1
|
Park MH, Zhu Y, Imbrie-Moore AM, Wang H, Marin-Cuartas M, Paulsen MJ, Woo YJ. Heart Valve Biomechanics: The Frontiers of Modeling Modalities and the Expansive Capabilities of Ex Vivo Heart Simulation. Front Cardiovasc Med 2021; 8:673689. [PMID: 34307492 PMCID: PMC8295480 DOI: 10.3389/fcvm.2021.673689] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
The field of heart valve biomechanics is a rapidly expanding, highly clinically relevant area of research. While most valvular pathologies are rooted in biomechanical changes, the technologies for studying these pathologies and identifying treatments have largely been limited. Nonetheless, significant advancements are underway to better understand the biomechanics of heart valves, pathologies, and interventional therapeutics, and these advancements have largely been driven by crucial in silico, ex vivo, and in vivo modeling technologies. These modalities represent cutting-edge abilities for generating novel insights regarding native, disease, and repair physiologies, and each has unique advantages and limitations for advancing study in this field. In particular, novel ex vivo modeling technologies represent an especially promising class of translatable research that leverages the advantages from both in silico and in vivo modeling to provide deep quantitative and qualitative insights on valvular biomechanics. The frontiers of this work are being discovered by innovative research groups that have used creative, interdisciplinary approaches toward recapitulating in vivo physiology, changing the landscape of clinical understanding and practice for cardiovascular surgery and medicine.
Collapse
Affiliation(s)
- Matthew H Park
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Mateo Marin-Cuartas
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
2
|
Goode D, Dhaliwal R, Mohammadi H. Transcatheter Mitral Valve Replacement: State of the Art. Cardiovasc Eng Technol 2020; 11:229-253. [DOI: 10.1007/s13239-020-00460-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
|
3
|
Salinas SD, Clark MM, Amini R. Mechanical Response Changes in Porcine Tricuspid Valve Anterior Leaflet Under Osmotic-Induced Swelling. Bioengineering (Basel) 2019; 6:E70. [PMID: 31443151 PMCID: PMC6784000 DOI: 10.3390/bioengineering6030070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/27/2019] [Accepted: 08/13/2019] [Indexed: 01/22/2023] Open
Abstract
Since many soft tissues function in an isotonic in-vivo environment, it is expected that physiological osmolarity will be maintained when conducting experiments on these tissues ex-vivo. In this study, we aimed to examine how not adhering to such a practice may alter the mechanical response of the tricuspid valve (TV) anterior leaflet. Tissue specimens were immersed in deionized (DI) water prior to quantification of the stress-strain responses using an in-plane biaxial mechanical testing device. Following a two-hour immersion in DI water, the tissue thickness increased an average of 107.3% in the DI water group compared to only 6.8% in the control group, in which the tissue samples were submerged in an isotonic phosphate buffered saline solution for the same period of time. Tissue strains evaluated at 85 kPa revealed a significant reduction in the radial direction, from 34.8% to 20%, following immersion in DI water. However, no significant change was observed in the control group. Our study demonstrated the impact of a hypo-osmotic environment on the mechanical response of TV anterior leaflet. The imbalance in ions leads to water absorption in the valvular tissue that can alter its mechanical response. As such, in ex-vivo experiments for which the native mechanical response of the valves is important, using an isotonic buffer solution is essential.
Collapse
Affiliation(s)
- Samuel D Salinas
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Margaret M Clark
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Rouzbeh Amini
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
4
|
Pierce EL, Kohli K, Ncho B, Sadri V, Bloodworth CH, Mangan FE, Yoganathan AP. Novel In Vitro Test Systems and Insights for Transcatheter Mitral Valve Design, Part II: Radial Expansion Forces. Ann Biomed Eng 2019; 47:392-402. [PMID: 30341736 PMCID: PMC6520998 DOI: 10.1007/s10439-018-02139-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/22/2018] [Indexed: 10/28/2022]
Abstract
Transcatheter mitral valve (TMV) replacement technology has great clinical potential for surgically inoperable patients suffering from mitral regurgitation. An important goal for robust TMV design is maximizing the likelihood of achieving a geometry post-implant that facilitates optimal performance. To support this goal, improved understanding of the annular forces that oppose TMV radial expansion is necessary. In Part II of this study, novel circular and D-shaped Radial Expansion Force Transducers (C-REFT and D-REFT) were developed and employed in porcine hearts (N = 12), to detect the forces required to radially expand the mitral annulus to discrete oversizing levels. Forces on both the septal-lateral and inter-commissural axes (FSL and FIC) scaled with device size. The D-REFT experienced lower FSL than the C-REFT (19.8 ± 7.4 vs. 17.4 ± 10.8 N, p = 0.002) and greater FIC (31.5 ± 14.0 vs. 36.9 ± 16.2 N; p = 0.002), and was more sensitive to degree of oversizing. Across all tests, FIC/FSL was 2.21 ± 1.33, likely reflecting low resistance to radial expansion at the aorto-mitral curtain. In conclusion, the annular forces opposing TMV radial expansion are non-uniform, and depend on final TMV shape and size. Based on this two-part study, we propose that radial force applied at the commissural aspect of the annulus has the most potent effect on paravalvular sealing.
Collapse
Affiliation(s)
- Eric L Pierce
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Keshav Kohli
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Beatrice Ncho
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Vahid Sadri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Charles H Bloodworth
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Fiona E Mangan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA
| | - Ajit P Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 387 Technology Circle NW, Suite 200, Atlanta, GA, 30313, USA.
| |
Collapse
|