1
|
Escher A, Aguilar Vega C, Horvath MA, Ozturk C, Roche ET. Leveraging Preclinical Modeling for Clinical Advancements in Single Ventricle Physiology: Spotlight on the Fontan Circulation. Annu Rev Biomed Eng 2025; 27:449-472. [PMID: 40030078 DOI: 10.1146/annurev-bioeng-102723-013709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Preclinical modeling of human circulation has been instrumental in advancing cardiovascular medicine. Alongside clinical research, the armamentarium of computational (e.g., lumped parameter or computational fluid dynamics) and experimental (e.g., benchtop or animal) models have substantially enhanced our understanding of risk factors and root causes for circulatory diseases. Recent innovations are further disrupting the boundaries of these preclinical models toward patient-specific simulations, surgical planning, and postoperative outcome prediction. This fast-paced progress empowers preclinical modeling to increasingly delve into the intricacies of single ventricle physiology, a rare and heterogeneous congenital heart disease that remains inadequately understood. Here, we review the current landscape of preclinical modeling (computational and experimental) proposed to advance clinical management of a prominent yet complex subset of single ventricle physiology: patients who have undergone Fontan-type surgical corrections. Further, we explore recent innovations and emerging technologies that are poised to bridge the gap between preclinical Fontan modeling and clinical implementation.
Collapse
Affiliation(s)
- Andreas Escher
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carlos Aguilar Vega
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Markus A Horvath
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Caglar Ozturk
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Mechanical Engineering, University of Southampton, Southampton, United Kingdom
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Abstract
To address the increasing number of failing Fontan patients, Penn State University and the Penn State Hershey Medical Center are developing a centrifugal blood pump for long-term mechanical support. Computational fluid dynamics (CFD) modeling of the Penn State Fontan Circulatory Assist Device (FCAD) was performed to understand hemodynamics within the pump and its potential for hemolysis and thrombosis. CFD velocity and pressure results were first validated against experimental data and found to be within the standard deviations of the velocities and within 5% of the pressures. Further simulations performed with a human blood model found that most of the fluid domain was subjected to low shear stress (<50 Pa), with areas of highest stress around the rotor blade tips that increased with pump flow rate and rotor speed (138-178 Pa). However, the stresses compared well to previous CFD studies of commercial blood pumps and remained mostly below common thresholds of hemolysis and platelet activation. Additionally, few regions of low shear rate were observed within the FCAD, signifying minimal potential for platelet adhesion. These results further emphasize the FCAD's potential that has been observed previously in experimental and animal studies.
Collapse
|
3
|
Fresiello L, Muthiah K, Goetschalckx K, Hayward C, Rocchi M, Bezy M, Pauls JP, Meyns B, Donker DW, Zieliński K. Initial clinical validation of a hybrid in silico—in vitro cardiorespiratory simulator for comprehensive testing of mechanical circulatory support systems. Front Physiol 2022; 13:967449. [PMID: 36311247 PMCID: PMC9606213 DOI: 10.3389/fphys.2022.967449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Simulators are expected to assume a prominent role in the process of design—development and testing of cardiovascular medical devices. For this purpose, simulators should capture the complexity of human cardiorespiratory physiology in a realistic way. High fidelity simulations of pathophysiology do not only allow to test the medical device itself, but also to advance practically relevant monitoring and control features while the device acts under realistic conditions. We propose a physiologically controlled cardiorespiratory simulator developed in a mixed in silico-in vitro simulation environment. As inherent to this approach, most of the physiological model complexity is implemented in silico while the in vitro system acts as an interface to connect a medical device. As case scenarios, severe heart failure was modeled, at rest and at exercise and as medical device a left ventricular assist device (LVAD) was connected to the simulator. As initial validation, the simulator output was compared against clinical data from chronic heart failure patients supported by an LVAD, that underwent different levels of exercise tests with concomitant increase in LVAD speed. Simulations were conducted reproducing the same protocol as applied in patients, in terms of exercise intensity and related LVAD speed titration. Results show that the simulator allows to capture the principal parameters of the main adaptative cardiovascular and respiratory processes within the human body occurring from rest to exercise. The simulated functional interaction with the LVAD is comparable to the one clinically observed concerning ventricular unloading, cardiac output, and pump flow. Overall, the proposed simulation system offers a high fidelity in silico-in vitro representation of the human cardiorespiratory pathophysiology. It can be used as a test bench to comprehensively analyze the performance of physically connected medical devices simulating clinically realistic, critical scenarios, thus aiding in the future the development of physiologically responding, patient-adjustable medical devices. Further validation studies will be conducted to assess the performance of the simulator in other pathophysiological conditions.
