Unit of Medical Imaging Physics and Technology, University of Oulu, Oulu, Finland
| | - Nikae C R Te Moller
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Biomechanical Engineering, Delft University of Technology (TU Delft), Delft, The Netherlands.,Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Irina A D Mancini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jetze Visser
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Harold Brommer
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - P Réné van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jos Malda
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts, USA
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.,Science Service Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
14
|
Hall ME, Black MS, Gold GE, Levenston ME. Validation of watershed-based segmentation of the cartilage surface from sequential CT arthrography scans. Quant Imaging Med Surg 2022; 12:1-14. [PMID: 34993056 PMCID: PMC8666781 DOI: 10.21037/qims-20-1062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND This study investigated the utility of a 2-dimensional watershed algorithm for identifying the cartilage surface in computed tomography (CT) arthrograms of the knee up to 33 minutes after an intra-articular iohexol injection as boundary blurring increased. METHODS A 2D watershed algorithm was applied to CT arthrograms of 3 bovine stifle joints taken 3, 8, 18, and 33 minutes after iohexol injection and used to segment tibial cartilage. Thickness measurements were compared to a reference standard thickness measurement and the 3-minute time point scan. RESULTS 77.2% of cartilage thickness measurements were within 0.2 mm (1 voxel) of the thickness calculated in the reference scan at the 3-minute time point. 42% fewer voxels could be segmented from the 33-minute scan than the 3-minute scan due to diffusion of the contrast agent out of the joint space and into the cartilage, leading to blurring of the cartilage boundary. The traced watershed lines were closer to the location of the cartilage surface in areas where tissues were in direct contact with each other (cartilage-cartilage or cartilage-meniscus contact). CONCLUSIONS The use of watershed dam lines to guide cartilage segmentation shows promise for identifying cartilage boundaries from CT arthrograms in areas where soft tissues are in direct contact with each other.
Collapse
Affiliation(s)
- Mary E. Hall
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Marianne S. Black
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Garry E. Gold
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Marc E. Levenston
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
15
|
Sannmann F, Laredo JD, Chappard C, Engelke K. Impact of meniscal coverage on subchondral bone mineral density of the proximal tibia in female subjects - A cross-sectional in vivo study using QCT. Bone 2020; 134:115292. [PMID: 32084561 DOI: 10.1016/j.bone.2020.115292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To verify earlier data in cadavers that in female subjects with OA meniscal coverage is associated with lowered bone mineral density of the underlying subchondral bone in the proximal tibia by investigating the local bone mineral density (BMD) distribution within the epiphysis. METHODS BMD of the subchondral bone of the tibia was measured by QCT in 67 elderly females diagnosed with OA (Kellgren-Lawrence grades 2-3). The epiphysis was subdivided along the axis of the tibia into a subchondral-epiphyseal VOI covering the first 5-6 mm below the subchondral bone plate, a mid-epiphyseal VOI covering the adjacent 7-8 and a juxtaphyseal VOI of another 7-8 mm that bordered the growth plate. These VIOs were further divided into lateral and medial and then into anterior, mid and posterior sub-VOIs. Finally, all subVOIs were divided in one subVOI covered by the menisci (CM) and another not covered by the menisci (nCM). BMD ratios of these two subVOIs were compared. RESULTS In the subchondral epiphysis BMD was significantly lower (Medial: mean BMDdiff = 125 mg/cm3, p<0.001; Lateral: mean BMDdiff = 56 mg/cm3p < 0.001) in subVOIs covered by the meniscus compared to subVOIs not covered by the meniscus. The BMD difference was no longer significant in the mid epiphysis (Medial: mean BMDdiff = 10 mg/cm3, p>0.82; Lateral: mean BMDdiff = 7 mg/cm3, p=0.99) and was reversed in the juxtaphysis. With a few exceptions these BMD differences were independent of the lateral-medial and the anterior-mid-posterior position. BMD significantly (p<0.05) decreased with age independent on whether the location was covered or uncovered by the meniscus, however the BMD ratio of the corresponding nCM and CM subVOIs did not significantly (p>0.1) change with age. CONCLUSION In-vivo QCT measurements of the BMD distribution in the proximal tibia indicate a protective effect of the menisci in the subchondral bone close to the joint. This protective effect is age independent despite the overall age-related decrease of BMD.