Collapse
Affiliation(s)
- Libera Fresiello
- Cardiovascular and Respiratory Physiology, University of Twente, Enschede, Netherlands
- Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
- *Correspondence: Libera Fresiello,
| | - Kavitha Muthiah
- Department of Cardiology, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Kaatje Goetschalckx
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Christopher Hayward
- Department of Cardiology, St Vincent’s Hospital, Sydney, NSW, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Maria Rocchi
- Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Maxime Bezy
- Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jo P. Pauls
- School of Engineering, Griffith University, Southport, QLD, Australia
| | - Bart Meyns
- Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dirk W. Donker
- Cardiovascular and Respiratory Physiology, University of Twente, Enschede, Netherlands
- Intensive Care Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Krzysztof Zieliński
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
van der Woude SFS, Rijnberg FM, Hazekamp MG, Jongbloed MRM, Kenjeres S, Lamb HJ, Westenberg JJM, Roest AAW, Wentzel JJ. The Influence of Respiration on Blood Flow in the Fontan Circulation: Insights for Imaging-Based Clinical Evaluation of the Total Cavopulmonary Connection. Front Cardiovasc Med 2021; 8:683849. [PMID: 34422920 PMCID: PMC8374887 DOI: 10.3389/fcvm.2021.683849] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
Congenital heart disease is the most common birth defect and functionally univentricular heart defects represent the most severe end of this spectrum. The Fontan circulation provides an unique solution for single ventricle patients, by connecting both caval veins directly to the pulmonary arteries. As a result, the pulmonary circulation in Fontan palliated patients is characterized by a passive, low-energy circulation that depends on increased systemic venous pressure to drive blood toward the lungs. The absence of a subpulmonary ventricle led to the widely believed concept that respiration, by sucking blood to the pulmonary circulation during inspiration, is of great importance as a driving force for antegrade blood flow in Fontan patients. However, recent studies show that respiration influences pulsatility, but has a limited effect on net forward flow in the Fontan circulation. Importantly, since MRI examination is recommended every 2 years in Fontan patients, clinicians should be aware that most conventional MRI flow sequences do not capture the pulsatility of the blood flow as a result of the respiration. In this review, the unique flow dynamics influenced by the cardiac and respiratory cycle at multiple locations within the Fontan circulation is discussed. The impact of (not) incorporating respiration in different MRI flow sequences on the interpretation of clinical flow parameters will be covered. Finally, the influence of incorporating respiration in advanced computational fluid dynamic modeling will be outlined.
Collapse
Affiliation(s)
- Séline F S van der Woude
- Department of Cardiology, Biomedical Engineering, Biomechanics Laboratory, Rotterdam, Netherlands
| | - Friso M Rijnberg
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Mark G Hazekamp
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Monique R M Jongbloed
- Department of Anatomy, Embryology and Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Sasa Kenjeres
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology and J. M. Burgerscentrum Research School for Fluid Mechanics, Delft, Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Arno A W Roest
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jolanda J Wentzel
- Department of Cardiology, Biomedical Engineering, Biomechanics Laboratory, Rotterdam, Netherlands
| |
Collapse
|
5
|
Mandell JG, Loke YH, Mass PN, Opfermann J, Cleveland V, Aslan S, Hibino N, Krieger A, Olivieri LJ. Aorta size mismatch predicts decreased exercise capacity in patients with successfully repaired coarctation of the aorta. J Thorac Cardiovasc Surg 2021; 162:183-192.e2. [PMID: 33131888 DOI: 10.1016/j.jtcvs.2020.09.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Coarctation of the aorta (CoA) is associated with decreased exercise capacity despite successful repair with no residual stenosis; however, the hemodynamic mechanism remains unknown. This study aims to correlate aortic arch geometry with exercise capacity in patients with successfully repaired CoA and explain hemodynamic changes using 3-dimensional-printed aorta models in a mock circulatory flow loop. METHODS A retrospective chart review identified patients with CoA repair who had cardiac magnetic resonance imaging and an exercise stress test. Measurements included aorta diameters, arch height to diameter ratio, left ventricular function, and percent descending aorta (%DAo) flow. Each aorta was printed 3-dimensionally for the flow loop. Flow and pressure were measured at the ascending aorta (AAo) and DAo during simulated rest and exercise. Measurements were correlated with percent predicted peak oxygen consumption (VO2 max). RESULTS Fifteen patients (mean age 26.8 ± 8.6 years) had a VO2 max between 47% and 126% predicted (mean 92 ± 20%) with normal left ventricular function. DAo diameter and %DAo flow positively correlated with VO2 (P = .007 and P = .04, respectively). AAo to DAo diameter ratio (DAAo/DDAo) negatively correlated with VO2 (P < .001). From flow loop simulations, the ratio of %DAo flow in exercise to rest negatively correlated with VO2 (P = .02) and positively correlated with DAAo/DDAo (P < .01). CONCLUSIONS This study suggests aorta size mismatch (DAAo/DDAo) is a novel, clinically important measurement predicting exercise capacity in patients with successful CoA repair, likely due to increased resistance and altered flow distribution. Aorta size mismatch and %DAo flow are targets for further clinical evaluation in repaired CoA.
Collapse
Affiliation(s)
- Jason G Mandell
- Division of Cardiology, Children's National Hospital, Washington, DC.
| | - Yue-Hin Loke
- Division of Cardiology, Children's National Hospital, Washington, DC
| | - Paige N Mass
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC
| | - Justin Opfermann
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC
| | - Vincent Cleveland
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC
| | - Seda Aslan
- Department of Mechanical Engineering, University of Maryland, College Park, Md
| | - Narutoshi Hibino
- Section of Cardiac Surgery, Department of Surgery, University of Chicago/Advocate Children's Hospital Chicago, Ill
| | - Axel Krieger
- Department of Mechanical Engineering, University of Maryland, College Park, Md
| | - Laura J Olivieri
- Division of Cardiology, Children's National Hospital, Washington, DC; Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC
| |
Collapse
|
6
|
Engineering Perspective on Cardiovascular Simulations of Fontan Hemodynamics: Where Do We Stand with a Look Towards Clinical Application. Cardiovasc Eng Technol 2021; 12:618-630. [PMID: 34114202 DOI: 10.1007/s13239-021-00541-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/30/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Cardiovascular simulations for patients with single ventricles undergoing the Fontan procedure can assess patient-specific hemodynamics, explore surgical advances, and develop personalized strategies for surgery and patient care. These simulations have not yet been broadly accepted as a routine clinical tool owing to a number of limitations. Numerous approaches have been explored to seek innovative solutions for improving methodologies and eliminating these limitations. PURPOSE This article first reviews the current state of cardiovascular simulations of Fontan hemodynamics. Then, it will discuss the technical progress of Fontan simulations with the emphasis of its clinical impact, noting that substantial improvements have been made in the considerations of patient-specific anatomy, flow, and blood rheology. The article concludes with insights into potential future directions involving clinical validation, uncertainty quantification, and computational efficiency. The advancements in these aspects could promote the clinical usage of Fontan simulations, facilitating its integration into routine clinical practice.