Collapse
Affiliation(s)
- Frederike Sannmann
- Institute of Medical Physics, University of Erlangen-Nürnberg, Henkestr 91, 91052 Erlangen, Germany.
| | - Jean-Denis Laredo
- Service de Radiologie, Hôpital Lariboisière, APHP & Université Paris-Diderot, Paris, France; B2OA UMR 7052 CNRS, Université Paris Diderot, 10 Avenue de Verdun, 75010 Paris, France
| | - Christine Chappard
- B2OA UMR 7052 CNRS, Université Paris Diderot, 10 Avenue de Verdun, 75010 Paris, France
| | - Klaus Engelke
- Institute of Medical Physics, University of Erlangen-Nürnberg, Henkestr 91, 91052 Erlangen, Germany; Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
16
|
Myller KAH, Korhonen RK, Töyräs J, Tanska P, Väänänen SP, Jurvelin JS, Saarakkala S, Mononen ME. Clinical Contrast-Enhanced Computed Tomography With Semi-Automatic Segmentation Provides Feasible Input for Computational Models of the Knee Joint. J Biomech Eng 2020; 142:051001. [PMID: 31647541 DOI: 10.1115/1.4045279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 11/08/2022]
Abstract
Computational models can provide information on joint function and risk of tissue failure related to progression of osteoarthritis (OA). Currently, the joint geometries utilized in modeling are primarily obtained via manual segmentation, which is time-consuming and hence impractical for direct clinical application. The aim of this study was to evaluate the applicability of a previously developed semi-automatic method for segmenting tibial and femoral cartilage to serve as input geometry for finite element (FE) models. Knee joints from seven volunteers were first imaged using a clinical computed tomography (CT) with contrast enhancement and then segmented with semi-automatic and manual methods. In both segmentations, knee joint models with fibril-reinforced poroviscoelastic (FRPVE) properties were generated and the mechanical responses of articular cartilage were computed during physiologically relevant loading. The mean differences in the absolute values of maximum principal stress, maximum principal strain, and fibril strain between the models generated from semi-automatic and manual segmentations were <1 MPa, <0.72% and <0.40%, respectively. Furthermore, contact areas, contact forces, average pore pressures, and average maximum principal strains were not statistically different between the models (p >0.05). This semi-automatic method speeded up the segmentation process by over 90% and there were only negligible differences in the results provided by the models utilizing either manual or semi-automatic segmentations. Thus, the presented CT imaging-based segmentation method represents a novel tool for application in FE modeling in the clinic when a physician needs to evaluate knee joint function.
Collapse
Affiliation(s)
- Katariina A H Myller
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029, Finland; School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia Qld, Brisbane 4072, Australia
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Sami P Väänänen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029, Finland; Central Finland Central Hospital, Department of Physics, Keskussairaalantie 19, Jyväskylä FI-40620, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Simo Saarakkala
- Department of Diagnostic Radiology, Oulu University Hospital, Kajaanintie 50, Oulu FI-90220, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, P.O. Box 5000, Oulu FI-90014, Finland
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| |
Collapse
|
17
|
Honkanen MKM, Saukko AEA, Turunen MJ, Shaikh R, Prakash M, Lovric G, Joukainen A, Kröger H, Grinstaff MW, Töyräs J. Synchrotron MicroCT Reveals the Potential of the Dual Contrast Technique for Quantitative Assessment of Human Articular Cartilage Composition. J Orthop Res 2020; 38:563-573. [PMID: 31535728 PMCID: PMC7065106 DOI: 10.1002/jor.24479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/13/2019] [Indexed: 02/04/2023]
Abstract
Dual contrast micro computed tomography (CT) shows potential for detecting articular cartilage degeneration. However, the performance of conventional CT systems is limited by beam hardening, low image resolution (full-body CT), and long acquisition times (conventional microCT). Therefore, to reveal the full potential of the dual contrast technique for imaging cartilage composition we employ the technique using synchrotron microCT. We hypothesize that the above-mentioned limitations are overcome with synchrotron microCT utilizing monochromatic X-ray beam and fast image acquisition. Human osteochondral samples (n = 41, four cadavers) were immersed in a contrast agent solution containing two agents (cationic CA4+ and non-ionic gadoteridol) and imaged with synchrotron microCT at an early diffusion time point (2 h) and at diffusion equilibrium (72 h) using two monochromatic X-ray energies (32 and 34 keV). The dual contrast technique enabled simultaneous determination of CA4+ (i.e., proteoglycan content) and gadoteridol (i.e., water content) partitions within cartilage. Cartilage proteoglycan content and biomechanical properties correlated significantly (0.327 < r < 0.736, p < 0.05) with CA4+ partition in superficial and middle zones at both diffusion time points. Normalization of the CA4+ partition with gadoteridol partition within the cartilage significantly (p < 0.05) improved the detection sensitivity for human osteoarthritic cartilage proteoglycan content, biomechanical properties, and overall condition (Mankin, Osteoarthritis Research Society International, and International Cartilage Repair Society grading systems). The dual energy technique combined with the dual contrast agent enables assessment of human articular cartilage proteoglycan content and biomechanical properties based on CA4+ partition determined using synchrotron microCT. Additionally, the dual contrast technique is not limited by the beam hardening artifact of conventional CT systems. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 38:563-573, 2020.