Collapse
|
7
|
A Tribute to Ajit Yoganathan's Cardiovascular Fluid Mechanics Lab: A Survey of Its Contributions to Our Understanding of the Physiology and Management of Single-Ventricle Patients. Cardiovasc Eng Technol 2021; 12:631-639. [PMID: 34018153 DOI: 10.1007/s13239-021-00540-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/30/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Among patients with congenital heart disease, those born with only a single working ventricle represent a particularly complex sub-population, typically requiring multiple surgeries and suffering from high levels of mortality and morbidity. Their cardiac care is complex and has evolved considerably since surgical palliation was first introduced more than 50 years ago. Improvements in treatment have been driven both by growing clinical experience and by knowledge gained through experimental and computational studies of blood flow in these patients. The Cardiovascular Fluid Mechanics Lab at the Georgia Institute of Technology, founded 30 years ago by Dr. Ajit Yoganathan, has pioneered work in this field. METHODS In this review, key contributions of Dr. Yoganathan's Cardiovascular Fluid Dynamics Lab are surveyed, including experimental flow loop studies as well as computational fluid dynamics analyses that address many of the critical challenges that cardiologists and surgeons face in treating these patients, including how to reconstruct cardiovascular anatomy to minimize power loss, balance blood flow distribution at key bifurcation points, and avoid other unfavorable hemodynamic conditions. CONCLUSIONS Among many contributions in this field, work from the Cardiovascular Fluid Mechanics Lab has led to novel medical devices and patient-specific computational modeling workflows and software tools. These key contributions from this group have enhanced our understanding of the physiology and management of single-ventricle patients.
Collapse
|
8
|
Fluid-Structure Interaction Simulation of an Intra-Atrial Fontan Connection. BIOLOGY 2020; 9:biology9120412. [PMID: 33255292 PMCID: PMC7760396 DOI: 10.3390/biology9120412] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Simple Summary A fluid-structure interaction (FSI) simulation of an intra-atrial Fontan connection was performed. Power loss and pressure drop results fluctuated less during the FSI simulation than during the simulation run with rigid walls, but there were no observable differences in time-averaged pressure drop, connection power loss or hepatic flow distribution. These results suggested that employing a rigid wall is a reasonable assumption when evaluating time-averaged hemodynamic quantities of the Fontan connection under resting breath-held flow conditions. Abstract Total cavopulmonary connection (TCPC) hemodynamics has been hypothesized to be associated with long-term complications in single ventricle heart defect patients. Rigid wall assumption has been commonly used when evaluating TCPC hemodynamics using computational fluid dynamics (CFD) simulation. Previous study has evaluated impact of wall compliance on extra-cardiac TCPC hemodynamics using fluid-structure interaction (FSI) simulation. However, the impact of ignoring wall compliance on the presumably more compliant intra-atrial TCPC hemodynamics is not fully understood. To narrow this knowledge gap, this study aims to investigate impact of wall compliance on an intra-atrial TCPC hemodynamics. A patient-specific model of an intra-atrial TCPC is simulated with an FSI model. Patient-specific 3D TCPC anatomies were reconstructed from transverse cardiovascular magnetic resonance images. Patient-specific vessel flow rate from phase-contrast magnetic resonance imaging (MRI) at the Fontan pathway and the superior vena cava under resting condition were prescribed at the inlets. From the FSI simulation, the degree of wall deformation was compared with in vivo wall deformation from phase-contrast MRI data as validation of the FSI model. Then, TCPC flow structure, power loss and hepatic flow distribution (HFD) were compared between rigid wall and FSI simulation. There were differences in instantaneous pressure drop, power loss and HFD between rigid wall and FSI simulations, but no difference in the time-averaged quantities. The findings of this study support the use of a rigid wall assumption on evaluation of time-averaged intra-atrial TCPC hemodynamic metric under resting breath-held condition.
Collapse
|
9
|
Wei ZA, Johnson C, Trusty P, Stephens M, Wu W, Sharon R, Srimurugan B, Kottayil BP, Sunil GS, Fogel MA, Yoganathan AP, Kappanayil M. Comparison of Fontan Surgical Options for Patients with Apicocaval Juxtaposition. Pediatr Cardiol 2020; 41:1021-1030. [PMID: 32377893 PMCID: PMC7325867 DOI: 10.1007/s00246-020-02353-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/23/2020] [Indexed: 12/22/2022]
Abstract
Apicocaval juxtaposition (ACJ) is a rare form of viscerocardiac malpositions in association with single-ventricle congenital heart defects. The Fontan surgery is the common palliation, and possible surgical options include ipsilateral, contralateral, and intra-atrial conduits. Concerns include lower hemodynamic performances or risks of conduit compression by the cardiac mass. This study investigates the hemodynamics and clinical outcomes of ACJ patients and potential surgical improvements. Ten consecutive ACJ patients were included, along with a reference cohort of ten non-ACJ patients. Magnetic resonance images were acquired at 6 ± 0.6 year follow-up for anatomical analysis and hemodynamic assessments using computational fluid dynamics. Metrics of interest are deformation index (DI), indexed power loss (iPL), and hepatic flow distribution (HFDoff). A "virtual" surgery was performed to explore potential hemodynamic improvements using a straightened conduit. DI for ACJ patients fell within the DI range of non-ACJ patients. Contralateral conduits had insignificantly higher iPL (0.070 [0.032,0.137]) than ipsilateral conduits (0.041 [0.013,0.095]) and non-ACJ conduits (0.034 [0.011,0.061]). HFDoff was similar for the ipsilateral (21 [12,35]), contralateral (26 [7,41]), and non-ACJ Fontan conduits (17 [0,48]). Virtual surgery demonstrated that a straightened conduit reduced HFDoff and iPL for the contralateral and ipsilateral conduits, potentially leading to improved clinical outcomes. In this limited sample, the hemodynamic performance of ACJ patients was not significantly different from their non-ACJ counterparts. The use of a straightened conduit option could potentially improve patient outcomes. Additionally, the fear of significant compression of conduits for ACJ patients was unsupported.
Collapse
Affiliation(s)
- Zhenglun Alan Wei
- Department of Biomedical Engineering, Georgia Institute of Technology, Suite 200, 387 Technology Circle, Atlanta, GA, 30313-2412, USA
| | - Camille Johnson
- Department of Biomedical Engineering, Georgia Institute of Technology, Suite 200, 387 Technology Circle, Atlanta, GA, 30313-2412, USA
| | - Phillip Trusty
- Department of Biomedical Engineering, Georgia Institute of Technology, Suite 200, 387 Technology Circle, Atlanta, GA, 30313-2412, USA
| | - Morgan Stephens
- Department of Biomedical Engineering, Georgia Institute of Technology, Suite 200, 387 Technology Circle, Atlanta, GA, 30313-2412, USA
| | - Wenjun Wu
- Department of Biomedical Engineering, Georgia Institute of Technology, Suite 200, 387 Technology Circle, Atlanta, GA, 30313-2412, USA
| | - Ritchie Sharon
- Amrita Institute of Medical Sciences and Research Centre, Kochi, India
| | - Balaji Srimurugan
- Amrita Institute of Medical Sciences and Research Centre, Kochi, India
| | | | - G S Sunil
- Amrita Institute of Medical Sciences and Research Centre, Kochi, India
| | - Mark A Fogel
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ajit P Yoganathan
- Department of Biomedical Engineering, Georgia Institute of Technology, Suite 200, 387 Technology Circle, Atlanta, GA, 30313-2412, USA.