Collapse
Affiliation(s)
- Miitu K. M. Honkanen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
| | - Annina E. A. Saukko
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- Department of Medical PhysicsTurku University HospitalTurkuFinland
| | - Mikael J. Turunen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- SIB LabsUniversity of Eastern FinlandKuopioFinland
| | - Rubina Shaikh
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Mithilesh Prakash
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Goran Lovric
- Centre d'lmagerie BioMédicaleÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Swiss Light SourcePaul Scherrer InstituteVilligenSwitzerland
| | - Antti Joukainen
- Department of Orthopedics, Traumatology and Hand SurgeryKuopio University HospitalKuopioFinland
| | - Heikki Kröger
- Department of Orthopedics, Traumatology and Hand SurgeryKuopio University HospitalKuopioFinland
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and MedicineBoston UniversityBostonMassachusetts
| | - Juha Töyräs
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
- Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
18
|
Triple Contrast CT Method Enables Simultaneous Evaluation of Articular Cartilage Composition and Segmentation. Ann Biomed Eng 2019; 48:556-567. [PMID: 31576504 PMCID: PMC6949199 DOI: 10.1007/s10439-019-02362-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022]
Abstract
Early degenerative changes of articular cartilage are detected using contrast-enhanced computed tomography (CT) with a cationic contrast agent (CA). However, cationic CA diffusion into degenerated cartilage decreases with proteoglycan depletion and increases with elevated water content, thus hampering tissue evaluation at early diffusion time points. Furthermore, the contrast at synovial fluid-cartilage interface diminishes as a function of diffusion time hindering accurate cartilage segmentation. For the first time, we employ quantitative dual-energy CT (QDECT) imaging utilizing a mixture of three CAs (cationic CA4+ and non-ionic gadoteridol which are sensitive to proteoglycan and water contents, respectively, and bismuth nanoparticles which highlight the cartilage surface) to simultaneously segment the articulating surfaces and determine of the cartilage condition. Intact healthy, proteoglycan-depleted, and mechanically injured bovine cartilage samples (n = 27) were halved and imaged with synchrotron microCT 2-h post immersion in triple CA or in dual CA (CA4+ and gadoteridol). CA4+ and gadoteridol partitions were determined using QDECT, and pairwise evaluation of these partitions was conducted for samples immersed in dual and triple CAs. In conclusion, the triple CA method is sensitive to proteoglycan depletion while maintaining sufficient contrast at the articular surface to enable detection of cartilage lesions caused by mechanical impact.
Collapse
|
19
|
Simultaneous Quantitation of Cationic and Non-ionic Contrast Agents in Articular Cartilage Using Synchrotron MicroCT Imaging. Sci Rep 2019; 9:7118. [PMID: 31068614 PMCID: PMC6506503 DOI: 10.1038/s41598-019-43276-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 04/15/2019] [Indexed: 01/15/2023] Open
Abstract
Early diagnosis of acute cartilage injuries enables monitoring of disease progression and improved treatment option planning to prevent post-traumatic osteoarthritis. In contrast-enhanced computed tomography (CECT), the changes in cationic agent diffusion within the tissue reflect cartilage degeneration. The diffusion in degenerated cartilage depends on proteoglycan (PG) content and water content, but each having an opposite effect on diffusion, thus compromising the diagnostic sensitivity. To overcome this limitation, we propose the simultaneous imaging of cationic (sensitive to PG and water contents) and non-ionic (sensitive to water content) agents. In this study, quantitative dual-energy CT (QDECT) imaging of two agents is reported for the first time at clinically feasible imaging time points. Furthermore, this is the first time synchrotron microCT with monochromatic X-rays is employed in cartilage CECT. Imaging was conducted at 1 and 2 h post contrast agent immersion. Intact, PG-depleted, and mechanically injured + PG-depleted cartilage samples (n = 33) were imaged in a mixture of cationic (iodine-based CA4+) and non-ionic (gadolinium-based gadoteridol) agents. Concurrent evaluation of CA4+ and gadoteridol partitions in cartilage is accomplished using QDECT. Subsequent normalization of the CA4+ partition with that of the gadoteridol affords CA4+ attenuations that significantly correlate with PG content – a key marker of OA.
Collapse
|
20
|
Honkanen MKM, Matikka H, Honkanen JTJ, Bhattarai A, Grinstaff MW, Joukainen A, Kröger H, Jurvelin JS, Töyräs J. Imaging of proteoglycan and water contents in human articular cartilage with full-body CT using dual contrast technique. J Orthop Res 2019; 37:1059-1070. [PMID: 30816584 PMCID: PMC6594070 DOI: 10.1002/jor.24256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/12/2019] [Indexed: 02/04/2023]
Abstract
Assessment of cartilage composition via tomographic imaging is critical after cartilage injury to prevent post-traumatic osteoarthritis. Diffusion of cationic contrast agents in cartilage is affected by proteoglycan loss and elevated water content. These changes have opposite effects on diffusion and, thereby, reduce the diagnostic accuracy of cationic agents. Here, we apply, for the first time, a clinical full-body CT for dual contrast imaging of articular cartilage. We hypothesize that full-body CT can simultaneously determine the diffusion and partitioning of cationic and non-ionic contrast agents and that normalization of the cationic agent partition with that of the non-ionic agent minimizes the effect of water content and tissue permeability, especially at early diffusion time points. Cylindrical (d = 8 mm) human osteochondral samples (n = 45; four cadavers) of a variable degenerative state were immersed in a mixture of cationic iodinated CA4+ and non-charged gadoteridol contrast agents and imaged with a full-body CT scanner at various time points. Determination of contrast agents' distributions within cartilage was possible at all phases of diffusion. At early time points, gadoteridol, and CA4+ distributed throughout cartilage with lower concentrations in the deep cartilage. At ≥24 h, the gadoteridol concentration remained nearly constant, while the CA4+ concentration increased toward deep cartilage. Normalization of the CA4+ partition with that of gadoteridol significantly (p < 0.05) enhanced correlation with proteoglycan content and Mankin score at the early time points. To conclude, the dual contrast technique was found advantageous over single contrast imaging enabling more sensitive diagnosis of cartilage degeneration. © 2019 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-12, 2019.
Collapse
Affiliation(s)
- Miitu K. M. Honkanen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland,Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
| | - Hanna Matikka
- Department of Clinical RadiologyDiagnostic Imaging CenterKuopio University HospitalKuopioFinland
| | | | - Abhisek Bhattarai
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland,Diagnostic Imaging CenterKuopio University HospitalKuopioFinland
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and MedicineBoston UniversityBostonMassachusetts
| | - Antti Joukainen
- Department of Orthopedics, Traumatology and Hand SurgeryKuopio University HospitalKuopioFinland
| | - Heikki Kröger
- Department of Orthopedics, Traumatology and Hand SurgeryKuopio University HospitalKuopioFinland
| | - Jukka S. Jurvelin
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Juha Töyräs
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland,Diagnostic Imaging CenterKuopio University HospitalKuopioFinland,School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
21
|
Myller KAH, Korhonen RK, Töyräs J, Salo J, Jurvelin JS, Venäläinen MS. Computational evaluation of altered biomechanics related to articular cartilage lesions observed in vivo. J Orthop Res 2019; 37:1042-1051. [PMID: 30839123 DOI: 10.1002/jor.24273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/17/2019] [Indexed: 02/04/2023]
Abstract
Chondral lesions provide a potential risk factor for development of osteoarthritis. Despite the variety of in vitro studies on lesion degeneration, in vivo studies that evaluate relation between lesion characteristics and the risk for the possible progression of OA are lacking. Here, we aimed to characterize different lesions and quantify biomechanical responses experienced by surrounding cartilage tissue. We generated computational knee joint models with nine chondral injuries based on clinical in vivo arthrographic computed tomography images. Finite element models with fibril-reinforced poro(visco)elastic cartilage and menisci were constructed to simulate physiological loading. Systematically, the lesions experienced increased peak values of maximum principal strain, maximum shear strain, and minimum principal strain in the surrounding chondral tissue (p < 0.01) compared with intact tissue. Depth, volume, and area of the lesion correlated with the maximum shear strain (p < 0.05, Spearman rank correlation coefficient ρ = 0.733-0.917). Depth and volume of the lesion correlated also with the maximum principal strain (p < 0.05, ρ = 0.767, and ρ = 0.717, respectively). However, the lesion area had non-significant correlation with this strain parameter (p = 0.06, ρ = 0.65). Potentially, the introduced approach could be developed for clinical evaluation of biomechanical risks of a chondral lesion and planning an intervention. Statement of Clinical Relevance: In this study, we computationally characterized different in vivo chondral lesions and evaluated their risk of cartilage degeneration. This information is vital in decision-making for intervention in order to prevent post-traumatic osteoarthritis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Katariina A H Myller