| | - Mahesh Kappanayil
- Amrita Institute of Medical Sciences and Research Centre, Kochi, India
| |
Collapse
|
10
|
Non-Newtonian Effects on Patient-Specific Modeling of Fontan Hemodynamics. Ann Biomed Eng 2020; 48:2204-2217. [PMID: 32372365 DOI: 10.1007/s10439-020-02527-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022]
Abstract
The Fontan procedure is a common palliative surgery for congenital single ventricle patients. In silico and in vitro patient-specific modeling approaches are widely utilized to investigate potential improvements of Fontan hemodynamics that are related to long-term complications. However, there is a lack of consensus regarding the use of non-Newtonian rheology, warranting a systematic investigation. This study conducted in silico patient-specific modeling for twelve Fontan patients, using a Newtonian and a non-Newtonian model for each patient. Differences were quantified by examining clinically relevant metrics: indexed power loss (iPL), indexed viscous dissipation rate (iVDR), hepatic flow distribution (HFD), and regions of low wall shear stress (AWSS). Four sets of "non-Newtonian importance factors" were calculated to explore their effectiveness in identifying the non-Newtonian effect. No statistical differences were observed in iPL, iVDR, and HFD between the two models at the population-level, but large inter-patient variations exist. Significant differences were detected regarding AWSS, and its correlations with non-Newtonian importance factors were discussed. Additionally, simulations using the non-Newtonian model were computationally faster than those using the Newtonian model. These findings distinguish good importance factors for identifying non-Newtonian rheology and encourage the use of a non-Newtonian model to assess Fontan hemodynamics.
Collapse
|
11
|
Chen X, Yuan H, Liu J, Zhang N, Zhou C, Huang M, Jian Q, Zhuang J. Hemodynamic Effects of Additional Pulmonary Blood Flow on Glenn and Fontan Circulation. Cardiovasc Eng Technol 2020; 11:268-282. [PMID: 32072439 DOI: 10.1007/s13239-020-00459-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE Additional pulmonary blood flow (APBF) can provide better pulsating blood flow and systemic arterial oxygen saturation, while low blood pulsation and low oxygen saturation are defects of the Fontan and Glenn procedure. Studying the hemodynamic effect of APBF is beneficial for clinical decisions. This study aimed to explore the effect on particle washout, as well as the differences among the sensitivities of both different hemodynamic parameters and different procedures to APBF. METHODS The patient-specific clinical datasets of a patient who underwent bilateral bidirectional Glenn (BBDG) with APBF were enrolled in this study, and using these datasets, Glenn- and Fontan-type artery models were reconstructed. A series of parameters, including the total caval flow pulsatility index (TCPI), indexed energy loss (iPL), wall shear stress (WSS), systemic arterial oxygen saturation (Satart), particle washout time (WOT), pressure in the right superior vena cava (PRSVC), pulmonary flow distribution (PFD) and hepatic flow distribution (HFD), were computed from computational fluid dynamic (CFD) simulation to evaluate the hemodynamic effect of APBF. RESULTS The result showed that APBF led to better iPL and Satart but worse PRSVC and heart load accompanied by a great impact on HFD, making hepatic flow easier to perfuse the side without MPA and APBF. The increase in the APBF rate also effectively results in larger flow pulsation, region velocity, and wall shear stress and lower WOT, and this effect may be more effective for patients with persistent left superior vena cava (PLSVC). However, APBF might have little effect on PFD. Furthermore, APBF might affect WOT, iPL and HFD more significantly than PRSVC and has a greater improvement effect in patients with poorer iPL and WOT. CONCLUSIONS Moderate APBF is not only a measure to promote pulmonary artery growth and systemic arterial oxygen saturation but also an effective method against endothelial dysfunction and thrombosis. However, moderate APBF is patient-specific and should be determined based on hemodynamic preference that leads to desired patient outcomes, and care should be taken to prevent PRSVC and heart load from being too high as well as an imbalance in HFD.