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.,Centre of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Jari Salo
- Orthopaedics and Traumatology Clinic, Mehiläinen, Helsinki, Finland.,Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko S Venäläinen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
22
|
Maximum shear strain-based algorithm can predict proteoglycan loss in damaged articular cartilage. Biomech Model Mechanobiol 2019; 18:753-778. [PMID: 30631999 DOI: 10.1007/s10237-018-01113-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/24/2018] [Indexed: 01/25/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is a common disease, where the mechanical integrity of articular cartilage is compromised. PTOA can be a result of chondral defects formed due to injurious loading. One of the first changes around defects is proteoglycan depletion. Since there are no methods to restore injured cartilage fully back to its healthy state, preventing the onset and progression of the disease is advisable. However, this is problematic if the disease progression cannot be predicted. Thus, we developed an algorithm to predict proteoglycan loss of injured cartilage by decreasing the fixed charge density (FCD) concentration. We tested several mechanisms based on the local strains or stresses in the tissue for the FCD loss. By choosing the degeneration threshold suggested for inducing chondrocyte apoptosis and cartilage matrix damage, the algorithm driven by the maximum shear strain showed the most substantial FCD losses around the lesion. This is consistent with experimental findings in the literature. We also observed that by using coordinate system-independent strain measures and selecting the degeneration threshold in an ad hoc manner, all the resulting FCD distributions would appear qualitatively similar, i.e., the greatest FCD losses are found at the tissue adjacent to the lesion. The proposed strain-based FCD degeneration algorithm shows a great potential for predicting the progression of PTOA via biomechanical stimuli. This could allow identification of high-risk defects with an increased risk of PTOA progression.
Collapse
|
23
|
Multi-scale imaging techniques to investigate solute transport across articular cartilage. J Biomech 2018; 78:10-20. [DOI: 10.1016/j.jbiomech.2018.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022]
|
24
|
Method for Segmentation of Knee Articular Cartilages Based on Contrast-Enhanced CT Images. Ann Biomed Eng 2018; 46:1756-1767. [PMID: 30132213 DOI: 10.1007/s10439-018-2081-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022]
Abstract
Segmentation of contrast-enhanced computed tomography (CECT) images enables quantitative evaluation of morphology of articular cartilage as well as the significance of the lesions. Unfortunately, automatic segmentation methods for CECT images are currently lacking. Here, we introduce a semiautomated technique to segment articular cartilage from in vivo CECT images of human knee. The segmented cartilage geometries of nine knee joints, imaged using a clinical CT-scanner with an intra-articular contrast agent, were compared with manual segmentations from CT and magnetic resonance (MR) images. The Dice similarity coefficients (DSCs) between semiautomatic and manual CT segmentations were 0.79-0.83 and sensitivity and specificity values were also high (0.76-0.86). When comparing semiautomatic and manual CT segmentations, mean cartilage thicknesses agreed well (intraclass correlation coefficient = 0.85-0.93); the difference in thickness (mean ± SD) was 0.27 ± 0.03 mm. Differences in DSC, when MR segmentations were compared with manual and semiautomated CT segmentations, were statistically insignificant. Similarly, differences in volume were not statistically significant between manual and semiautomatic CT segmentations. Semiautomation decreased the segmentation time from 450 ± 190 to 42 ± 10 min per joint. The results reveal that the proposed technique is fast and reliable for segmentation of cartilage. Importantly, this is the first study presenting semiautomated segmentation of cartilage from CECT images of human knee joint with minimal user interaction.