Collapse
Affiliation(s)
- Xiangyu Chen
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510000, China
| | - Haiyun Yuan
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
| | - Jiawei Liu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510000, China
| | - Neichuan Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510000, China
| | - Chengbin Zhou
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
| | - Meiping Huang
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Catheterization Lab, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qifei Jian
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510000, China.
| | - Jian Zhuang
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China.
| |
Collapse
|
12
|
Impact of Free-Breathing Phase-Contrast MRI on Decision-Making in Fontan Surgical Planning. J Cardiovasc Transl Res 2019; 13:640-647. [DOI: 10.1007/s12265-019-09930-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/21/2019] [Indexed: 11/26/2022]
|
13
|
Bastkowski R, Bindermann R, Brockmeier K, Weiss K, Maintz D, Giese D. Respiration Dependency of Caval Blood Flow in Patients with Fontan Circulation: Quantification Using 5D Flow MRI. Radiol Cardiothorac Imaging 2019; 1:e190005. [PMID: 33778515 PMCID: PMC7977808 DOI: 10.1148/ryct.2019190005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/26/2019] [Accepted: 07/30/2019] [Indexed: 06/12/2023]
Abstract
PURPOSE To measure respiration-dependent blood flow in the total cavopulmonary connection (TCPC) of patients with Fontan circulation by using free-running, fully self-gated five-dimensional (5D) flow MRI. MATERIALS AND METHODS From July to November 2018, 10 volunteers (six female volunteers, mean age, 25.1 years ± 4.4 [standard deviation]) and six patients with Fontan circulation (two female patients, mean age, 19.7 years ± 7.5) with a TCPC were examined by using a cardiac- and respiration-resolved three-directional and three-dimensional phase-contrast MRI sequence (hereafter, 5D flow MRI). This prospective study was conducted with approval of the local ethics committee, and written informed consent was obtained from all participants and/or their representative. 5D flow data were acquired during free breathing. Data were reconstructed into 15-20 heart phases and four respiratory phases: end-expiration, inspiration, end-inspiration, and expiration. Respiration-dependent stroke volumes (SVs) and particle traces were analyzed from the caval circulation of volunteers and patients with Fontan circulation. Statistical analysis was performed by using parametric tests and scatterplots. RESULTS The respiration dependency of caval blood flow was evaluated in all participants and was significantly elevated in patients with Fontan circulation as compared with volunteers. In patients, SV in the inferior vena cava (IVC) showed variations of 120% between inspiration and expiration (P = .002). The flow distribution in the IVC and superior vena cava among the four respiratory phases was differentiated by 20% (range, 9%-30%) and 4% (range, 0%-13%), respectively. CONCLUSION Hemodynamic parameters (volume flow and blood flow distribution) throughout the cardiac and respiratory cycle can be measured using a single scan, potentially providing further insights into the Fontan circulation.© RSNA, 2019Supplemental material is available for this article.
Collapse
|
14
|
Rutkowski D, Medero R, Ruesink T, Roldan-Alzate A. Modeling Physiological Flow Variation in Fontan Models with 4d Flow Mri, Particle Image Velocimetry, and Arterial Spin Labeling. J Biomech Eng 2019; 141:1065454. [PMID: 31596919 DOI: 10.1115/1.4045110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 11/08/2022]
Abstract
The Fontan procedure is a successful palliation for single ventricle defect. Yet, a number of complications still occur in Fontan patients due to abnormal blood flow dynamics, necessitating improved flow analysis and treatment methods. Phase-contrast magnetic resonance imaging (MRI) has emerged as a suitable method for such flow analysis. However, limitations on altering physiological blood flow conditions in the patient while in the MRI bore inhibit experimental investigation of a variety of factors that contribute to impaired cardiovascular health in these patients. Furthermore, resolution and flow regime limitations in phase contrast MRI pose a challenge for accurate and consistent flow characterization. In this study, patient-specific physical models were created based on nine Fontan geometries and MRI experiments mimicking low and high flow conditions, as well as steady and pulsatile flow, were conducted. Additionally, an optically transparent Fontan model was created for flow analyses using a particle image velocimetry (PIV) system, arterial spin labeling (ASL), and four-dimensional (4D) flow MRI. Differences, though non-statistically significant, were observed between flow conditions and between patient-specific models. Large between-model variation supported the need for further improvement for patient-specific modeling on each unique Fontan anatomical configuration. Furthermore, high resolution PIV and flow tracking ASL data provided flow information that was not obtainable with 4D flow MRI alone.