Collapse
|
25
|
Bhattarai A, Honkanen JTJ, Myller KAH, Prakash M, Korhonen M, Saukko AEA, Virén T, Joukainen A, Patwa AN, Kröger H, Grinstaff MW, Jurvelin JS, Töyräs J. Quantitative Dual Contrast CT Technique for Evaluation of Articular Cartilage Properties. Ann Biomed Eng 2018; 46:1038-1046. [DOI: 10.1007/s10439-018-2013-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
|
26
|
Tanska P, Julkunen P, Korhonen RK. A computational algorithm to simulate disorganization of collagen network in injured articular cartilage. Biomech Model Mechanobiol 2017; 17:689-699. [PMID: 29177932 DOI: 10.1007/s10237-017-0986-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
Abstract
Cartilage defects are a known risk factor for osteoarthritis. Estimation of structural changes in these defects could help us to identify high risk defects and thus to identify patients that are susceptible for the onset and progression of osteoarthritis. Here, we present an algorithm combined with computational modeling to simulate the disorganization of collagen fibril network in injured cartilage. Several potential triggers for collagen disorganization were tested in the algorithm following the assumption that disorganization is dependent on the mechanical stimulus of the tissue. We found that tensile tissue stimulus alone was unable to preserve collagen architecture in intact cartilage as collagen network reoriented throughout the cartilage thickness. However, when collagen reorientation was based on both tensile tissue stimulus and tensile collagen fibril strains or stresses, the collagen network architecture was preserved in intact cartilage. Using the same approach, substantial collagen reorientation was predicted locally near the cartilage defect and particularly at the cartilage-bone interface. The developed algorithm was able to predict similar structural findings reported in the literature that are associated with experimentally observed remodeling in articular cartilage. The proposed algorithm, if further validated, could help to predict structural changes in articular cartilage following post-traumatic injury potentially advancing to impaired cartilage function.
Collapse
Affiliation(s)
- Petri Tanska
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.
| | - Petro Julkunen
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
27
|
Saukko AEA, Honkanen JTJ, Xu W, Väänänen SP, Jurvelin JS, Lehto VP, Töyräs J. Dual Contrast CT Method Enables Diagnostics of Cartilage Injuries and Degeneration Using a Single CT Image. Ann Biomed Eng 2017; 45:2857-2866. [PMID: 28924827 DOI: 10.1007/s10439-017-1916-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
Abstract
Cartilage injuries may be detected using contrast-enhanced computed tomography (CECT) by observing variations in distribution of anionic contrast agent within cartilage. Currently, clinical CECT enables detection of injuries and related post-traumatic degeneration based on two subsequent CT scans. The first scan allows segmentation of articular surfaces and lesions while the latter scan allows evaluation of tissue properties. Segmentation of articular surfaces from the latter scan is difficult since the contrast agent diffusion diminishes the image contrast at surfaces. We hypothesize that this can be overcome by mixing anionic contrast agent (ioxaglate) with bismuth oxide nanoparticles (BINPs) too large to diffuse into cartilage, inducing a high contrast at the surfaces. Here, a dual contrast method employing this mixture is evaluated by determining the depth-wise X-ray attenuation profiles in intact, enzymatically degraded, and mechanically injured osteochondral samples (n = 3 × 10) using a microCT immediately and at 45 min after immersion in contrast agent. BiNPs were unable to diffuse into cartilage, producing high contrast at articular surfaces. Ioxaglate enabled the detection of enzymatic and mechanical degeneration. In conclusion, the dual contrast method allowed detection of injuries and degeneration simultaneously with accurate cartilage segmentation using a single scan conducted at 45 min after contrast agent administration.
Collapse
Affiliation(s)
- Annina E A Saukko
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.
- Diagnostic Imaging Center, Kuopio University Hospital, POB 100, 70029, Kuopio, Finland.
| | - Juuso T J Honkanen
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, POB 100, 70029, Kuopio, Finland
| | - Wujun Xu
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Sami P Väänänen
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, POB 100, 70029, Kuopio, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, POB 100, 70029, Kuopio, Finland
| |
Collapse
|