Collapse
Affiliation(s)
- David Rutkowski
- Mechanical Engineering, University of Wisconsin - Madison, Madison, WI, United States; Radiology, University of Wisconsin - Madison, Madison, WI, United States
| | - Rafael Medero
- Mechanical Engineering, University of Wisconsin - Madison, Madison, WI, United States; Radiology, University of Wisconsin - Madison, Madison, WI, United States
| | - Timothy Ruesink
- Mechanical Engineering, University of Wisconsin - Madison, Madison, WI, United States; Radiology, University of Wisconsin - Madison, Madison, WI, United States
| | - Alejandro Roldan-Alzate
- Mechanical Engineering, University of Wisconsin - Madison, Madison, WI, United States; Radiology, University of Wisconsin - Madison, Madison, WI, United States; Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, United States
| |
Collapse
|
15
|
Tang E, Wei ZA, Trusty PM, Whitehead KK, Mirabella L, Veneziani A, Fogel MA, Yoganathan AP. The effect of respiration-driven flow waveforms on hemodynamic metrics used in Fontan surgical planning. J Biomech 2018; 82:87-95. [PMID: 30414631 DOI: 10.1016/j.jbiomech.2018.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Poor total cavopulmonary connection (TCPC) hemodynamics have been hypothesized to be associated with long-term complications in Fontan patients. Image-based Fontan surgical planning has shown great potential as a clinical tool because it can pre-operatively evaluate patient-specific hemodynamics. Current surgical planning paradigms commonly utilize cardiac-gated phase contrast magnetic resonance (MR) imaging to acquire vessel flows. These acquisitions are often taken under breath-held (BH) conditions and ignore the effect of respiration on blood flow waveforms. This study investigates the effect of respiration-driven flow waveforms on patient-specific hemodynamics using real-time MR acquisitions. METHODS Patient-specific TCPCs were reconstructed from cardiovascular MR images. Real-time phase contrast MR images were acquired under both free-breathing (FB) and breath-held conditions for 9 patients. Numerical simulations were employed to assess flow structures and hemodynamics used in Fontan surgical planning including hepatic flow distribution (HFD) and indexed power loss (iPL), which were then compared between FB and BH conditions. RESULTS Differences in TCPC flow structures between FB and BH conditions were observed throughout the respiratory cycle. However, the average differences (BH - FB values for each patient, which are then averaged) in iPL and HFD between these conditions were 0.002 ± 0.011 (p = 0.40) and 1 ± 3% (p = 0.28), respectively, indicating no significant difference in clinically important hemodynamic metrics. CONCLUSIONS Respiration affects blood flow waveforms and flow structures, but might not significantly influence the values of iPL or HFD. Therefore, breath-held MR acquisition can be adequate for Fontan surgical planning when focusing on iPL and HFD.
Collapse
Affiliation(s)
- Elaine Tang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhenglun Alan Wei
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Phillip M Trusty
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Kevin K Whitehead
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lucia Mirabella
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Alessandro Veneziani
- Department of Mathematics and Computer Science, Emory University, Atlanta, GA, USA
| | - Mark A Fogel
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ajit P Yoganathan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
| |
Collapse
|
16
|
Rijnberg FM, Hazekamp MG, Wentzel JJ, de Koning PJ, Westenberg JJ, Jongbloed MR, Blom NA, Roest AA. Energetics of Blood Flow in Cardiovascular Disease. Circulation 2018; 137:2393-2407. [DOI: 10.1161/circulationaha.117.033359] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Jolanda J. Wentzel
- Leiden University Medical Center, The Netherlands. Department of Biomechanical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands (J.J.W.)
| | | | | | | | - Nico A. Blom
- Department of Pediatric Cardiology (N.A.B., A.A.W.R.)
| | | |
Collapse
|